crypt.c revision 1.1 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1989 The Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Tom Truscott.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
38 1.1 cgd static char sccsid[] = "@(#)crypt.c 5.11 (Berkeley) 6/25/91";
39 1.1 cgd #endif /* LIBC_SCCS and not lint */
40 1.1 cgd
41 1.1 cgd #include <unistd.h>
42 1.1 cgd #include <limits.h>
43 1.1 cgd #include <pwd.h>
44 1.1 cgd
45 1.1 cgd /*
46 1.1 cgd * UNIX password, and DES, encryption.
47 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
48 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
49 1.1 cgd *
50 1.1 cgd * References:
51 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
52 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
53 1.1 cgd *
54 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
55 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
56 1.1 cgd *
57 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
58 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
59 1.1 cgd */
60 1.1 cgd
61 1.1 cgd /* ===== Configuration ==================== */
62 1.1 cgd
63 1.1 cgd /*
64 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
65 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
66 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
67 1.1 cgd */
68 1.1 cgd #if !defined(vax)
69 1.1 cgd #define MUST_ALIGN
70 1.1 cgd #endif
71 1.1 cgd
72 1.1 cgd #ifdef CHAR_BITS
73 1.1 cgd #if CHAR_BITS != 8
74 1.1 cgd #error C_block structure assumes 8 bit characters
75 1.1 cgd #endif
76 1.1 cgd #endif
77 1.1 cgd
78 1.1 cgd /*
79 1.1 cgd * define "LONG_IS_32_BITS" only if sizeof(long)==4.
80 1.1 cgd * This avoids use of bit fields (your compiler may be sloppy with them).
81 1.1 cgd */
82 1.1 cgd #if !defined(cray)
83 1.1 cgd #define LONG_IS_32_BITS
84 1.1 cgd #endif
85 1.1 cgd
86 1.1 cgd /*
87 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
88 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
89 1.1 cgd */
90 1.1 cgd #if defined(cray)
91 1.1 cgd #define B64 long
92 1.1 cgd #endif
93 1.1 cgd #if defined(convex)
94 1.1 cgd #define B64 long long
95 1.1 cgd #endif
96 1.1 cgd
97 1.1 cgd /*
98 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
99 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
100 1.1 cgd * little effect on crypt().
101 1.1 cgd */
102 1.1 cgd #if defined(notdef)
103 1.1 cgd #define LARGEDATA
104 1.1 cgd #endif
105 1.1 cgd
106 1.1 cgd /* compile with "-DSTATIC=int" when profiling */
107 1.1 cgd #ifndef STATIC
108 1.1 cgd #define STATIC static
109 1.1 cgd #endif
110 1.1 cgd STATIC init_des(), init_perm(), permute();
111 1.1 cgd #ifdef DEBUG
112 1.1 cgd STATIC prtab();
113 1.1 cgd #endif
114 1.1 cgd
115 1.1 cgd /* ==================================== */
116 1.1 cgd
117 1.1 cgd /*
118 1.1 cgd * Cipher-block representation (Bob Baldwin):
119 1.1 cgd *
120 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
121 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
122 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
123 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
124 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
125 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
126 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
127 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
128 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
129 1.1 cgd * MSB format.
130 1.1 cgd *
131 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
132 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
133 1.1 cgd * the computation, the expansion is applied only once, the expanded
134 1.1 cgd * representation is maintained during the encryption, and a compression
135 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
136 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
137 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
138 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
139 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
140 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
141 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
142 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
143 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
144 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
145 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
146 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
147 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
148 1.1 cgd * 8*64*8 = 4K bytes.
149 1.1 cgd *
150 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
151 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
152 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
153 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
154 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
155 1.1 cgd * the architecture becomes visible.
156 1.1 cgd *
157 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
158 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
159 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
160 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
161 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
162 1.1 cgd * operations that depend on byte order. This largely precludes use of the
163 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
164 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
165 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
166 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
167 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
168 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
169 1.1 cgd *
170 1.1 cgd * Permutation representation (Jim Gillogly):
171 1.1 cgd *
172 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
173 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
174 1.1 cgd * the input distributed appropriately. The transformation is then the OR
175 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
176 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
177 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
178 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
179 1.1 cgd * is slower but tolerable, particularly for password encryption in which
180 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
181 1.1 cgd * bytes, the large tables total 72K bytes.
