Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.1
      1  1.1  cgd /*
      2  1.1  cgd  * Copyright (c) 1989 The Regents of the University of California.
      3  1.1  cgd  * All rights reserved.
      4  1.1  cgd  *
      5  1.1  cgd  * This code is derived from software contributed to Berkeley by
      6  1.1  cgd  * Tom Truscott.
      7  1.1  cgd  *
      8  1.1  cgd  * Redistribution and use in source and binary forms, with or without
      9  1.1  cgd  * modification, are permitted provided that the following conditions
     10  1.1  cgd  * are met:
     11  1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     12  1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     13  1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     15  1.1  cgd  *    documentation and/or other materials provided with the distribution.
     16  1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     17  1.1  cgd  *    must display the following acknowledgement:
     18  1.1  cgd  *	This product includes software developed by the University of
     19  1.1  cgd  *	California, Berkeley and its contributors.
     20  1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     21  1.1  cgd  *    may be used to endorse or promote products derived from this software
     22  1.1  cgd  *    without specific prior written permission.
     23  1.1  cgd  *
     24  1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  1.1  cgd  * SUCH DAMAGE.
     35  1.1  cgd  */
     36  1.1  cgd 
     37  1.1  cgd #if defined(LIBC_SCCS) && !defined(lint)
     38  1.1  cgd static char sccsid[] = "@(#)crypt.c	5.11 (Berkeley) 6/25/91";
     39  1.1  cgd #endif /* LIBC_SCCS and not lint */
     40  1.1  cgd 
     41  1.1  cgd #include <unistd.h>
     42  1.1  cgd #include <limits.h>
     43  1.1  cgd #include <pwd.h>
     44  1.1  cgd 
     45  1.1  cgd /*
     46  1.1  cgd  * UNIX password, and DES, encryption.
     47  1.1  cgd  * By Tom Truscott, trt (at) rti.rti.org,
     48  1.1  cgd  * from algorithms by Robert W. Baldwin and James Gillogly.
     49  1.1  cgd  *
     50  1.1  cgd  * References:
     51  1.1  cgd  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     52  1.1  cgd  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     53  1.1  cgd  *
     54  1.1  cgd  * "Password Security: A Case History," R. Morris and Ken Thompson,
     55  1.1  cgd  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     56  1.1  cgd  *
     57  1.1  cgd  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     58  1.1  cgd  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     59  1.1  cgd  */
     60  1.1  cgd 
     61  1.1  cgd /* =====  Configuration ==================== */
     62  1.1  cgd 
     63  1.1  cgd /*
     64  1.1  cgd  * define "MUST_ALIGN" if your compiler cannot load/store
     65  1.1  cgd  * long integers at arbitrary (e.g. odd) memory locations.
     66  1.1  cgd  * (Either that or never pass unaligned addresses to des_cipher!)
     67  1.1  cgd  */
     68  1.1  cgd #if !defined(vax)
     69  1.1  cgd #define	MUST_ALIGN
     70  1.1  cgd #endif
     71  1.1  cgd 
     72  1.1  cgd #ifdef CHAR_BITS
     73  1.1  cgd #if CHAR_BITS != 8
     74  1.1  cgd 	#error C_block structure assumes 8 bit characters
     75  1.1  cgd #endif
     76  1.1  cgd #endif
     77  1.1  cgd 
     78  1.1  cgd /*
     79  1.1  cgd  * define "LONG_IS_32_BITS" only if sizeof(long)==4.
     80  1.1  cgd  * This avoids use of bit fields (your compiler may be sloppy with them).
     81  1.1  cgd  */
     82  1.1  cgd #if !defined(cray)
     83  1.1  cgd #define	LONG_IS_32_BITS
     84  1.1  cgd #endif
     85  1.1  cgd 
     86  1.1  cgd /*
     87  1.1  cgd  * define "B64" to be the declaration for a 64 bit integer.
     88  1.1  cgd  * XXX this feature is currently unused, see "endian" comment below.
     89  1.1  cgd  */
     90  1.1  cgd #if defined(cray)
     91  1.1  cgd #define	B64	long
     92  1.1  cgd #endif
     93  1.1  cgd #if defined(convex)
     94  1.1  cgd #define	B64	long long
     95  1.1  cgd #endif
     96  1.1  cgd 
     97  1.1  cgd /*
     98  1.1  cgd  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
     99  1.1  cgd  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
    100  1.1  cgd  * little effect on crypt().
    101  1.1  cgd  */
    102  1.1  cgd #if defined(notdef)
    103  1.1  cgd #define	LARGEDATA
    104  1.1  cgd #endif
    105  1.1  cgd 
    106  1.1  cgd /* compile with "-DSTATIC=int" when profiling */
    107  1.1  cgd #ifndef STATIC
    108  1.1  cgd #define	STATIC	static
    109  1.1  cgd #endif
    110  1.1  cgd STATIC init_des(), init_perm(), permute();
    111  1.1  cgd #ifdef DEBUG
    112  1.1  cgd STATIC prtab();
    113  1.1  cgd #endif
    114  1.1  cgd 
    115  1.1  cgd /* ==================================== */
    116  1.1  cgd 
    117  1.1  cgd /*
    118  1.1  cgd  * Cipher-block representation (Bob Baldwin):
    119  1.1  cgd  *
    120  1.1  cgd  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    121  1.1  cgd  * representation is to store one bit per byte in an array of bytes.  Bit N of
    122  1.1  cgd  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    123  1.1  cgd  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    124  1.1  cgd  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    125  1.1  cgd  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    126  1.1  cgd  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    127  1.1  cgd  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    128  1.1  cgd  * converted to LSB format, and the output 64-bit block is converted back into
    129  1.1  cgd  * MSB format.
