1 1.41 riastrad /* $NetBSD: crypt.c,v 1.41 2024/07/23 22:37:11 riastradh Exp $ */ 2 1.5 cgd 3 1.1 cgd /* 4 1.5 cgd * Copyright (c) 1989, 1993 5 1.5 cgd * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Tom Truscott. 9 1.1 cgd * 10 1.1 cgd * Redistribution and use in source and binary forms, with or without 11 1.1 cgd * modification, are permitted provided that the following conditions 12 1.1 cgd * are met: 13 1.1 cgd * 1. Redistributions of source code must retain the above copyright 14 1.1 cgd * notice, this list of conditions and the following disclaimer. 15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 cgd * notice, this list of conditions and the following disclaimer in the 17 1.1 cgd * documentation and/or other materials provided with the distribution. 18 1.21 agc * 3. Neither the name of the University nor the names of its contributors 19 1.1 cgd * may be used to endorse or promote products derived from this software 20 1.1 cgd * without specific prior written permission. 21 1.1 cgd * 22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 1.1 cgd * SUCH DAMAGE. 33 1.1 cgd */ 34 1.1 cgd 35 1.7 lukem #include <sys/cdefs.h> 36 1.7 lukem #if !defined(lint) 37 1.5 cgd #if 0 38 1.5 cgd static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93"; 39 1.7 lukem #else 40 1.41 riastrad __RCSID("$NetBSD: crypt.c,v 1.41 2024/07/23 22:37:11 riastradh Exp $"); 41 1.5 cgd #endif 42 1.7 lukem #endif /* not lint */ 43 1.1 cgd 44 1.1 cgd #include <limits.h> 45 1.1 cgd #include <pwd.h> 46 1.12 kleink #include <stdlib.h> 47 1.35 jhigh #include <string.h> /* for strcmp */ 48 1.6 mikel #include <unistd.h> 49 1.26 hubertf #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST) 50 1.23 christos #include <stdio.h> 51 1.23 christos #endif 52 1.1 cgd 53 1.22 sjg #include "crypt.h" 54 1.22 sjg 55 1.1 cgd /* 56 1.1 cgd * UNIX password, and DES, encryption. 57 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org, 58 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly. 59 1.1 cgd * 60 1.1 cgd * References: 61 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians," 62 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X. 63 1.1 cgd * 64 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson, 65 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979. 66 1.1 cgd * 67 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman, 68 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979. 69 1.1 cgd */ 70 1.1 cgd 71 1.1 cgd /* ===== Configuration ==================== */ 72 1.1 cgd 73 1.1 cgd /* 74 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store 75 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations. 76 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!) 77 1.1 cgd */ 78 1.13 matt #if !defined(__vax__) && !defined(__i386__) 79 1.1 cgd #define MUST_ALIGN 80 1.1 cgd #endif 81 1.1 cgd 82 1.1 cgd #ifdef CHAR_BITS 83 1.1 cgd #if CHAR_BITS != 8 84 1.1 cgd #error C_block structure assumes 8 bit characters 85 1.1 cgd #endif 86 1.1 cgd #endif 87 1.1 cgd 88 1.1 cgd /* 89 1.1 cgd * define "B64" to be the declaration for a 64 bit integer. 90 1.1 cgd * XXX this feature is currently unused, see "endian" comment below. 91 1.1 cgd */ 92 1.1 cgd #if defined(cray) 93 1.1 cgd #define B64 long 94 1.1 cgd #endif 95 1.1 cgd #if defined(convex) 96 1.1 cgd #define B64 long long 97 1.1 cgd #endif 98 1.1 cgd 99 1.1 cgd /* 100 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes 101 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has 102 1.1 cgd * little effect on crypt(). 103 1.1 cgd */ 104 1.1 cgd #if defined(notdef) 105 1.1 cgd #define LARGEDATA 106 1.1 cgd #endif 107 1.1 cgd 108 1.6 mikel /* compile with "-DSTATIC=void" when profiling */ 109 1.1 cgd #ifndef STATIC 110 1.6 mikel #define STATIC static void 111 1.1 cgd #endif 112 1.1 cgd 113 1.1 cgd /* ==================================== */ 114 1.1 cgd 115 1.1 cgd /* 116 1.1 cgd * Cipher-block representation (Bob Baldwin): 117 1.1 cgd * 118 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One 119 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of 120 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array. 121 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the 122 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has 123 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we 124 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is 125 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are 126 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into 127 1.1 cgd * MSB format. 128 1.1 cgd * 129 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits 130 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up 131 1.1 cgd * the computation, the expansion is applied only once, the expanded 132 1.1 cgd * representation is maintained during the encryption, and a compression 133 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups, 134 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which 135 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the 136 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus, 137 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the 138 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is 139 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is 140 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which 141 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next 142 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this 143 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed 144 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and 145 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is 146 1.1 cgd * 8*64*8 = 4K bytes. 