182 1.1 cgd *
183 1.1 cgd * The transformations used are:
184 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
185 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
186 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
187 1.1 cgd * bits and applying the same transformation. Since there are only
188 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
189 1.1 cgd * the usual table.
190 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
191 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
192 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
193 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
194 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
195 1.1 cgd * identical 32->32 bit transformations could be used instead,
196 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
197 1.1 cgd * byte-ordering and other complications rear their ugly head.
198 1.1 cgd * Similar opportunities/problems arise in the key schedule
199 1.1 cgd * transforms.)
200 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
201 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
202 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
203 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
204 1.1 cgd * It would be possible to define 15 more transformations, each
205 1.1 cgd * with a different rotation, to generate the entire key schedule.
206 1.1 cgd * To save space, however, we instead permute each code into the
207 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
208 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
209 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
210 1.1 cgd * invertible. We get around that problem by using a modified PC2
211 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
212 1.1 cgd * bits of each byte. The low-order bits are cleared when the
213 1.1 cgd * codes are stored into the key schedule.
214 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
215 1.1 cgd * This is faster than applying PC2ROT[0] twice,
216 1.1 cgd *
217 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
218 1.1 cgd *
219 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
220 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
221 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
222 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
223 1.1 cgd * swap bits 13..24 with 36..48.)
224 1.1 cgd *
225 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
226 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
227 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
228 1.1 cgd * 8% performance penalty.
229 1.1 cgd */
230 1.1 cgd
231 1.1 cgd typedef union {
232 1.1 cgd unsigned char b[8];
233 1.1 cgd struct {
234 1.1 cgd #if defined(LONG_IS_32_BITS)
235 1.1 cgd /* long is often faster than a 32-bit bit field */
236 1.1 cgd long i0;
237 1.1 cgd long i1;
238 1.1 cgd #else
239 1.1 cgd long i0: 32;
240 1.1 cgd long i1: 32;
241 1.1 cgd #endif
242 1.1 cgd } b32;
243 1.1 cgd #if defined(B64)
244 1.1 cgd B64 b64;
245 1.1 cgd #endif
246 1.1 cgd } C_block;
247 1.1 cgd
248 1.1 cgd /*
249 1.1 cgd * Convert twenty-four-bit long in host-order
250 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
251 1.1 cgd */
252 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
253 1.1 cgd C_block cvt; \
254 1.1 cgd cvt.b[0] = src; src >>= 6; \
255 1.1 cgd cvt.b[1] = src; src >>= 6; \
256 1.1 cgd cvt.b[2] = src; src >>= 6; \
257 1.1 cgd cvt.b[3] = src; \
258 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
259 1.1 cgd }
260 1.1 cgd
261 1.1 cgd /*
262 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
263 1.1 cgd */
264 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
265 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
266 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
267 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
268 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
269 1.1 cgd #define DCL_BLOCK(d,d0,d1) long d0, d1
270 1.1 cgd
271 1.1 cgd #if defined(LARGEDATA)
272 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
273 1.1 cgd #define LGCHUNKBITS 3
274 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
275 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
276 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
280 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
281 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
282 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
283 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
284 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
285 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
286 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
287 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
288 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
289 1.1 cgd #else
290 1.1 cgd /* "small data" */
291 1.1 cgd #define LGCHUNKBITS 2
292 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
293 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
294 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
295 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
296 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
297 1.1 cgd
298 1.1 cgd STATIC
299 1.1 cgd permute(cp, out, p, chars_in)
300 1.1 cgd unsigned char *cp;
301 1.1 cgd C_block *out;
302 1.1 cgd register C_block *p;
303 1.1 cgd int chars_in;
304 1.1 cgd {
305 1.1 cgd register DCL_BLOCK(D,D0,D1);