    130  1.1  cgd  *
    131  1.1  cgd  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    132  1.1  cgd  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    133  1.1  cgd  * the computation, the expansion is applied only once, the expanded
    134  1.1  cgd  * representation is maintained during the encryption, and a compression
    135  1.1  cgd  * permutation is applied only at the end.  To speed up the S-box lookups,
    136  1.1  cgd  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    137  1.1  cgd  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    138  1.1  cgd  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    139  1.1  cgd  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    140  1.1  cgd  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    141  1.1  cgd  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    142  1.1  cgd  * used, in which the output is the 64 bit result of an S-box lookup which
    143  1.1  cgd  * has been permuted by P and expanded by E, and is ready for use in the next
    144  1.1  cgd  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    145  1.1  cgd  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    146  1.1  cgd  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    147  1.1  cgd  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    148  1.1  cgd  * 8*64*8 = 4K bytes.
    149  1.1  cgd  *
    150  1.1  cgd  * To speed up bit-parallel operations (such as XOR), the 8 byte
    151  1.1  cgd  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    152  1.1  cgd  * machines which support it, a 64 bit value "b64".  This data structure,
    153  1.1  cgd  * "C_block", has two problems.  First, alignment restrictions must be
    154  1.1  cgd  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    155  1.1  cgd  * the architecture becomes visible.
    156  1.1  cgd  *
    157  1.1  cgd  * The byte-order problem is unfortunate, since on the one hand it is good
    158  1.1  cgd  * to have a machine-independent C_block representation (bits 1..8 in the
    159  1.1  cgd  * first byte, etc.), and on the other hand it is good for the LSB of the
    160  1.1  cgd  * first byte to be the LSB of i0.  We cannot have both these things, so we
    161  1.1  cgd  * currently use the "little-endian" representation and avoid any multi-byte
    162  1.1  cgd  * operations that depend on byte order.  This largely precludes use of the
    163  1.1  cgd  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    164  1.1  cgd  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    165  1.1  cgd  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    166  1.1  cgd  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    167  1.1  cgd  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    168  1.1  cgd  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    169  1.1  cgd  *
    170  1.1  cgd  * Permutation representation (Jim Gillogly):
    171  1.1  cgd  *
    172  1.1  cgd  * A transformation is defined by its effect on each of the 8 bytes of the
    173  1.1  cgd  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    174  1.1  cgd  * the input distributed appropriately.  The transformation is then the OR
    175  1.1  cgd  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    176  1.1  cgd  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    177  1.1  cgd  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    178  1.1  cgd  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    179  1.1  cgd  * is slower but tolerable, particularly for password encryption in which
    180  1.1  cgd  * the SPE transformation is iterated many times.  The small tables total 9K
    181  1.1  cgd  * bytes, the large tables total 72K bytes.
    182  1.1  cgd  *
    183  1.1  cgd  * The transformations used are:
    184  1.1  cgd  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    185  1.1  cgd  *	This is done by collecting the 32 even-numbered bits and applying
    186  1.1  cgd  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    187  1.1  cgd  *	bits and applying the same transformation.  Since there are only
    188  1.1  cgd  *	32 input bits, the IE3264 transformation table is half the size of
    189  1.1  cgd  *	the usual table.
    190  1.1  cgd  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    191  1.1  cgd  *	This is done by two trivial 48->32 bit compressions to obtain
    192  1.1  cgd  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    193  1.1  cgd  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    194  1.1  cgd  *	be possible to group the bits in the 64-bit block so that 2
    195  1.1  cgd  *	identical 32->32 bit transformations could be used instead,
    196  1.1  cgd  *	saving a factor of 4 in space and possibly 2 in time, but
    197  1.1  cgd  *	byte-ordering and other complications rear their ugly head.
    198  1.1  cgd  *	Similar opportunities/problems arise in the key schedule
    199  1.1  cgd  *	transforms.)
    200  1.1  cgd  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    201  1.1  cgd  *	This admittedly baroque 64->64 bit transformation is used to
    202  1.1  cgd  *	produce the first code (in 8*(6+2) format) of the key schedule.
    203  1.1  cgd  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    204  1.1  cgd  *	It would be possible to define 15 more transformations, each
    205  1.1  cgd  *	with a different rotation, to generate the entire key schedule.
    206  1.1  cgd  *	To save space, however, we instead permute each code into the
    207  1.1  cgd  *	next by using a transformation that "undoes" the PC2 permutation,
    208  1.1  cgd  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    209  1.1  cgd  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    210  1.1  cgd  *	invertible.  We get around that problem by using a modified PC2
    211  1.1  cgd  *	which retains the 8 otherwise-lost bits in the unused low-order
    212  1.1  cgd  *	bits of each byte.  The low-order bits are cleared when the
    213  1.1  cgd  *	codes are stored into the key schedule.
    214  1.1  cgd  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    215  1.1  cgd  *	This is faster than applying PC2ROT[0] twice,
    216  1.1  cgd  *
    217  1.1  cgd  * The Bell Labs "salt" (Bob Baldwin):
    218  1.1  cgd  *
    219  1.1  cgd  * The salting is a simple permutation applied to the 48-bit result of E.
    220  1.1  cgd  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    221  1.1  cgd  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    222  1.1  cgd  * 16777216 possible values.  (The original salt was 12 bits and could not
    223  1.1  cgd  * swap bits 13..24 with 36..48.)
    224  1.1  cgd  *
    225  1.1  cgd  * It is possible, but ugly, to warp the SPE table to account for the salt
    226  1.1  cgd  * permutation.  Fortunately, the conditional bit swapping requires only
    227  1.1  cgd  * about four machine instructions and can be done on-the-fly with about an
    228  1.1  cgd  * 8% performance penalty.
    229  1.1  cgd  */
    230  1.1  cgd 
    231  1.1  cgd typedef union {
    232  1.1  cgd 	unsigned char b[8];
    233  1.1  cgd 	struct {
    234  1.1  cgd #if defined(LONG_IS_32_BITS)
    235  1.1  cgd 		/* long is often faster than a 32-bit bit field */
    236  1.1  cgd 		long	i0;
    237  1.1  cgd 		long	i1;
    238  1.1  cgd #else
    239  1.1  cgd 		long	i0: 32;
    240  1.1  cgd 		long	i1: 32;
    241  1.1  cgd #endif
    242  1.1  cgd 	} b32;
    243  1.1  cgd #if defined(B64)
    244  1.1  cgd 	B64	b64;
    245  1.1  cgd #endif
    246  1.1  cgd } C_block;
    247  1.1  cgd 
    248  1.1  cgd /*
    249  1.1  cgd  * Convert twenty-four-bit long in host-order
    250  1.1  cgd  * to six bits (and 2 low-order zeroes) per char little-endian format.