147 1.1 cgd * 148 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte 149 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on 150 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure, 151 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be 152 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of 153 1.1 cgd * the architecture becomes visible. 154 1.1 cgd * 155 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good 156 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the 157 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the 158 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we 159 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte 160 1.1 cgd * operations that depend on byte order. This largely precludes use of the 161 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It 162 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The 163 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1 164 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the 165 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup 166 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss. 167 1.1 cgd * 168 1.1 cgd * Permutation representation (Jim Gillogly): 169 1.1 cgd * 170 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the 171 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in 172 1.1 cgd * the input distributed appropriately. The transformation is then the OR 173 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for 174 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact 175 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks. 176 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This 177 1.1 cgd * is slower but tolerable, particularly for password encryption in which 178 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K 179 1.1 cgd * bytes, the large tables total 72K bytes. 180 1.1 cgd * 181 1.1 cgd * The transformations used are: 182 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion. 183 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying 184 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered 185 1.1 cgd * bits and applying the same transformation. Since there are only 186 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of 187 1.1 cgd * the usual table. 188 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion. 189 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain 190 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table) 191 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would 192 1.1 cgd * be possible to group the bits in the 64-bit block so that 2 193 1.1 cgd * identical 32->32 bit transformations could be used instead, 194 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but 195 1.1 cgd * byte-ordering and other complications rear their ugly head. 196 1.1 cgd * Similar opportunities/problems arise in the key schedule 197 1.1 cgd * transforms.) 198 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation. 199 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to 200 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule. 201 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation. 202 1.1 cgd * It would be possible to define 15 more transformations, each 203 1.1 cgd * with a different rotation, to generate the entire key schedule. 204 1.1 cgd * To save space, however, we instead permute each code into the 205 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation, 206 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2 207 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not 208 1.1 cgd * invertible. We get around that problem by using a modified PC2 209 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order 210 1.1 cgd * bits of each byte. The low-order bits are cleared when the 211 1.1 cgd * codes are stored into the key schedule. 212 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations. 213 1.1 cgd * This is faster than applying PC2ROT[0] twice, 214 1.1 cgd * 215 1.1 cgd * The Bell Labs "salt" (Bob Baldwin): 216 1.1 cgd * 217 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E. 218 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and 219 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with 220 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not 221 1.1 cgd * swap bits 13..24 with 36..48.) 222 1.1 cgd * 223 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt 224 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only 225 1.1 cgd * about four machine instructions and can be done on-the-fly with about an 226 1.1 cgd * 8% performance penalty. 227 1.1 cgd */ 228 1.1 cgd 229 1.1 cgd typedef union { 230 1.1 cgd unsigned char b[8]; 231 1.1 cgd struct { 232 1.4 cgd int32_t i0; 233 1.4 cgd int32_t i1; 234 1.1 cgd } b32; 235 1.1 cgd #if defined(B64) 236 1.1 cgd B64 b64; 237 1.1 cgd #endif 238 1.1 cgd } C_block; 239 1.1 cgd 240 1.1 cgd /* 241 1.1 cgd * Convert twenty-four-bit long in host-order 242 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format. 