306 1.1 cgd register C_block *tp;
307 1.1 cgd register int t;
308 1.1 cgd
309 1.1 cgd ZERO(D,D0,D1);
310 1.1 cgd do {
311 1.1 cgd t = *cp++;
312 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 1.1 cgd } while (--chars_in > 0);
315 1.1 cgd STORE(D,D0,D1,*out);
316 1.1 cgd }
317 1.1 cgd #endif /* LARGEDATA */
318 1.1 cgd
319 1.1 cgd
320 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
321 1.1 cgd
322 1.1 cgd static unsigned char IP[] = { /* initial permutation */
323 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
324 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
325 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
326 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
327 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
328 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
329 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
330 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
331 1.1 cgd };
332 1.1 cgd
333 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
334 1.1 cgd
335 1.1 cgd static unsigned char ExpandTr[] = { /* expansion operation */
336 1.1 cgd 32, 1, 2, 3, 4, 5,
337 1.1 cgd 4, 5, 6, 7, 8, 9,
338 1.1 cgd 8, 9, 10, 11, 12, 13,
339 1.1 cgd 12, 13, 14, 15, 16, 17,
340 1.1 cgd 16, 17, 18, 19, 20, 21,
341 1.1 cgd 20, 21, 22, 23, 24, 25,
342 1.1 cgd 24, 25, 26, 27, 28, 29,
343 1.1 cgd 28, 29, 30, 31, 32, 1,
344 1.1 cgd };
345 1.1 cgd
346 1.1 cgd static unsigned char PC1[] = { /* permuted choice table 1 */
347 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
348 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
349 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
350 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
351 1.1 cgd
352 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
353 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
354 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
355 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
356 1.1 cgd };
357 1.1 cgd
358 1.1 cgd static unsigned char Rotates[] = { /* PC1 rotation schedule */
359 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360 1.1 cgd };
361 1.1 cgd
362 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 1.1 cgd static unsigned char PC2[] = { /* permuted choice table 2 */
364 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
365 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
366 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
367 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
368 1.1 cgd
369 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
370 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
371 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
372 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
373 1.1 cgd };
374 1.1 cgd
375 1.1 cgd static unsigned char S[8][64] = { /* 48->32 bit substitution tables */
376 1.1 cgd /* S[1] */
377 1.1 cgd 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
378 1.1 cgd 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
379 1.1 cgd 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
380 1.1 cgd 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
381 1.1 cgd /* S[2] */
382 1.1 cgd 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
383 1.1 cgd 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
384 1.1 cgd 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
385 1.1 cgd 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
386 1.1 cgd /* S[3] */
387 1.1 cgd 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
388 1.1 cgd 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
389 1.1 cgd 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
390 1.1 cgd 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
391 1.1 cgd /* S[4] */
392 1.1 cgd 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
393 1.1 cgd 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
394 1.1 cgd 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
395 1.1 cgd 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
396 1.1 cgd /* S[5] */
397 1.1 cgd 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
398 1.1 cgd 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
399 1.1 cgd 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
400 1.1 cgd 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
401 1.1 cgd /* S[6] */
402 1.1 cgd 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
403 1.1 cgd 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
404 1.1 cgd 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
405 1.1 cgd 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
406 1.1 cgd /* S[7] */
407 1.1 cgd 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
408 1.1 cgd 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
409 1.1 cgd 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
410 1.1 cgd 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
411 1.1 cgd /* S[8] */
412 1.1 cgd 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
413 1.1 cgd 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
414 1.1 cgd 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
415 1.1 cgd 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
416 1.1 cgd };
417 1.1 cgd
418 1.1 cgd static unsigned char P32Tr[] = { /* 32-bit permutation function */
419 1.1 cgd 16, 7, 20, 21,
420 1.1 cgd 29, 12, 28, 17,
421 1.1 cgd 1, 15, 23, 26,
422 1.1 cgd 5, 18, 31, 10,
423 1.1 cgd 2, 8, 24, 14,