    251  1.1  cgd  */
    252  1.1  cgd #define	TO_SIX_BIT(rslt, src) {				\
    253  1.1  cgd 		C_block cvt;				\
    254  1.1  cgd 		cvt.b[0] = src; src >>= 6;		\
    255  1.1  cgd 		cvt.b[1] = src; src >>= 6;		\
    256  1.1  cgd 		cvt.b[2] = src; src >>= 6;		\
    257  1.1  cgd 		cvt.b[3] = src;				\
    258  1.1  cgd 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    259  1.1  cgd 	}
    260  1.1  cgd 
    261  1.1  cgd /*
    262  1.1  cgd  * These macros may someday permit efficient use of 64-bit integers.
    263  1.1  cgd  */
    264  1.1  cgd #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    265  1.1  cgd #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    266  1.1  cgd #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    267  1.1  cgd #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    268  1.1  cgd #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    269  1.1  cgd #define	DCL_BLOCK(d,d0,d1)		long d0, d1
    270  1.1  cgd 
    271  1.1  cgd #if defined(LARGEDATA)
    272  1.1  cgd 	/* Waste memory like crazy.  Also, do permutations in line */
    273  1.1  cgd #define	LGCHUNKBITS	3
    274  1.1  cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    275  1.1  cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    276  1.1  cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    277  1.1  cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    278  1.1  cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    279  1.1  cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    280  1.1  cgd 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    281  1.1  cgd 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    282  1.1  cgd 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    283  1.1  cgd 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    284  1.1  cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    285  1.1  cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    286  1.1  cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    287  1.1  cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    288  1.1  cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    289  1.1  cgd #else
    290  1.1  cgd 	/* "small data" */
    291  1.1  cgd #define	LGCHUNKBITS	2
    292  1.1  cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    293  1.1  cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    294  1.1  cgd 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    295  1.1  cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    296  1.1  cgd 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    297  1.1  cgd 
    298  1.1  cgd STATIC
    299  1.1  cgd permute(cp, out, p, chars_in)
    300  1.1  cgd 	unsigned char *cp;
    301  1.1  cgd 	C_block *out;
    302  1.1  cgd 	register C_block *p;
    303  1.1  cgd 	int chars_in;
    304  1.1  cgd {
    305  1.1  cgd 	register DCL_BLOCK(D,D0,D1);
    306  1.1  cgd 	register C_block *tp;
    307  1.1  cgd 	register int t;
    308  1.1  cgd 
    309  1.1  cgd 	ZERO(D,D0,D1);
    310  1.1  cgd 	do {
    311  1.1  cgd 		t = *cp++;
    312  1.1  cgd 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    313  1.1  cgd 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    314  1.1  cgd 	} while (--chars_in > 0);
    315  1.1  cgd 	STORE(D,D0,D1,*out);
    316  1.1  cgd }
    317  1.1  cgd #endif /* LARGEDATA */
    318  1.1  cgd 
    319  1.1  cgd 
    320  1.1  cgd /* =====  (mostly) Standard DES Tables ==================== */
    321  1.1  cgd 
    322  1.1  cgd static unsigned char IP[] = {		/* initial permutation */
    323  1.1  cgd 	58, 50, 42, 34, 26, 18, 10,  2,
    324  1.1  cgd 	60, 52, 44, 36, 28, 20, 12,  4,
    325  1.1  cgd 	62, 54, 46, 38, 30, 22, 14,  6,
    326  1.1  cgd 	64, 56, 48, 40, 32, 24, 16,  8,
    327  1.1  cgd 	57, 49, 41, 33, 25, 17,  9,  1,
    328  1.1  cgd 	59, 51, 43, 35, 27, 19, 11,  3,
    329  1.1  cgd 	61, 53, 45, 37, 29, 21, 13,  5,
    330  1.1  cgd 	63, 55, 47, 39, 31, 23, 15,  7,
    331  1.1  cgd };
    332  1.1  cgd 
    333  1.1  cgd /* The final permutation is the inverse of IP - no table is necessary */
    334  1.1  cgd 
    335  1.1  cgd static unsigned char ExpandTr[] = {	/* expansion operation */
    336  1.1  cgd 	32,  1,  2,  3,  4,  5,
    337  1.1  cgd 	 4,  5,  6,  7,  8,  9,
    338  1.1  cgd 	 8,  9, 10, 11, 12, 13,
    339  1.1  cgd 	12, 13, 14, 15, 16, 17,
    340  1.1  cgd 	16, 17, 18, 19, 20, 21,
    341  1.1  cgd 	20, 21, 22, 23, 24, 25,
    342  1.1  cgd 	24, 25, 26, 27, 28, 29,
    343  1.1  cgd 	28, 29, 30, 31, 32,  1,
    344  1.1  cgd };
    345  1.1  cgd 
    346  1.1  cgd static unsigned char PC1[] = {		/* permuted choice table 1 */
    347  1.1  cgd 	57, 49, 41, 33, 25, 17,  9,
    348  1.1  cgd 	 1, 58, 50, 42, 34, 26, 18,
    349  1.1  cgd 	10,  2, 59, 51, 43, 35, 27,
    350  1.1  cgd 	19, 11,  3, 60, 52, 44, 36,
    351  1.1  cgd 
    352  1.1  cgd 	63, 55, 47, 39, 31, 23, 15,
    353  1.1  cgd 	 7, 62, 54, 46, 38, 30, 22,
    354  1.1  cgd 	14,  6, 61, 53, 45, 37, 29,
    355  1.1  cgd 	21, 13,  5, 28, 20, 12,  4,
    356  1.1  cgd };
    357  1.1  cgd 
    358  1.1  cgd static unsigned char Rotates[] = {	/* PC1 rotation schedule */
    359  1.1  cgd 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    360  1.1  cgd };
    361  1.1  cgd 
    362  1.1  cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    363  1.1  cgd static unsigned char PC2[] = {		/* permuted choice table 2 */
    364  1.1  cgd 	 9, 18,    14, 17, 11, 24,  1,  5,
    365  1.1  cgd 	22, 25,     3, 28, 15,  6, 21, 10,
    366  1.1  cgd 	35, 38,    23, 19, 12,  4, 26,  8,
    367  1.1  cgd 	43, 54,    16,  7, 27, 20, 13,  2,
    368  1.1  cgd 
    369  1.1  cgd 	 0,  0,    41, 52, 31, 37, 47, 55,
    370  1.1  cgd 	 0,  0,    30, 40, 51, 45, 33, 48,
    371  1.1  cgd 	 0,  0,    44, 49, 39, 56, 34, 53,
    372  1.1  cgd 	 0,  0,    46, 42, 50, 36, 29, 32,
    373  1.1  cgd };
    374  1.1  cgd 
    375  1.1  cgd static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    376  1.1  cgd 					/* S[1]			*/