243 1.1 cgd */ 244 1.1 cgd #define TO_SIX_BIT(rslt, src) { \ 245 1.1 cgd C_block cvt; \ 246 1.1 cgd cvt.b[0] = src; src >>= 6; \ 247 1.1 cgd cvt.b[1] = src; src >>= 6; \ 248 1.1 cgd cvt.b[2] = src; src >>= 6; \ 249 1.1 cgd cvt.b[3] = src; \ 250 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \ 251 1.1 cgd } 252 1.1 cgd 253 1.1 cgd /* 254 1.1 cgd * These macros may someday permit efficient use of 64-bit integers. 255 1.1 cgd */ 256 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0 257 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1 258 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1 259 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1 260 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1 261 1.4 cgd #define DCL_BLOCK(d,d0,d1) int32_t d0, d1 262 1.1 cgd 263 1.1 cgd #if defined(LARGEDATA) 264 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */ 265 1.1 cgd #define LGCHUNKBITS 3 266 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS) 267 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \ 268 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ 269 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ 270 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ 271 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \ 272 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \ 273 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \ 274 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \ 275 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]); 276 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \ 277 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ 278 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ 279 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ 280 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); 281 1.1 cgd #else 282 1.1 cgd /* "small data" */ 283 1.1 cgd #define LGCHUNKBITS 2 284 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS) 285 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \ 286 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); } 287 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \ 288 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); } 289 1.8 mikel #endif /* LARGEDATA */ 290 1.7 lukem 291 1.27 perry STATIC init_des(void); 292 1.27 perry STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS], 293 1.27 perry const unsigned char [64], int, int); 294 1.8 mikel #ifndef LARGEDATA 295 1.27 perry STATIC permute(const unsigned char *, C_block *, C_block *, int); 296 1.8 mikel #endif 297 1.7 lukem #ifdef DEBUG 298 1.27 perry STATIC prtab(const char *, unsigned char *, int); 299 1.7 lukem #endif 300 1.7 lukem 301 1.7 lukem 302 1.8 mikel #ifndef LARGEDATA 303 1.1 cgd STATIC 304 1.28 perry permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in) 305 1.1 cgd { 306 1.7 lukem DCL_BLOCK(D,D0,D1); 307 1.7 lukem C_block *tp; 308 1.7 lukem int t; 309 1.1 cgd 310 1.1 cgd ZERO(D,D0,D1); 311 1.1 cgd do { 312 1.1 cgd t = *cp++; 313 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS); 314 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS); 315 1.1 cgd } while (--chars_in > 0); 316 1.1 cgd STORE(D,D0,D1,*out); 317 1.1 cgd } 318 1.1 cgd #endif /* LARGEDATA */ 319 1.1 cgd 320 1.1 cgd 321 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */ 322 1.1 cgd 323 1.20 jdolecek static const unsigned char IP[] = { /* initial permutation */ 324 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2, 325 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4, 326 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6, 327 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8, 328 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1, 329 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3, 330 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5, 331 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7, 332 1.1 cgd }; 333 1.1 cgd 334 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */ 335 1.1 cgd 336 1.20 jdolecek static const unsigned char ExpandTr[] = { /* expansion operation */ 337 1.1 cgd 32, 1, 2, 3, 4, 5, 338 1.1 cgd 4, 5, 6, 7, 8, 9, 339 1.1 cgd 8, 9, 10, 11, 12, 13, 340 1.1 cgd 12, 13, 14, 15, 16, 17, 341 1.1 cgd 16, 17, 18, 19, 20, 21, 342 1.1 cgd 20, 21, 22, 23, 24, 25, 343 1.1 cgd 24, 25, 26, 27, 28, 29, 344 1.1 cgd 28, 29, 30, 31, 32, 1, 345 1.1 cgd }; 346 1.1 cgd 347 1.20 jdolecek static const unsigned char PC1[] = { /* permuted choice table 1 */ 348 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 349 1.1 cgd 1, 58, 50, 42, 34, 26, 18, 350 1.1 cgd 10, 2, 59, 51, 43, 35, 27, 351 1.1 cgd 19, 11, 3, 60, 52, 44, 36, 352 1.1 cgd 353 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 354 1.1 cgd 7, 62, 54, 46, 38, 30, 22, 355 1.1 cgd 14, 6, 61, 53, 45, 37, 29, 356 1.1 cgd 21, 13, 5, 28, 20, 12, 4, 357 1.1 cgd }; 358 1.1 cgd 359 1.20 jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */ 360 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 361 1.1 cgd }; 362 1.1 cgd 363 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */ 364 1.20 jdolecek static const unsigned char PC2[] = { /* permuted choice table 2 */ 365 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5, 366 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10, 367 