424 1.1 cgd 32, 27, 3, 9,
425 1.1 cgd 19, 13, 30, 6,
426 1.1 cgd 22, 11, 4, 25,
427 1.1 cgd };
428 1.1 cgd
429 1.1 cgd static unsigned char CIFP[] = { /* compressed/interleaved permutation */
430 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
431 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
432 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
433 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
434 1.1 cgd
435 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
436 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
437 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
438 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
439 1.1 cgd };
440 1.1 cgd
441 1.1 cgd static unsigned char itoa64[] = /* 0..63 => ascii-64 */
442 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443 1.1 cgd
444 1.1 cgd
445 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
446 1.1 cgd
447 1.1 cgd
448 1.1 cgd static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
449 1.1 cgd
450 1.1 cgd /* Initial key schedule permutation */
451 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
452 1.1 cgd
453 1.1 cgd /* Subsequent key schedule rotation permutations */
454 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
455 1.1 cgd
456 1.1 cgd /* Initial permutation/expansion table */
457 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
458 1.1 cgd
459 1.1 cgd /* Table that combines the S, P, and E operations. */
460 1.1 cgd static long SPE[2][8][64];
461 1.1 cgd
462 1.1 cgd /* compressed/interleaved => final permutation table */
463 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
464 1.1 cgd
465 1.1 cgd
466 1.1 cgd /* ==================================== */
467 1.1 cgd
468 1.1 cgd
469 1.1 cgd static C_block constdatablock; /* encryption constant */
470 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
471 1.1 cgd
472 1.1 cgd /*
473 1.1 cgd * Return a pointer to static data consisting of the "setting"
474 1.1 cgd * followed by an encryption produced by the "key" and "setting".
475 1.1 cgd */
476 1.1 cgd char *
477 1.1 cgd crypt(key, setting)
478 1.1 cgd register const char *key;
479 1.1 cgd register const char *setting;
480 1.1 cgd {
481 1.1 cgd register char *encp;
482 1.1 cgd register long i;
483 1.1 cgd register int t;
484 1.1 cgd long salt;
485 1.1 cgd int num_iter, salt_size;
486 1.1 cgd C_block keyblock, rsltblock;
487 1.1 cgd
488 1.1 cgd for (i = 0; i < 8; i++) {
489 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
490 1.1 cgd key++;
491 1.1 cgd keyblock.b[i] = t;
492 1.1 cgd }
493 1.1 cgd if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
494 1.1 cgd return (NULL);
495 1.1 cgd
496 1.1 cgd encp = &cryptresult[0];
497 1.1 cgd switch (*setting) {
498 1.1 cgd case _PASSWORD_EFMT1:
499 1.1 cgd /*
500 1.1 cgd * Involve the rest of the password 8 characters at a time.
501 1.1 cgd */
502 1.1 cgd while (*key) {
503 1.1 cgd if (des_cipher((char *)&keyblock,
504 1.1 cgd (char *)&keyblock, 0L, 1))
505 1.1 cgd return (NULL);
506 1.1 cgd for (i = 0; i < 8; i++) {
507 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
508 1.1 cgd key++;
509 1.1 cgd keyblock.b[i] ^= t;
510 1.1 cgd }
511 1.1 cgd if (des_setkey((char *)keyblock.b))
512 1.1 cgd return (NULL);
513 1.1 cgd }
514 1.1 cgd
515 1.1 cgd *encp++ = *setting++;
516 1.1 cgd
517 1.1 cgd /* get iteration count */
518 1.1 cgd num_iter = 0;
519 1.1 cgd for (i = 4; --i >= 0; ) {
520 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
521 1.1 cgd t = '.';
522 1.1 cgd encp[i] = t;
523 1.1 cgd num_iter = (num_iter<<6) | a64toi[t];
524 1.1 cgd }
525 1.1 cgd setting += 4;
526 1.1 cgd encp += 4;
527 1.1 cgd salt_size = 4;
528 1.1 cgd break;
529 1.1 cgd default:
530 1.1 cgd num_iter = 25;
531 1.1 cgd salt_size = 2;
532 1.1 cgd }
533 1.1 cgd
534 1.1 cgd salt = 0;
535 1.1 cgd for (i = salt_size; --i >= 0; ) {
536 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
537 1.1 cgd t = '.';
538 1.1 cgd encp[i] = t;
539 1.1 cgd salt = (salt<<6) | a64toi[t];
540 1.1 cgd }
541 1.1 cgd encp += salt_size;
542 1.1 cgd if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
543 1.1 cgd salt, num_iter))
544 1.1 cgd return (NULL);
545 1.1 cgd
546 1.1 cgd /*
547 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
548 1.1 cgd */
549 1.1 cgd i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
550 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
551 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
552 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
553 1.1 cgd encp[0] = itoa64[i]; encp += 4;
554 1.1 cgd i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
555 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
556 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
557 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
558 1.1 cgd encp[0] = itoa64[i]; encp += 4;
559 1.1 cgd i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
560 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
561 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
562 1.1 cgd encp[0] = itoa64[i];
563 1.1 cgd
564 1.1 cgd encp[3] = 0;
565 1.1 cgd
566 1.1 cgd return (cryptresult);
567 1.1 cgd }
568 1.1 cgd
569 1.1 cgd
570 1.1 cgd /*
571 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
572 1.1 cgd */
573 1.1 cgd #define KS_SIZE 16
574 1.1 cgd static C_block KS[KS_SIZE];
575 1.1 cgd
576 1.1 cgd /*
577 1.1 cgd * Set up the key schedule from the key.