    377  1.1  cgd 	14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    378  1.1  cgd 	 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    379  1.1  cgd 	 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    380  1.1  cgd 	15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
    381  1.1  cgd 					/* S[2]			*/
    382  1.1  cgd 	15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    383  1.1  cgd 	 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    384  1.1  cgd 	 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    385  1.1  cgd 	13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
    386  1.1  cgd 					/* S[3]			*/
    387  1.1  cgd 	10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    388  1.1  cgd 	13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    389  1.1  cgd 	13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    390  1.1  cgd 	 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
    391  1.1  cgd 					/* S[4]			*/
    392  1.1  cgd 	 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    393  1.1  cgd 	13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    394  1.1  cgd 	10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    395  1.1  cgd 	 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
    396  1.1  cgd 					/* S[5]			*/
    397  1.1  cgd 	 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    398  1.1  cgd 	14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    399  1.1  cgd 	 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    400  1.1  cgd 	11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
    401  1.1  cgd 					/* S[6]			*/
    402  1.1  cgd 	12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    403  1.1  cgd 	10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    404  1.1  cgd 	 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    405  1.1  cgd 	 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
    406  1.1  cgd 					/* S[7]			*/
    407  1.1  cgd 	 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    408  1.1  cgd 	13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    409  1.1  cgd 	 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    410  1.1  cgd 	 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
    411  1.1  cgd 					/* S[8]			*/
    412  1.1  cgd 	13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    413  1.1  cgd 	 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    414  1.1  cgd 	 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    415  1.1  cgd 	 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11,
    416  1.1  cgd };
    417  1.1  cgd 
    418  1.1  cgd static unsigned char P32Tr[] = {	/* 32-bit permutation function */
    419  1.1  cgd 	16,  7, 20, 21,
    420  1.1  cgd 	29, 12, 28, 17,
    421  1.1  cgd 	 1, 15, 23, 26,
    422  1.1  cgd 	 5, 18, 31, 10,
    423  1.1  cgd 	 2,  8, 24, 14,
    424  1.1  cgd 	32, 27,  3,  9,
    425  1.1  cgd 	19, 13, 30,  6,
    426  1.1  cgd 	22, 11,  4, 25,
    427  1.1  cgd };
    428  1.1  cgd 
    429  1.1  cgd static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
    430  1.1  cgd 	 1,  2,  3,  4,   17, 18, 19, 20,
    431  1.1  cgd 	 5,  6,  7,  8,   21, 22, 23, 24,
    432  1.1  cgd 	 9, 10, 11, 12,   25, 26, 27, 28,
    433  1.1  cgd 	13, 14, 15, 16,   29, 30, 31, 32,
    434  1.1  cgd 
    435  1.1  cgd 	33, 34, 35, 36,   49, 50, 51, 52,
    436  1.1  cgd 	37, 38, 39, 40,   53, 54, 55, 56,
    437  1.1  cgd 	41, 42, 43, 44,   57, 58, 59, 60,
    438  1.1  cgd 	45, 46, 47, 48,   61, 62, 63, 64,
    439  1.1  cgd };
    440  1.1  cgd 
    441  1.1  cgd static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    442  1.1  cgd 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    443  1.1  cgd 
    444  1.1  cgd 
    445  1.1  cgd /* =====  Tables that are initialized at run time  ==================== */
    446  1.1  cgd 
    447  1.1  cgd 
    448  1.1  cgd static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    449  1.1  cgd 
    450  1.1  cgd /* Initial key schedule permutation */
    451  1.1  cgd static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    452  1.1  cgd 
    453  1.1  cgd /* Subsequent key schedule rotation permutations */
    454  1.1  cgd static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    455  1.1  cgd 
    456  1.1  cgd /* Initial permutation/expansion table */
    457  1.1  cgd static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    458  1.1  cgd 
    459  1.1  cgd /* Table that combines the S, P, and E operations.  */
    460  1.1  cgd static long SPE[2][8][64];
    461  1.1  cgd 
    462  1.1  cgd /* compressed/interleaved => final permutation table */
    463  1.1  cgd static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    464  1.1  cgd 
    465  1.1  cgd 
    466  1.1  cgd /* ==================================== */
    467  1.1  cgd 
    468  1.1  cgd 
    469  1.1  cgd static C_block	constdatablock;			/* encryption constant */
    470  1.1  cgd static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    471  1.1  cgd 
    472  1.1  cgd /*
    473  1.1  cgd  * Return a pointer to static data consisting of the "setting"
    474  1.1  cgd  * followed by an encryption produced by the "key" and "setting".
    475  1.1  cgd  */
    476  1.1  cgd char *
    477  1.1  cgd crypt(key, setting)
    478  1.1  cgd 	register const char *key;
    479  1.1  cgd 	register const char *setting;
    480  1.1  cgd {
    481  1.1  cgd 	register char *encp;
    482  1.1  cgd 	register long i;
    483  1.1  cgd 	register int t;
    484  1.1  cgd 	long salt;
    485  1.1  cgd 	int num_iter, salt_size;
    486  1.1  cgd 	C_block keyblock, rsltblock;
    487  1.1  cgd 
    488  1.1  cgd 	for (i = 0; i < 8; i++) {
    489  1.1  cgd 		if ((t = 2*(unsigned char)(*key)) != 0)
    490  1.1  cgd 			key++;
    491  1.1  cgd 		keyblock.b[i] = t;
    492  1.1  cgd 	}
    493  1.1  cgd 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    494  1.1  cgd 		return (NULL);
    495  1.1  cgd 
    496  1.1  cgd 	encp = &cryptresult[0];
    497  1.1  cgd 	switch (*setting) {
    498  1.1  cgd 	case _PASSWORD_EFMT1:
    499  1.1  cgd 		/*
    500  1.1  cgd 		 * Involve the rest of the password 8 characters at a time.