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8, 368 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2, 369 1.1 cgd 370 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55, 371 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48, 372 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53, 373 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32, 374 1.1 cgd }; 375 1.1 cgd 376 1.20 jdolecek static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */ 377 1.1 cgd /* S[1] */ 378 1.6 mikel { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 379 1.6 mikel 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 380 1.6 mikel 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 381 1.6 mikel 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }, 382 1.1 cgd /* S[2] */ 383 1.6 mikel { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 384 1.6 mikel 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 385 1.6 mikel 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 386 1.6 mikel 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }, 387 1.1 cgd /* S[3] */ 388 1.6 mikel { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 389 1.6 mikel 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 390 1.6 mikel 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 391 1.6 mikel 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }, 392 1.1 cgd /* S[4] */ 393 1.6 mikel { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 394 1.6 mikel 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 395 1.6 mikel 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 396 1.6 mikel 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }, 397 1.1 cgd /* S[5] */ 398 1.6 mikel { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 399 1.6 mikel 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 400 1.6 mikel 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 401 1.6 mikel 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }, 402 1.1 cgd /* S[6] */ 403 1.6 mikel { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 404 1.6 mikel 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 405 1.6 mikel 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 406 1.6 mikel 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }, 407 1.1 cgd /* S[7] */ 408 1.6 mikel { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 409 1.6 mikel 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 410 1.6 mikel 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 411 1.6 mikel 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }, 412 1.1 cgd /* S[8] */ 413 1.6 mikel { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 414 1.6 mikel 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 415 1.6 mikel 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 416 1.6 mikel 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } 417 1.1 cgd }; 418 1.1 cgd 419 1.20 jdolecek static const unsigned char P32Tr[] = { /* 32-bit permutation function */ 420 1.1 cgd 16, 7, 20, 21, 421 1.1 cgd 29, 12, 28, 17, 422 1.1 cgd 1, 15, 23, 26, 423 1.1 cgd 5, 18, 31, 10, 424 1.1 cgd 2, 8, 24, 14, 425 1.1 cgd 32, 27, 3, 9, 426 1.1 cgd 19, 13, 30, 6, 427 1.1 cgd 22, 11, 4, 25, 428 1.1 cgd }; 429 1.1 cgd 430 1.20 jdolecek static const unsigned char CIFP[] = { /* compressed/interleaved permutation */ 431 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20, 432 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24, 433 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28, 434 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32, 435 1.1 cgd 436 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52, 437 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56, 438 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60, 439 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64, 440 1.1 cgd }; 441 1.1 cgd 442 1.20 jdolecek static const unsigned char itoa64[] = /* 0..63 => ascii-64 */ 443 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; 444 1.1 cgd 445 1.1 cgd 446 1.1 cgd /* ===== Tables that are initialized at run time ==================== */ 447 1.1 cgd 448 1.1 cgd 449 1.1 cgd /* Initial key schedule permutation */ 450 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS]; 451 1.1 cgd 452 1.1 cgd /* Subsequent key schedule rotation permutations */ 453 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS]; 454 1.1 cgd 455 1.1 cgd /* Initial permutation/expansion table */ 456 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS]; 457 1.1 cgd 458 1.1 cgd /* Table that combines the S, P, and E operations. */ 459 1.4 cgd static int32_t SPE[2][8][64]; 460 1.1 cgd 461 1.1 cgd /* compressed/interleaved => final permutation table */ 462 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS]; 463 1.1 cgd 464 1.1 cgd 465 1.1 cgd /* ==================================== */ 466 1.1 cgd 467 1.1 cgd 468 1.1 cgd static C_block constdatablock; /* encryption constant */ 469 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */ 470 1.1 cgd 471 1.30 christos /* 472 1.30 christos * We match the behavior of UFC-crypt on systems where "char" is signed by 473 1.30 christos * default (the majority), regardless of char's signedness on our system. 