578 1.1 cgd */
579 1.1 cgd des_setkey(key)
580 1.1 cgd register const char *key;
581 1.1 cgd {
582 1.1 cgd register DCL_BLOCK(K, K0, K1);
583 1.1 cgd register C_block *ptabp;
584 1.1 cgd register int i;
585 1.1 cgd static int des_ready = 0;
586 1.1 cgd
587 1.1 cgd if (!des_ready) {
588 1.1 cgd init_des();
589 1.1 cgd des_ready = 1;
590 1.1 cgd }
591 1.1 cgd
592 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
593 1.1 cgd key = (char *)&KS[0];
594 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
595 1.1 cgd for (i = 1; i < 16; i++) {
596 1.1 cgd key += sizeof(C_block);
597 1.1 cgd STORE(K,K0,K1,*(C_block *)key);
598 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
599 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
600 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
601 1.1 cgd }
602 1.1 cgd return (0);
603 1.1 cgd }
604 1.1 cgd
605 1.1 cgd /*
606 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
607 1.1 cgd * iterations of DES, using the the given 24-bit salt and the pre-computed key
608 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
609 1.1 cgd *
610 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
611 1.1 cgd * compiler and machine architecture.
612 1.1 cgd */
613 1.1 cgd des_cipher(in, out, salt, num_iter)
614 1.1 cgd const char *in;
615 1.1 cgd char *out;
616 1.1 cgd long salt;
617 1.1 cgd int num_iter;
618 1.1 cgd {
619 1.1 cgd /* variables that we want in registers, most important first */
620 1.1 cgd #if defined(pdp11)
621 1.1 cgd register int j;
622 1.1 cgd #endif
623 1.1 cgd register long L0, L1, R0, R1, k;
624 1.1 cgd register C_block *kp;
625 1.1 cgd register int ks_inc, loop_count;
626 1.1 cgd C_block B;
627 1.1 cgd
628 1.1 cgd L0 = salt;
629 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
630 1.1 cgd
631 1.1 cgd #if defined(vax) || defined(pdp11)
632 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
633 1.1 cgd #define SALT (~salt)
634 1.1 cgd #else
635 1.1 cgd #define SALT salt
636 1.1 cgd #endif
637 1.1 cgd
638 1.1 cgd #if defined(MUST_ALIGN)
639 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
640 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
641 1.1 cgd LOAD(L,L0,L1,B);
642 1.1 cgd #else
643 1.1 cgd LOAD(L,L0,L1,*(C_block *)in);
644 1.1 cgd #endif
645 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
646 1.1 cgd L0 &= 0x55555555L;
647 1.1 cgd L1 &= 0x55555555L;
648 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
649 1.1 cgd R0 &= 0xaaaaaaaaL;
650 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
651 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
652 1.1 cgd STORE(L,L0,L1,B);
653 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
654 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
655 1.1 cgd
656 1.1 cgd if (num_iter >= 0)
657 1.1 cgd { /* encryption */
658 1.1 cgd kp = &KS[0];
659 1.1 cgd ks_inc = sizeof(*kp);