    501  1.1  cgd 		 */
    502  1.1  cgd 		while (*key) {
    503  1.1  cgd 			if (des_cipher((char *)&keyblock,
    504  1.1  cgd 			    (char *)&keyblock, 0L, 1))
    505  1.1  cgd 				return (NULL);
    506  1.1  cgd 			for (i = 0; i < 8; i++) {
    507  1.1  cgd 				if ((t = 2*(unsigned char)(*key)) != 0)
    508  1.1  cgd 					key++;
    509  1.1  cgd 				keyblock.b[i] ^= t;
    510  1.1  cgd 			}
    511  1.1  cgd 			if (des_setkey((char *)keyblock.b))
    512  1.1  cgd 				return (NULL);
    513  1.1  cgd 		}
    514  1.1  cgd 
    515  1.1  cgd 		*encp++ = *setting++;
    516  1.1  cgd 
    517  1.1  cgd 		/* get iteration count */
    518  1.1  cgd 		num_iter = 0;
    519  1.1  cgd 		for (i = 4; --i >= 0; ) {
    520  1.1  cgd 			if ((t = (unsigned char)setting[i]) == '\0')
    521  1.1  cgd 				t = '.';
    522  1.1  cgd 			encp[i] = t;
    523  1.1  cgd 			num_iter = (num_iter<<6) | a64toi[t];
    524  1.1  cgd 		}
    525  1.1  cgd 		setting += 4;
    526  1.1  cgd 		encp += 4;
    527  1.1  cgd 		salt_size = 4;
    528  1.1  cgd 		break;
    529  1.1  cgd 	default:
    530  1.1  cgd 		num_iter = 25;
    531  1.1  cgd 		salt_size = 2;
    532  1.1  cgd 	}
    533  1.1  cgd 
    534  1.1  cgd 	salt = 0;
    535  1.1  cgd 	for (i = salt_size; --i >= 0; ) {
    536  1.1  cgd 		if ((t = (unsigned char)setting[i]) == '\0')
    537  1.1  cgd 			t = '.';
    538  1.1  cgd 		encp[i] = t;
    539  1.1  cgd 		salt = (salt<<6) | a64toi[t];
    540  1.1  cgd 	}
    541  1.1  cgd 	encp += salt_size;
    542  1.1  cgd 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
    543  1.1  cgd 	    salt, num_iter))
    544  1.1  cgd 		return (NULL);
    545  1.1  cgd 
    546  1.1  cgd 	/*
    547  1.1  cgd 	 * Encode the 64 cipher bits as 11 ascii characters.
    548  1.1  cgd 	 */
    549  1.1  cgd 	i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
    550  1.1  cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    551  1.1  cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    552  1.1  cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    553  1.1  cgd 	encp[0] = itoa64[i];		encp += 4;
    554  1.1  cgd 	i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
    555  1.1  cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    556  1.1  cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    557  1.1  cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    558  1.1  cgd 	encp[0] = itoa64[i];		encp += 4;
    559  1.1  cgd 	i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    560  1.1  cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    561  1.1  cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    562  1.1  cgd 	encp[0] = itoa64[i];
    563  1.1  cgd 
    564  1.1  cgd 	encp[3] = 0;
    565  1.1  cgd 
    566  1.1  cgd 	return (cryptresult);
    567  1.1  cgd }
    568  1.1  cgd 
    569  1.1  cgd 
    570  1.1  cgd /*
    571  1.1  cgd  * The Key Schedule, filled in by des_setkey() or setkey().
    572  1.1  cgd  */
    573  1.1  cgd #define	KS_SIZE	16
    574  1.1  cgd static C_block	KS[KS_SIZE];
    575  1.1  cgd 
    576  1.1  cgd /*
    577  1.1  cgd  * Set up the key schedule from the key.
    578  1.1  cgd  */
    579  1.1  cgd des_setkey(key)
    580  1.1  cgd 	register const char *key;
    581  1.1  cgd {
    582  1.1  cgd 	register DCL_BLOCK(K, K0, K1);
    583  1.1  cgd 	register C_block *ptabp;
    584  1.1  cgd 	register int i;
    585  1.1  cgd 	static int des_ready = 0;
    586  1.1  cgd 
    587  1.1  cgd 	if (!des_ready) {
    588  1.1  cgd 		init_des();
    589  1.1  cgd 		des_ready = 1;
    590  1.1  cgd 	}
    591  1.1  cgd 
    592  1.1  cgd 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
    593  1.1  cgd 	key = (char *)&KS[0];
    594  1.1  cgd 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    595  1.1  cgd 	for (i = 1; i < 16; i++) {
    596  1.1  cgd 		key += sizeof(C_block);
    597  1.1  cgd 		STORE(K,K0,K1,*(C_block *)key);
    598  1.1  cgd 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    599  1.1  cgd 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
    600  1.1  cgd 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    601  1.1  cgd 	}
    602  1.1  cgd 	return (0);
    603  1.1  cgd }
    604  1.1  cgd 
    605  1.1  cgd /*
    606  1.1  cgd  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    607  1.1  cgd  * iterations of DES, using the the given 24-bit salt and the pre-computed key
    608  1.1  cgd  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    609  1.1  cgd  *
    610  1.1  cgd  * NOTE: the performance of this routine is critically dependent on your
    611  1.1  cgd  * compiler and machine architecture.