474 1.30 christos */ 475 1.30 christos static inline int 476 1.30 christos ascii_to_bin(char ch) 477 1.30 christos { 478 1.30 christos signed char sch = ch; 479 1.30 christos int retval; 480 1.30 christos 481 1.30 christos if (sch >= 'a') 482 1.30 christos retval = sch - ('a' - 38); 483 1.41 riastrad else if (sch >= 'A') 484 1.30 christos retval = sch - ('A' - 12); 485 1.30 christos else 486 1.30 christos retval = sch - '.'; 487 1.30 christos 488 1.30 christos return retval & 0x3f; 489 1.30 christos } 490 1.32 christos 491 1.30 christos /* 492 1.30 christos * When we choose to "support" invalid salts, nevertheless disallow those 493 1.30 christos * containing characters that would violate the passwd file format. 494 1.30 christos */ 495 1.30 christos static inline int 496 1.30 christos ascii_is_unsafe(char ch) 497 1.30 christos { 498 1.30 christos return !ch || ch == '\n' || ch == ':'; 499 1.30 christos } 500 1.17 christos 501 1.1 cgd /* 502 1.41 riastrad * We extract the scheme from setting str to allow for 503 1.35 jhigh * full scheme name comparison 504 1.41 riastrad * Updated to reflect alc suggestion(s) 505 1.35 jhigh * 506 1.40 rin * returns boolean 0 on failure, 1 on success, 507 1.35 jhigh */ 508 1.41 riastrad static int 509 1.35 jhigh nondes_scheme_substr(const char * setting,char * scheme, unsigned int len) 510 1.35 jhigh { 511 1.35 jhigh const char * start; 512 1.35 jhigh const char * sep; 513 1.35 jhigh 514 1.35 jhigh /* initialize head pointer */ 515 1.35 jhigh start = setting; 516 1.35 jhigh 517 1.35 jhigh /* clear out scheme buffer regardless of result */ 518 1.35 jhigh memset(scheme, 0, len); 519 1.35 jhigh 520 1.35 jhigh /* make sure we are working on non-des scheme string */ 521 1.35 jhigh if (*start != _PASSWORD_NONDES) { 522 1.35 jhigh return 0; 523 1.35 jhigh } 524 1.35 jhigh 525 1.35 jhigh /* increment passed initial _PASSWORD_NONDES */ 526 1.35 jhigh start++; 527 1.35 jhigh 528 1.35 jhigh if ((sep = memchr(start, _PASSWORD_NONDES,len-1)) == NULL) { 529 1.35 jhigh return 0; 530 1.35 jhigh } 531 1.35 jhigh 532 1.35 jhigh /* if empty string, we are done */ 533 1.35 jhigh if (sep == start) { 534 1.35 jhigh return 1; 535 1.35 jhigh } 536 1.35 jhigh 537 1.35 jhigh /* copy scheme substr to buffer */ 538 1.35 jhigh memcpy(scheme, start, (size_t)(sep - start)); 539 1.35 jhigh 540 1.35 jhigh return 1; 541 1.35 jhigh } 542 1.35 jhigh 543 1.35 jhigh /* 544 1.1 cgd * Return a pointer to static data consisting of the "setting" 545 1.1 cgd * followed by an encryption produced by the "key" and "setting". 546 1.1 cgd */ 547 1.33 christos static char * 548 1.32 christos __crypt(const char *key, const char *setting) 549 1.1 cgd { 550 1.7 lukem char *encp; 551 1.41 riastrad char scheme[12]; 552 1.7 lukem int32_t i; 553 1.7 lukem int t; 554 1.35 jhigh int r; 555 1.4 cgd int32_t salt; 556 1.1 cgd int num_iter, salt_size; 557 1.1 cgd C_block keyblock, rsltblock; 558 1.16 ad 559 1.16 ad /* Non-DES encryption schemes hook in here. */ 560 1.16 ad if (setting[0] == _PASSWORD_NONDES) { 561 1.35 jhigh r = nondes_scheme_substr( 562 1.35 jhigh setting, scheme, sizeof(scheme)); 563 1.35 jhigh 564 1.35 jhigh /* return NULL if we are unable to extract substring */ 565 1.35 jhigh if (!r) { 566 1.35 jhigh return NULL; 567 1.35 jhigh } 568 1.35 jhigh 569 1.35 jhigh /* $2a$ found in bcrypt.c:encode_salt */ 570 1.35 jhigh if (strcmp(scheme, "2a") == 0) { 571 1.16 ad return (__bcrypt(key, setting)); 572 1.35 jhigh } else if (strcmp(scheme, "sha1") == 0) { 573 1.35 jhigh /* $sha1$ found in crypt.h:SHA1_MAGIC */ 574 1.22 sjg return (__crypt_sha1(key, setting)); 575 1.35 jhigh } else if (strcmp(scheme, "1") == 0) { 576 1.35 jhigh /* $1$ found in pw_gensalt.c:__gensalt_md5 */ 577 1.16 ad return (__md5crypt(key, setting)); 578 1.36 jhigh #ifdef HAVE_ARGON2 579 1.36 jhigh /* explicit argon2 variant */ 580 1.36 jhigh } else if (strcmp(scheme, "argon2id") == 0) { 581 1.36 jhigh /* $argon2id$ found in pw_gensalt.c:__gensalt_argon2 */ 582 1.36 jhigh return (__crypt_argon2(key, setting)); 583 1.36 jhigh } else if (strcmp(scheme, "argon2i") == 0) { 584 1.36 jhigh /* $argon2i$ found in pw_gensalt.c:__gensalt_argon2 */ 585 1.36 jhigh return (__crypt_argon2(key, setting)); 586 1.36 jhigh } else if (strcmp(scheme, "argon2d") == 0) { 587 1.36 jhigh /* $argon2d$ found in pw_gensalt.c:__gensalt_argon2 */ 588 1.36 jhigh return (__crypt_argon2(key, setting)); 589 1.36 jhigh #endif /* HAVE_ARGON2 */ 590 1.35 jhigh } else { 591 1.35 jhigh /* invalid scheme, including empty string */ 592 1.35 jhigh return NULL; 593 1.16 ad } 594 1.16 ad } 595 1.35 jhigh /* End non-DES handling */ 596 1.1 cgd 597 1.1 cgd for (i = 0; i < 8; i++) { 598 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0) 599 1.1 cgd key++; 600 1.1 cgd keyblock.b[i] = t; 601 1.1 cgd } 602 1.30 christos if (des_setkey((char *)keyblock.b)) 603 1.1 cgd return (NULL); 604 1.1 cgd 605 1.1 cgd encp = &cryptresult[0]; 606 1.1 cgd switch (*setting) { 607 1.1 cgd case _PASSWORD_EFMT1: 608 1.1 cgd /* 609 1.1 cgd * Involve the rest of the password 8 characters at a time. 610 1.1 cgd */ 611 1.1 cgd while (*key) { 612 1.18 wiz if (des_cipher((char *)(void *)&keyblock, 613 1.18 wiz (char *)(void *)&keyblock, 0L, 1)) 614 1.1 cgd return (NULL); 615 1.1 cgd for (i = 0; i < 8; i++) { 616 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0) 617 1.1 cgd key++; 618 1.1 cgd keyblock.b[i] ^= t; 619 1.1 cgd } 620 1.1 cgd if (des_setkey((char *)keyblock.b)) 621 1.1 cgd return (NULL); 622 1.1 cgd } 623 1.1 cgd 624 1.1 cgd *encp++ = *setting++; 625 1.1 cgd 626 1.1 cgd /* get iteration count */ 627 1.1 cgd num_iter = 0; 628 1.1 cgd for (i = 4; --i >= 0; ) { 629 1.30 christos int value = ascii_to_bin(setting[i]); 630 1.30 christos if (itoa64[value] != setting[i]) 631 1.30 christos return NULL; 632 1.30 christos encp[i] = setting[i]; 633 1.30 christos num_iter = (num_iter << 6) | value; 634 1.1 cgd } 635 1.30 christos if (num_iter == 0) 636 1.30 christos return NULL; 637 1.1 cgd setting += 4; 638 1.1 cgd encp += 4; 639 1.1 cgd salt_size = 4; 640 1.1 cgd break; 641 1.1 cgd default: 642 1.1 cgd num_iter = 25; 643 1.1 cgd salt_size = 2; 644 1.30 christos if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1])) 645 1.30 christos return NULL; 646 1.1 cgd } 647 1.1 cgd 648 1.1 cgd salt = 0; 649 1.1 cgd for (i = salt_size; --i >= 0; ) { 650 1.30 christos int value = ascii_to_bin(setting[i]); 651 1.31 christos if (salt_size > 2 && itoa64[value] != setting[i]) 652 1.30 christos return NULL; 653 1.30 christos encp[i] = setting[i]; 654 1.30 christos salt = (salt << 6) | value; 655 1.1 cgd } 656 1.1 cgd encp += salt_size; 657 1.18 wiz if (des_cipher((char *)(void *)&constdatablock, 658 1.18 wiz (char *)(void *)&rsltblock, salt, num_iter)) 659 1.1 cgd return (NULL); 660 1.1 cgd 661 1.1 cgd /* 662 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters. 663 1.1 cgd */ 664 1.4 cgd i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | 665 1.4 cgd rsltblock.b[2]; 666 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6; 667 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6; 668 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6; 669 1.1 cgd encp[0] = itoa64[i]; encp += 4; 670 1.4 cgd i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | 671 1.4 cgd rsltblock.b[5]; 672 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6; 673 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6; 674 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6; 675 1.1 cgd encp[0] = itoa64[i]; encp += 4; 676 1.4 cgd i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2; 677 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6; 678 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6; 679 1.1 cgd encp[0] = itoa64[i]; 680 1.1 cgd 681 1.1 cgd encp[3] = 0; 682 1.1 cgd 683 1.1 cgd return (cryptresult); 684 1.1 cgd } 685 1.1 cgd 686 1.32 christos char * 687 1.32 christos crypt(const char *key, const char *salt) 688 1.32 christos { 689 1.32 christos char *res = __crypt(key, salt); 690 1.36 jhigh 691 1.32 christos if (res) 692 1.32 christos return res; 693 1.32 christos /* How do I handle errors ? Return "*0" or "*1" */ 694 1.32 christos return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0"); 695 1.32 christos } 696 1.1 cgd 697 1.1 cgd /* 698 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey(). 699 1.1 cgd */ 700 1.1 cgd #define KS_SIZE 16 701 1.1 cgd static C_block KS[KS_SIZE]; 702 1.1 cgd 703 1.1 cgd /* 704 1.1 cgd * Set up the key schedule from the key. 705 1.1 cgd */ 706 1.6 mikel int 707 1.28 perry des_setkey(const char *key) 708 1.1 cgd { 709 1.7 lukem DCL_BLOCK(K, K0, K1); 710 1.24 drochner C_block *help, *ptabp; 711 1.7 lukem int i; 712 1.1 cgd static int des_ready = 0; 713 1.1 cgd 714 1.1 cgd if (!des_ready) { 715 1.1 cgd init_des(); 716 1.1 cgd des_ready = 1; 717 1.1 cgd } 718 1.1 cgd 719 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT); 720 1.24 drochner help = &KS[0]; 721 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help); 722 1.1 cgd for (i = 1; i < 16; i++) { 723 1.24 drochner help++; 724 1.24 drochner STORE(K,K0,K1,*help); 725 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1]; 726 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)help,ptabp); 727 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help); 728 1.1 cgd } 729 1.1 cgd return (0); 730 1.1 cgd } 731 1.1 cgd 732 1.1 cgd /* 733 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter) 734 1.14 soren * iterations of DES, using the given 24-bit salt and the pre-computed key 735 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted). 736 1.1 cgd * 737 1.1 cgd * NOTE: the performance of this routine is critically dependent on your 738 1.1 cgd * compiler and machine architecture. 739 1.1 cgd */ 740 1.6 mikel int 741 1.28 perry des_cipher(const char *in, char *out, long salt, int num_iter) 742 1.1 cgd { 743 1.1 cgd /* variables that we want in registers, most important first */ 744 1.1 cgd #if defined(pdp11) 745 1.10 perry int j; 746 1.1 cgd #endif 747 1.10 perry int32_t L0, L1, R0, R1, k; 748 1.10 perry C_block *kp; 749 1.10 perry int ks_inc, loop_count; 750 1.1 cgd C_block B; 751 1.1 cgd 752 1.1 cgd L0 = salt; 753 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */ 754 1.1 cgd 755 1.13 matt #if defined(__vax__) || defined(pdp11) 756 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */ 757 1.1 cgd #define SALT (~salt) 758 1.1 cgd #else 759 1.1 cgd #define SALT salt 760 1.1 cgd #endif 761 1.1 cgd 762 1.1 cgd #if defined(MUST_ALIGN) 763 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3]; 764 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7]; 765 1.1 cgd LOAD(L,L0,L1,B); 766 1.1 cgd #else 767 1.24 drochner LOAD(L,L0,L1,*(const C_block *)in); 