660 1.1 cgd }
661 1.1 cgd else
662 1.1 cgd { /* decryption */
663 1.1 cgd num_iter = -num_iter;
664 1.1 cgd kp = &KS[KS_SIZE-1];
665 1.1 cgd ks_inc = -sizeof(*kp);
666 1.1 cgd }
667 1.1 cgd
668 1.1 cgd while (--num_iter >= 0) {
669 1.1 cgd loop_count = 8;
670 1.1 cgd do {
671 1.1 cgd
672 1.1 cgd #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
673 1.1 cgd #if defined(gould)
674 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
675 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
676 1.1 cgd #else
677 1.1 cgd #if defined(pdp11)
678 1.1 cgd /* use this if your "long" int indexing is slow */
679 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
680 1.1 cgd #else
681 1.1 cgd /* use this if "k" is allocated to a register ... */
682 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
683 1.1 cgd #endif
684 1.1 cgd #endif
685 1.1 cgd
686 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
687 1.1 cgd k = (q0 ^ q1) & SALT; \
688 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
689 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
690 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
691 1.1 cgd \
692 1.1 cgd DOXOR(p0, p1, 0); \
693 1.1 cgd DOXOR(p0, p1, 1); \
694 1.1 cgd DOXOR(p0, p1, 2); \
695 1.1 cgd DOXOR(p0, p1, 3); \
696 1.1 cgd DOXOR(p0, p1, 4); \
697 1.1 cgd DOXOR(p0, p1, 5); \
698 1.1 cgd DOXOR(p0, p1, 6); \
699 1.1 cgd DOXOR(p0, p1, 7);
700 1.1 cgd
701 1.1 cgd CRUNCH(L0, L1, R0, R1);
702 1.1 cgd CRUNCH(R0, R1, L0, L1);
703 1.1 cgd } while (--loop_count != 0);
704 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
705 1.1 cgd
706 1.1 cgd
707 1.1 cgd /* swap L and R */
708 1.1 cgd L0 ^= R0; L1 ^= R1;
709 1.1 cgd R0 ^= L0; R1 ^= L1;
710 1.1 cgd L0 ^= R0; L1 ^= R1;
711 1.1 cgd }
712 1.1 cgd
713 1.1 cgd /* store the encrypted (or decrypted) result */
714 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
715 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
716 1.1 cgd STORE(L,L0,L1,B);
717 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
718 1.1 cgd #if defined(MUST_ALIGN)
719 1.1 cgd STORE(L,L0,L1,B);
720 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
721 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
722 1.1 cgd #else
723 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
724 1.1 cgd #endif
725 1.1 cgd return (0);
726 1.1 cgd }
727 1.1 cgd
728 1.1 cgd
729 1.1 cgd /*
730 1.1 cgd * Initialize various tables. This need only be done once. It could even be
731 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
732 1.1 cgd */
733 1.1 cgd STATIC
734 1.1 cgd init_des()
735 1.1 cgd {
736 1.1 cgd register int i, j;
737 1.1 cgd register long k;
738 1.1 cgd register int tableno;
739 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
740 1.1 cgd
741 1.1 cgd /*
742 1.1 cgd * table that converts chars "./0-9A-Za-z"to integers 0-63.