    612  1.1  cgd  */
    613  1.1  cgd des_cipher(in, out, salt, num_iter)
    614  1.1  cgd 	const char *in;
    615  1.1  cgd 	char *out;
    616  1.1  cgd 	long salt;
    617  1.1  cgd 	int num_iter;
    618  1.1  cgd {
    619  1.1  cgd 	/* variables that we want in registers, most important first */
    620  1.1  cgd #if defined(pdp11)
    621  1.1  cgd 	register int j;
    622  1.1  cgd #endif
    623  1.1  cgd 	register long L0, L1, R0, R1, k;
    624  1.1  cgd 	register C_block *kp;
    625  1.1  cgd 	register int ks_inc, loop_count;
    626  1.1  cgd 	C_block B;
    627  1.1  cgd 
    628  1.1  cgd 	L0 = salt;
    629  1.1  cgd 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    630  1.1  cgd 
    631  1.1  cgd #if defined(vax) || defined(pdp11)
    632  1.1  cgd 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    633  1.1  cgd #define	SALT (~salt)
    634  1.1  cgd #else
    635  1.1  cgd #define	SALT salt
    636  1.1  cgd #endif
    637  1.1  cgd 
    638  1.1  cgd #if defined(MUST_ALIGN)
    639  1.1  cgd 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    640  1.1  cgd 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    641  1.1  cgd 	LOAD(L,L0,L1,B);
    642  1.1  cgd #else
    643  1.1  cgd 	LOAD(L,L0,L1,*(C_block *)in);
    644  1.1  cgd #endif
    645  1.1  cgd 	LOADREG(R,R0,R1,L,L0,L1);
    646  1.1  cgd 	L0 &= 0x55555555L;
    647  1.1  cgd 	L1 &= 0x55555555L;
    648  1.1  cgd 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    649  1.1  cgd 	R0 &= 0xaaaaaaaaL;
    650  1.1  cgd 	R1 = (R1 >> 1) & 0x55555555L;
    651  1.1  cgd 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    652  1.1  cgd 	STORE(L,L0,L1,B);
    653  1.1  cgd 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    654  1.1  cgd 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    655  1.1  cgd 
    656  1.1  cgd 	if (num_iter >= 0)
    657  1.1  cgd 	{		/* encryption */
    658  1.1  cgd 		kp = &KS[0];
    659  1.1  cgd 		ks_inc  = sizeof(*kp);
    660  1.1  cgd 	}
    661  1.1  cgd 	else
    662  1.1  cgd 	{		/* decryption */
    663  1.1  cgd 		num_iter = -num_iter;
    664  1.1  cgd 		kp = &KS[KS_SIZE-1];
    665  1.1  cgd 		ks_inc  = -sizeof(*kp);
    666  1.1  cgd 	}
    667  1.1  cgd 
    668  1.1  cgd 	while (--num_iter >= 0) {
    669  1.1  cgd 		loop_count = 8;
    670  1.1  cgd 		do {
    671  1.1  cgd 
    672  1.1  cgd #define	SPTAB(t, i)	(*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
    673  1.1  cgd #if defined(gould)
    674  1.1  cgd 			/* use this if B.b[i] is evaluated just once ... */
    675  1.1  cgd #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    676  1.1  cgd #else
    677  1.1  cgd #if defined(pdp11)
    678  1.1  cgd 			/* use this if your "long" int indexing is slow */
    679  1.1  cgd #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    680  1.1  cgd #else
    681  1.1  cgd 			/* use this if "k" is allocated to a register ... */
    682  1.1  cgd #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    683  1.1  cgd #endif
    684  1.1  cgd #endif
    685  1.1  cgd 
    686  1.1  cgd #define	CRUNCH(p0, p1, q0, q1)	\
    687  1.1  cgd 			k = (q0 ^ q1) & SALT;	\
    688  1.1  cgd 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    689  1.1  cgd 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    690  1.1  cgd 			kp = (C_block *)((char *)kp+ks_inc);	\
    691  1.1  cgd 							\
    692  1.1  cgd 			DOXOR(p0, p1, 0);		\
    693  1.1  cgd 			DOXOR(p0, p1, 1);		\
    694  1.1  cgd 			DOXOR(p0, p1, 2);		\
    695  1.1  cgd 			DOXOR(p0, p1, 3);		\
    696  1.1  cgd 			DOXOR(p0, p1, 4);		\
    697  1.1  cgd 			DOXOR(p0, p1, 5);		\
    698  1.1  cgd 			DOXOR(p0, p1, 6);		\
    699  1.1  cgd 			DOXOR(p0, p1, 7);
    700  1.1  cgd 
    701  1.1  cgd 			CRUNCH(L0, L1, R0, R1);
    702  1.1  cgd 			CRUNCH(R0, R1, L0, L1);
    703  1.1  cgd 		} while (--loop_count != 0);
    704  1.1  cgd 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    705  1.1  cgd 
    706  1.1  cgd 
    707  1.1  cgd 		/* swap L and R */
    708  1.1  cgd 		L0 ^= R0;  L1 ^= R1;
    709  1.1  cgd 		R0 ^= L0;  R1 ^= L1;
    710  1.1  cgd 		L0 ^= R0;  L1 ^= R1;
    711  1.1  cgd 	}
    712  1.1  cgd 
    713  1.1  cgd 	/* store the encrypted (or decrypted) result */
    714  1.1  cgd 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    715  1.1  cgd 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    716  1.1  cgd 	STORE(L,L0,L1,B);
    717  1.1  cgd 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    718  1.1  cgd #if defined(MUST_ALIGN)
    719  1.1  cgd 	STORE(L,L0,L1,B);
    720  1.1  cgd 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    721  1.1  cgd 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    722  1.1  cgd #else
    723  1.1  cgd 	STORE(L,L0,L1,*(C_block *)out);
    724  1.1  cgd #endif
    725  1.1  cgd 	return (0);
    726  1.1  cgd }
    727  1.1  cgd 
    728  1.1  cgd 
    729  1.1  cgd /*
    730  1.1  cgd  * Initialize various tables.  This need only be done once.  It could even be
    731  1.1  cgd  * done at compile time, if the compiler were capable of that sort of thing.