768 1.1 cgd #endif 769 1.1 cgd LOADREG(R,R0,R1,L,L0,L1); 770 1.1 cgd L0 &= 0x55555555L; 771 1.1 cgd L1 &= 0x55555555L; 772 1.38 kamil L0 = ((uint32_t)L0 << 1) | L1; /* L0 is the even-numbered input bits */ 773 1.1 cgd R0 &= 0xaaaaaaaaL; 774 1.38 kamil R1 = ((uint32_t)R1 >> 1) & 0x55555555L; 775 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */ 776 1.1 cgd STORE(L,L0,L1,B); 777 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */ 778 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */ 779 1.1 cgd 780 1.1 cgd if (num_iter >= 0) 781 1.1 cgd { /* encryption */ 782 1.1 cgd kp = &KS[0]; 783 1.1 cgd ks_inc = sizeof(*kp); 784 1.1 cgd } 785 1.1 cgd else 786 1.1 cgd { /* decryption */ 787 1.15 thorpej num_iter = -num_iter; 788 1.15 thorpej kp = &KS[KS_SIZE-1]; 789 1.15 thorpej ks_inc = -(long)sizeof(*kp); 790 1.1 cgd } 791 1.1 cgd 792 1.1 cgd while (--num_iter >= 0) { 793 1.1 cgd loop_count = 8; 794 1.1 cgd do { 795 1.1 cgd 796 1.4 cgd #define SPTAB(t, i) \ 797 1.5 cgd (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4))) 798 1.1 cgd #if defined(gould) 799 1.1 cgd /* use this if B.b[i] is evaluated just once ... */ 800 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]); 801 1.1 cgd #else 802 1.1 cgd #if defined(pdp11) 803 1.1 cgd /* use this if your "long" int indexing is slow */ 804 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j); 805 1.1 cgd #else 806 1.11 mikel /* use this if "k" is allocated to a register ... */ 807 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k); 808 1.1 cgd #endif 809 1.1 cgd #endif 810 1.1 cgd 811 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \ 812 1.1 cgd k = (q0 ^ q1) & SALT; \ 813 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \ 814 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \ 815 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \ 816 1.1 cgd \ 817 1.1 cgd DOXOR(p0, p1, 0); \ 818 1.1 cgd DOXOR(p0, p1, 1); \ 819 1.1 cgd DOXOR(p0, p1, 2); \ 820 1.1 cgd DOXOR(p0, p1, 3); \ 821 1.1 cgd DOXOR(p0, p1, 4); \ 822 1.1 cgd DOXOR(p0, p1, 5); \ 823 1.1 cgd DOXOR(p0, p1, 6); \ 824 1.1 cgd DOXOR(p0, p1, 7); 825 1.1 cgd 826 1.1 cgd CRUNCH(L0, L1, R0, R1); 827 1.1 cgd CRUNCH(R0, R1, L0, L1); 828 1.1 cgd } while (--loop_count != 0); 829 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE)); 830 1.1 cgd 831 1.1 cgd 832 1.1 cgd /* swap L and R */ 833 1.1 cgd L0 ^= R0; L1 ^= R1; 834 1.1 cgd R0 ^= L0; R1 ^= L1; 835 1.1 cgd L0 ^= R0; L1 ^= R1; 836 1.1 cgd } 837 1.1 cgd 838 1.1 cgd /* store the encrypted (or decrypted) result */ 839 1.37 kamil L0 = (((uint32_t)L0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)L1 << 1) & 0xf0f0f0f0L); 840 1.37 kamil L1 = (((uint32_t)R0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)R1 << 1) & 0xf0f0f0f0L); 841 1.1 cgd STORE(L,L0,L1,B); 842 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464); 843 1.1 cgd #if defined(MUST_ALIGN) 844 1.1 cgd STORE(L,L0,L1,B); 845 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3]; 846 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7]; 847 1.1 cgd #else 848 1.1 cgd STORE(L,L0,L1,*(C_block *)out); 849 1.1 cgd #endif 850 1.1 cgd return (0); 851 1.1 cgd } 852 1.1 cgd 853 1.1 cgd 854 1.1 cgd /* 855 1.1 cgd * Initialize various tables. This need only be done once. It could even be 856 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing. 857 1.1 cgd */ 858 1.1 cgd STATIC 859 1.28 perry init_des(void) 860 1.1 cgd { 861 1.7 lukem int i, j; 862 1.7 lukem int32_t k; 863 1.7 lukem int tableno; 864 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */ 865 1.1 cgd 866 1.1 cgd /* 867 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2. 868 1.1 cgd */ 869 1.1 cgd for (i = 0; i < 64; i++) 870 1.1 cgd perm[i] = 0; 871 1.1 cgd for (i = 0; i < 64; i++) { 872 1.1 cgd if ((k = PC2[i]) == 0) 873 1.1 cgd continue; 874 1.1 cgd k += Rotates[0]-1; 875 1.1 cgd if ((k%28) < Rotates[0]) k -= 28; 876 1.1 cgd k = PC1[k]; 877 1.1 cgd if (k > 0) { 878 1.1 cgd k--; 879 1.1 cgd k = (k|07) - (k&07); 880 1.1 cgd k++; 881 1.1 cgd } 882 1.1 cgd perm[i] = k; 883 1.1 cgd } 884 1.1 cgd #ifdef DEBUG 885 1.1 cgd prtab("pc1tab", perm, 8); 886 1.1 cgd #endif 887 1.1 cgd init_perm(PC1ROT, perm, 8, 8); 888 1.1 cgd 889 1.1 cgd /* 890 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2. 891 1.1 cgd */ 892 1.1 cgd for (j = 0; j < 2; j++) { 893 1.1 cgd unsigned char pc2inv[64]; 894 1.1 cgd for (i = 0; i < 64; i++) 895 1.1 cgd perm[i] = pc2inv[i] = 0; 896 1.1 cgd for (i = 0; i < 64; i++) { 897 1.1 cgd if ((k = PC2[i]) == 0) 898 1.1 cgd continue; 899 1.1 cgd pc2inv[k-1] = i+1; 900 1.1 cgd } 901 1.1 cgd for (i = 0; i < 64; i++) { 902 1.1 cgd if ((k = PC2[i]) == 0) 903 1.1 cgd continue; 904 1.1 cgd k += j; 905 1.1 cgd if ((k%28) <= j) k -= 28; 906 1.1 cgd perm[i] = pc2inv[k]; 907 1.1 cgd } 908 1.1 cgd #ifdef DEBUG 909 1.1 cgd prtab("pc2tab", perm, 8); 910 1.1 cgd #endif 911 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8); 912 1.1 cgd } 913 1.1 cgd 914 1.1 cgd /* 915 1.1 cgd * Bit reverse, then initial permutation, then expansion. 