743 1.1 cgd */
744 1.1 cgd for (i = 0; i < 64; i++)
745 1.1 cgd a64toi[itoa64[i]] = i;
746 1.1 cgd
747 1.1 cgd /*
748 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
749 1.1 cgd */
750 1.1 cgd for (i = 0; i < 64; i++)
751 1.1 cgd perm[i] = 0;
752 1.1 cgd for (i = 0; i < 64; i++) {
753 1.1 cgd if ((k = PC2[i]) == 0)
754 1.1 cgd continue;
755 1.1 cgd k += Rotates[0]-1;
756 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
757 1.1 cgd k = PC1[k];
758 1.1 cgd if (k > 0) {
759 1.1 cgd k--;
760 1.1 cgd k = (k|07) - (k&07);
761 1.1 cgd k++;
762 1.1 cgd }
763 1.1 cgd perm[i] = k;
764 1.1 cgd }
765 1.1 cgd #ifdef DEBUG
766 1.1 cgd prtab("pc1tab", perm, 8);
767 1.1 cgd #endif
768 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
769 1.1 cgd
770 1.1 cgd /*
771 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
772 1.1 cgd */
773 1.1 cgd for (j = 0; j < 2; j++) {
774 1.1 cgd unsigned char pc2inv[64];
775 1.1 cgd for (i = 0; i < 64; i++)
776 1.1 cgd perm[i] = pc2inv[i] = 0;
777 1.1 cgd for (i = 0; i < 64; i++) {
778 1.1 cgd if ((k = PC2[i]) == 0)
779 1.1 cgd continue;
780 1.1 cgd pc2inv[k-1] = i+1;
781 1.1 cgd }
782 1.1 cgd for (i = 0; i < 64; i++) {
783 1.1 cgd if ((k = PC2[i]) == 0)
784 1.1 cgd continue;
785 1.1 cgd k += j;
786 1.1 cgd if ((k%28) <= j) k -= 28;
787 1.1 cgd perm[i] = pc2inv[k];
788 1.1 cgd }
789 1.1 cgd #ifdef DEBUG
790 1.1 cgd prtab("pc2tab", perm, 8);
791 1.1 cgd #endif
792 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
793 1.1 cgd }
794 1.1 cgd
795 1.1 cgd /*
796 1.1 cgd * Bit reverse, then initial permutation, then expansion.
797 1.1 cgd */
798 1.1 cgd for (i = 0; i < 8; i++) {
799 1.1 cgd for (j = 0; j < 8; j++) {
800 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
801 1.1 cgd if (k > 32)
802 1.1 cgd k -= 32;
803 1.1 cgd else if (k > 0)
804 1.1 cgd k--;
805 1.1 cgd if (k > 0) {
806 1.1 cgd k--;
807 1.1 cgd k = (k|07) - (k&07);
808 1.1 cgd k++;
809 1.1 cgd }
810 1.1 cgd perm[i*8+j] = k;
811 1.1 cgd }
812 1.1 cgd }
813 1.1 cgd #ifdef DEBUG
814 1.1 cgd prtab("ietab", perm, 8);
815 1.1 cgd #endif
816 1.1 cgd init_perm(IE3264, perm, 4, 8);
817 1.1 cgd
818 1.1 cgd /*
819 1.1 cgd * Compression, then final permutation, then bit reverse.
820 1.1 cgd */
821 1.1 cgd for (i = 0; i < 64; i++) {
822 1.1 cgd k = IP[CIFP[i]-1];
823 1.1 cgd if (k > 0) {
824 1.1 cgd k--;
825 1.1 cgd k = (k|07) - (k&07);
826 1.1 cgd k++;
827 1.1 cgd }
828 1.1 cgd perm[k-1] = i+1;
829 1.1 cgd }
830 1.1 cgd #ifdef DEBUG
831 1.1 cgd prtab("cftab", perm, 8);
832 1.1 cgd #endif
833 1.1 cgd init_perm(CF6464, perm, 8, 8);
834 1.1 cgd
835 1.1 cgd /*
836 1.1 cgd * SPE table
837 1.1 cgd */
838 1.1 cgd for (i = 0; i < 48; i++)
839 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
840 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
841 1.1 cgd for (j = 0; j < 64; j++) {
842 1.1 cgd k = (((j >> 0) &01) << 5)|
843 1.1 cgd (((j >> 1) &01) << 3)|
844 1.1 cgd (((j >> 2) &01) << 2)|
845 1.1 cgd (((j >> 3) &01) << 1)|
846 1.1 cgd (((j >> 4) &01) << 0)|
847 1.1 cgd (((j >> 5) &01) << 4);
848 1.1 cgd k = S[tableno][k];
849 1.1 cgd k = (((k >> 3)&01) << 0)|
850 1.1 cgd (((k >> 2)&01) << 1)|
851 1.1 cgd (((k >> 1)&01) << 2)|
852 1.1 cgd (((k >> 0)&01) << 3);
853 1.1 cgd for (i = 0; i < 32; i++)
854 1.1 cgd tmp32[i] = 0;
855 1.1 cgd for (i = 0; i < 4; i++)
856 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
857 1.1 cgd k = 0;
858 1.1 cgd for (i = 24; --i >= 0; )
859 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
860 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
861 1.1 cgd k = 0;
862 1.1 cgd for (i = 24; --i >= 0; )
863 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
864 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
865 1.1 cgd }
866 1.1 cgd }
867 1.1 cgd }
868 1.1 cgd
869 1.1 cgd /*
870 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
871 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
872 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
873 1.1 cgd * characters).