    732  1.1  cgd  */
    733  1.1  cgd STATIC
    734  1.1  cgd init_des()
    735  1.1  cgd {
    736  1.1  cgd 	register int i, j;
    737  1.1  cgd 	register long k;
    738  1.1  cgd 	register int tableno;
    739  1.1  cgd 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    740  1.1  cgd 
    741  1.1  cgd 	/*
    742  1.1  cgd 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    743  1.1  cgd 	 */
    744  1.1  cgd 	for (i = 0; i < 64; i++)
    745  1.1  cgd 		a64toi[itoa64[i]] = i;
    746  1.1  cgd 
    747  1.1  cgd 	/*
    748  1.1  cgd 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    749  1.1  cgd 	 */
    750  1.1  cgd 	for (i = 0; i < 64; i++)
    751  1.1  cgd 		perm[i] = 0;
    752  1.1  cgd 	for (i = 0; i < 64; i++) {
    753  1.1  cgd 		if ((k = PC2[i]) == 0)
    754  1.1  cgd 			continue;
    755  1.1  cgd 		k += Rotates[0]-1;
    756  1.1  cgd 		if ((k%28) < Rotates[0]) k -= 28;
    757  1.1  cgd 		k = PC1[k];
    758  1.1  cgd 		if (k > 0) {
    759  1.1  cgd 			k--;
    760  1.1  cgd 			k = (k|07) - (k&07);
    761  1.1  cgd 			k++;
    762  1.1  cgd 		}
    763  1.1  cgd 		perm[i] = k;
    764  1.1  cgd 	}
    765  1.1  cgd #ifdef DEBUG
    766  1.1  cgd 	prtab("pc1tab", perm, 8);
    767  1.1  cgd #endif
    768  1.1  cgd 	init_perm(PC1ROT, perm, 8, 8);
    769  1.1  cgd 
    770  1.1  cgd 	/*
    771  1.1  cgd 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    772  1.1  cgd 	 */
    773  1.1  cgd 	for (j = 0; j < 2; j++) {
    774  1.1  cgd 		unsigned char pc2inv[64];
    775  1.1  cgd 		for (i = 0; i < 64; i++)
    776  1.1  cgd 			perm[i] = pc2inv[i] = 0;
    777  1.1  cgd 		for (i = 0; i < 64; i++) {
    778  1.1  cgd 			if ((k = PC2[i]) == 0)
    779  1.1  cgd 				continue;
    780  1.1  cgd 			pc2inv[k-1] = i+1;
    781  1.1  cgd 		}
    782  1.1  cgd 		for (i = 0; i < 64; i++) {
    783  1.1  cgd 			if ((k = PC2[i]) == 0)
    784  1.1  cgd 				continue;
    785  1.1  cgd 			k += j;
    786  1.1  cgd 			if ((k%28) <= j) k -= 28;
    787  1.1  cgd 			perm[i] = pc2inv[k];
    788  1.1  cgd 		}
    789  1.1  cgd #ifdef DEBUG
    790  1.1  cgd 		prtab("pc2tab", perm, 8);
    791  1.1  cgd #endif
    792  1.1  cgd 		init_perm(PC2ROT[j], perm, 8, 8);
    793  1.1  cgd 	}
    794  1.1  cgd 
    795  1.1  cgd 	/*
    796  1.1  cgd 	 * Bit reverse, then initial permutation, then expansion.
    797  1.1  cgd 	 */
    798  1.1  cgd 	for (i = 0; i < 8; i++) {
    799  1.1  cgd 		for (j = 0; j < 8; j++) {
    800  1.1  cgd 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    801  1.1  cgd 			if (k > 32)
    802  1.1  cgd 				k -= 32;
    803  1.1  cgd 			else if (k > 0)
    804  1.1  cgd 				k--;
    805  1.1  cgd 			if (k > 0) {
    806  1.1  cgd 				k--;
    807  1.1  cgd 				k = (k|07) - (k&07);
    808  1.1  cgd 				k++;
    809  1.1  cgd 			}
    810  1.1  cgd 			perm[i*8+j] = k;
    811  1.1  cgd 		}
    812  1.1  cgd 	}
    813  1.1  cgd #ifdef DEBUG
    814  1.1  cgd 	prtab("ietab", perm, 8);
    815  1.1  cgd #endif
    816  1.1  cgd 	init_perm(IE3264, perm, 4, 8);
    817  1.1  cgd 
    818  1.1  cgd 	/*
    819  1.1  cgd 	 * Compression, then final permutation, then bit reverse.
    820  1.1  cgd 	 */
    821  1.1  cgd 	for (i = 0; i < 64; i++) {
    822  1.1  cgd 		k = IP[CIFP[i]-1];
    823  1.1  cgd 		if (k > 0) {
    824  1.1  cgd 			k--;
    825  1.1  cgd 			k = (k|07) - (k&07);
    826  1.1  cgd 			k++;
    827  1.1  cgd 		}
    828  1.1  cgd 		perm[k-1] = i+1;
    829  1.1  cgd 	}
    830  1.1  cgd #ifdef DEBUG
    831  1.1  cgd 	prtab("cftab", perm, 8);
    832  1.1  cgd #endif
    833  1.1  cgd 	init_perm(CF6464, perm, 8, 8);
    834  1.1  cgd 
    835  1.1  cgd 	/*
    836  1.1  cgd 	 * SPE table
    837  1.1  cgd 	 */
    838  1.1  cgd 	for (i = 0; i < 48; i++)
    839  1.1  cgd 		perm[i] = P32Tr[ExpandTr[i]-1];
    840  1.1  cgd 	for (tableno = 0; tableno < 8; tableno++) {
    841  1.1  cgd 		for (j = 0; j < 64; j++)  {
    842  1.1  cgd 			k = (((j >> 0) &01) << 5)|
    843  1.1  cgd 			    (((j >> 1) &01) << 3)|
    844  1.1  cgd 			    (((j >> 2) &01) << 2)|
    845  1.1  cgd 			    (((j >> 3) &01) << 1)|
    846  1.1  cgd 			    (((j >> 4) &01) << 0)|
    847  1.1  cgd 			    (((j >> 5) &01) << 4);
    848  1.1  cgd 			k = S[tableno][k];
    849  1.1  cgd 			k = (((k >> 3)&01) << 0)|
    850  1.1  cgd 			    (((k >> 2)&01) << 1)|
    851  1.1  cgd 			    (((k >> 1)&01) << 2)|
    852  1.1  cgd 			    (((k >> 0)&01) << 3);
    853  1.1  cgd 			for (i = 0; i < 32; i++)
    854  1.1  cgd 				tmp32[i] = 0;
    855  1.1  cgd 			for (i = 0; i < 4; i++)
    856  1.1  cgd 				tmp32[4 * tableno + i] = (k >> i) & 01;
    857  1.1  cgd 			k = 0;
    858  1.1  cgd 			for (i = 24; --i >= 0; )
    859  1.1  cgd 				k = (k<<1) | tmp32[perm[i]-1];
    860  1.1  cgd 			TO_SIX_BIT(SPE[0][tableno][j], k);
    861  1.1  cgd 			k = 0;
    862  1.1  cgd 			for (i = 24; --i >= 0; )
    863  1.1  cgd 				k = (k<<1) | tmp32[perm[i+24]-1];
    864  1.1  cgd 			TO_SIX_BIT(SPE[1][tableno][j], k);
    865  1.1  cgd 		}
    866  1.1  cgd 	}
    867  1.1  cgd }
    868  1.1  cgd 
    869  1.1  cgd /*
    870  1.1  cgd  * Initialize "perm" to represent transformation "p", which rearranges
    871  1.1  cgd  * (perhaps with expansion and/or contraction) one packed array of bits
    872  1.1  cgd  * (of size "chars_in" characters) into another array (of size "chars_out"
    873  1.1  cgd  * characters).