916 1.1 cgd */ 917 1.1 cgd for (i = 0; i < 8; i++) { 918 1.1 cgd for (j = 0; j < 8; j++) { 919 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1]; 920 1.1 cgd if (k > 32) 921 1.1 cgd k -= 32; 922 1.1 cgd else if (k > 0) 923 1.1 cgd k--; 924 1.1 cgd if (k > 0) { 925 1.1 cgd k--; 926 1.1 cgd k = (k|07) - (k&07); 927 1.1 cgd k++; 928 1.1 cgd } 929 1.1 cgd perm[i*8+j] = k; 930 1.1 cgd } 931 1.1 cgd } 932 1.1 cgd #ifdef DEBUG 933 1.1 cgd prtab("ietab", perm, 8); 934 1.1 cgd #endif 935 1.1 cgd init_perm(IE3264, perm, 4, 8); 936 1.1 cgd 937 1.1 cgd /* 938 1.1 cgd * Compression, then final permutation, then bit reverse. 939 1.1 cgd */ 940 1.1 cgd for (i = 0; i < 64; i++) { 941 1.1 cgd k = IP[CIFP[i]-1]; 942 1.1 cgd if (k > 0) { 943 1.1 cgd k--; 944 1.1 cgd k = (k|07) - (k&07); 945 1.1 cgd k++; 946 1.1 cgd } 947 1.1 cgd perm[k-1] = i+1; 948 1.1 cgd } 949 1.1 cgd #ifdef DEBUG 950 1.1 cgd prtab("cftab", perm, 8); 951 1.1 cgd #endif 952 1.1 cgd init_perm(CF6464, perm, 8, 8); 953 1.1 cgd 954 1.1 cgd /* 955 1.1 cgd * SPE table 956 1.1 cgd */ 957 1.1 cgd for (i = 0; i < 48; i++) 958 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1]; 959 1.1 cgd for (tableno = 0; tableno < 8; tableno++) { 960 1.1 cgd for (j = 0; j < 64; j++) { 961 1.1 cgd k = (((j >> 0) &01) << 5)| 962 1.1 cgd (((j >> 1) &01) << 3)| 963 1.1 cgd (((j >> 2) &01) << 2)| 964 1.1 cgd (((j >> 3) &01) << 1)| 965 1.1 cgd (((j >> 4) &01) << 0)| 966 1.1 cgd (((j >> 5) &01) << 4); 967 1.1 cgd k = S[tableno][k]; 968 1.1 cgd k = (((k >> 3)&01) << 0)| 969 1.1 cgd (((k >> 2)&01) << 1)| 970 1.1 cgd (((k >> 1)&01) << 2)| 971 1.1 cgd (((k >> 0)&01) << 3); 972 1.1 cgd for (i = 0; i < 32; i++) 973 1.1 cgd tmp32[i] = 0; 974 1.1 cgd for (i = 0; i < 4; i++) 975 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01; 976 1.1 cgd k = 0; 977 1.1 cgd for (i = 24; --i >= 0; ) 978 1.1 cgd k = (k<<1) | tmp32[perm[i]-1]; 979 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k); 980 1.1 cgd k = 0; 981 1.1 cgd for (i = 24; --i >= 0; ) 982 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1]; 983 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k); 984 1.1 cgd } 985 1.1 cgd } 986 1.1 cgd } 987 1.1 cgd 988 1.1 cgd /* 989 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges 990 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits 991 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out" 992 1.1 cgd * characters). 993 1.1 cgd * 994 1.1 cgd * "perm" must be all-zeroes on entry to this routine. 995 1.1 cgd */ 996 1.1 cgd STATIC 997 1.28 perry init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64], 998 1.28 perry int chars_in, int chars_out) 999 1.1 cgd { 1000 1.7 lukem int i, j, k, l; 1001 1.1 cgd 1002 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */ 1003 1.1 cgd l = p[k] - 1; /* where this bit comes from */ 1004 1.1 cgd if (l < 0) 1005 1.1 cgd continue; /* output bit is always 0 */ 1006 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */ 1007 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */ 1008 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */ 1009 1.1 cgd if ((j & l) != 0) 1010 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07); 1011 1.1 cgd } 1012 1.1 cgd } 1013 1.1 cgd } 1014 1.1 cgd 1015 1.1 cgd /* 1016 1.1 cgd * "setkey" routine (for backwards compatibility) 1017 1.1 cgd */ 1018 1.6 mikel int 1019 1.28 perry setkey(const char *key) 1020 1.1 cgd { 1021 1.7 lukem int i, j, k; 1022 1.1 cgd C_block keyblock; 1023 1.1 cgd 1024 1.1 cgd for (i = 0; i < 8; i++) { 1025 1.1 cgd k = 0; 1026 1.1 cgd for (j = 0; j < 8; j++) { 1027 1.1 cgd k <<= 1; 1028 1.1 cgd k |= (unsigned char)*key++; 1029 1.1 cgd } 1030 1.1 cgd keyblock.b[i] = k; 1031 1.1 cgd } 1032 1.1 cgd return (des_setkey((char *)keyblock.b)); 1033 1.1 cgd } 1034 1.1 cgd 1035 1.1 cgd /* 1036 1.1 cgd * "encrypt" routine (for backwards compatibility) 1037 1.1 cgd */ 1038 1.6 mikel int 1039 1.28 perry encrypt(char *block, int flag) 1040 1.1 cgd { 1041 1.7 lukem int i, j, k; 1042 1.1 cgd C_block cblock; 1043 1.1 cgd 1044 1.1 cgd for (i = 0; i < 8; i++) { 1045 1.1 cgd k = 0; 1046 1.1 cgd for (j = 0; j < 8; j++) { 1047 1.1 cgd k <<= 1; 1048 1.1 cgd k |= (unsigned char)*block++; 1049 1.1 cgd } 1050 1.1 cgd cblock.b[i] = k; 1051 1.1 cgd } 1052 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1))) 1053 1.1 cgd return (1); 1054 1.1 cgd for (i = 7; i >= 0; i--) { 1055 1.1 cgd k = cblock.b[i]; 1056 1.1 cgd for (j = 7; j >= 0; j--) { 1057 1.1 cgd *--block = k&01; 1058 1.1 cgd k >>= 1; 1059 1.1 cgd } 1060 1.1 cgd } 1061 1.1 cgd return (0); 1062 1.1 cgd } 1063 1.1 cgd 1064 1.1 cgd #ifdef DEBUG 1065 1.1 cgd STATIC 1066 1.28 perry prtab(const char *s, unsigned char *t, int num_rows) 1067 1.1 cgd { 1068 1.7 lukem int i, j; 1069 1.1 cgd 1070 1.1 cgd (void)printf("%s:\n", s); 1071 1.1 cgd for (i = 0; i < num_rows; i++) { 1072 1.1 cgd for (j = 0; j < 8; j++) { 1073 1.1 cgd (void)printf("%3d", t[i*8+j]); 1074 1.1 cgd } 1075 1.1 cgd (void)printf("\n"); 1076 1.1 cgd } 1077 1.1 cgd (void)printf("\n"); 1078 1.1 cgd } 1079 1.1 cgd #endif 1080 1.22 sjg 1081 1.22 sjg #if defined(MAIN) || defined(UNIT_TEST) 1082 1.22 sjg #include <err.h> 1083 1.22 sjg 1084 1.22 sjg int 1085 1.28 perry main(int argc, char *argv[]) 1086 1.22 sjg { 1087 1.34 christos if (argc < 2) { 1088 1.34 christos fprintf(stderr, "Usage: %s password [salt]\n", getprogname()); 1089 1.34 christos return EXIT_FAILURE; 1090 1.34 christos } 1091 1.22 sjg 1092 1.34 christos printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1])); 1093 1.34 christos return EXIT_SUCCESS; 1094 1.22 sjg } 1095 1.22 sjg #endif 1096