    874  1.1  cgd  *
    875  1.1  cgd  * "perm" must be all-zeroes on entry to this routine.
    876  1.1  cgd  */
    877  1.1  cgd STATIC
    878  1.1  cgd init_perm(perm, p, chars_in, chars_out)
    879  1.1  cgd 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
    880  1.1  cgd 	unsigned char p[64];
    881  1.1  cgd 	int chars_in, chars_out;
    882  1.1  cgd {
    883  1.1  cgd 	register int i, j, k, l;
    884  1.1  cgd 
    885  1.1  cgd 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    886  1.1  cgd 		l = p[k] - 1;		/* where this bit comes from */
    887  1.1  cgd 		if (l < 0)
    888  1.1  cgd 			continue;	/* output bit is always 0 */
    889  1.1  cgd 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    890  1.1  cgd 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    891  1.1  cgd 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    892  1.1  cgd 			if ((j & l) != 0)
    893  1.1  cgd 				perm[i][j].b[k>>3] |= 1<<(k&07);
    894  1.1  cgd 		}
    895  1.1  cgd 	}
    896  1.1  cgd }
    897  1.1  cgd 
    898  1.1  cgd /*
    899  1.1  cgd  * "setkey" routine (for backwards compatibility)
    900  1.1  cgd  */
    901  1.1  cgd setkey(key)
    902  1.1  cgd 	register const char *key;
    903  1.1  cgd {
    904  1.1  cgd 	register int i, j, k;
    905  1.1  cgd 	C_block keyblock;
    906  1.1  cgd 
    907  1.1  cgd 	for (i = 0; i < 8; i++) {
    908  1.1  cgd 		k = 0;
    909  1.1  cgd 		for (j = 0; j < 8; j++) {
    910  1.1  cgd 			k <<= 1;
    911  1.1  cgd 			k |= (unsigned char)*key++;
    912  1.1  cgd 		}
    913  1.1  cgd 		keyblock.b[i] = k;
    914  1.1  cgd 	}
    915  1.1  cgd 	return (des_setkey((char *)keyblock.b));
    916  1.1  cgd }
    917  1.1  cgd 
    918  1.1  cgd /*
    919  1.1  cgd  * "encrypt" routine (for backwards compatibility)
    920  1.1  cgd  */
    921  1.1  cgd encrypt(block, flag)
    922  1.1  cgd 	register char *block;
    923  1.1  cgd 	int flag;
    924  1.1  cgd {
    925  1.1  cgd 	register int i, j, k;
    926  1.1  cgd 	C_block cblock;
    927  1.1  cgd 
    928  1.1  cgd 	for (i = 0; i < 8; i++) {
    929  1.1  cgd 		k = 0;
    930  1.1  cgd 		for (j = 0; j < 8; j++) {
    931  1.1  cgd 			k <<= 1;
    932  1.1  cgd 			k |= (unsigned char)*block++;
    933  1.1  cgd 		}
    934  1.1  cgd 		cblock.b[i] = k;
    935  1.1  cgd 	}
    936  1.1  cgd 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    937  1.1  cgd 		return (1);
    938  1.1  cgd 	for (i = 7; i >= 0; i--) {
    939  1.1  cgd 		k = cblock.b[i];
    940  1.1  cgd 		for (j = 7; j >= 0; j--) {
    941  1.1  cgd 			*--block = k&01;
    942  1.1  cgd 			k >>= 1;
    943  1.1  cgd 		}
    944  1.1  cgd 	}
    945  1.1  cgd 	return (0);
    946  1.1  cgd }
    947  1.1  cgd 
    948  1.1  cgd #ifdef DEBUG
    949  1.1  cgd STATIC
    950  1.1  cgd prtab(s, t, num_rows)
    951  1.1  cgd 	char *s;
    952  1.1  cgd 	unsigned char *t;
    953  1.1  cgd 	int num_rows;
    954  1.1  cgd {
    955  1.1  cgd 	register int i, j;
    956  1.1  cgd 
    957  1.1  cgd 	(void)printf("%s:\n", s);
    958  1.1  cgd 	for (i = 0; i < num_rows; i++) {
    959  1.1  cgd 		for (j = 0; j < 8; j++) {
    960  1.1  cgd 			 (void)printf("%3d", t[i*8+j]);
    961  1.1  cgd 		}
    962  1.1  cgd 		(void)printf("\n");
    963  1.1  cgd 	}
    964  1.1  cgd 	(void)printf("\n");
    965  1.1  cgd }
    966  1.1  cgd #endif
    967