874 1.1 cgd *
875 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
876 1.1 cgd */
877 1.1 cgd STATIC
878 1.1 cgd init_perm(perm, p, chars_in, chars_out)
879 1.1 cgd C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
880 1.1 cgd unsigned char p[64];
881 1.1 cgd int chars_in, chars_out;
882 1.1 cgd {
883 1.1 cgd register int i, j, k, l;
884 1.1 cgd
885 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
886 1.1 cgd l = p[k] - 1; /* where this bit comes from */
887 1.1 cgd if (l < 0)
888 1.1 cgd continue; /* output bit is always 0 */
889 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
890 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
891 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
892 1.1 cgd if ((j & l) != 0)
893 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
894 1.1 cgd }
895 1.1 cgd }
896 1.1 cgd }
897 1.1 cgd
898 1.1 cgd /*
899 1.1 cgd * "setkey" routine (for backwards compatibility)
900 1.1 cgd */
901 1.1 cgd setkey(key)
902 1.1 cgd register const char *key;
903 1.1 cgd {
904 1.1 cgd register int i, j, k;
905 1.1 cgd C_block keyblock;
906 1.1 cgd
907 1.1 cgd for (i = 0; i < 8; i++) {
908 1.1 cgd k = 0;
909 1.1 cgd for (j = 0; j < 8; j++) {
910 1.1 cgd k <<= 1;
911 1.1 cgd k |= (unsigned char)*key++;
912 1.1 cgd }
913 1.1 cgd keyblock.b[i] = k;
914 1.1 cgd }
915 1.1 cgd return (des_setkey((char *)keyblock.b));
916 1.1 cgd }
917 1.1 cgd
918 1.1 cgd /*
919 1.1 cgd * "encrypt" routine (for backwards compatibility)
920 1.1 cgd */
921 1.1 cgd encrypt(block, flag)
922 1.1 cgd register char *block;
923 1.1 cgd int flag;
924 1.1 cgd {
925 1.1 cgd register int i, j, k;
926 1.1 cgd C_block cblock;
927 1.1 cgd
928 1.1 cgd for (i = 0; i < 8; i++) {
929 1.1 cgd k = 0;
930 1.1 cgd for (j = 0; j < 8; j++) {
931 1.1 cgd k <<= 1;
932 1.1 cgd k |= (unsigned char)*block++;
933 1.1 cgd }
934 1.1 cgd cblock.b[i] = k;
935 1.1 cgd }
936 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
937 1.1 cgd return (1);
938 1.1 cgd for (i = 7; i >= 0; i--) {
939 1.1 cgd k = cblock.b[i];
940 1.1 cgd for (j = 7; j >= 0; j--) {
941 1.1 cgd *--block = k&01;
942 1.1 cgd k >>= 1;
943 1.1 cgd }
944 1.1 cgd }
945 1.1 cgd return (0);
946 1.1 cgd }
947 1.1 cgd
948 1.1 cgd #ifdef DEBUG
949 1.1 cgd STATIC
950 1.1 cgd prtab(s, t, num_rows)
951 1.1 cgd char *s;
952 1.1 cgd unsigned char *t;
953 1.1 cgd int num_rows;
954 1.1 cgd {
955 1.1 cgd register int i, j;
956 1.1 cgd
957 1.1 cgd (void)printf("%s:\n", s);
958 1.1 cgd for (i = 0; i < num_rows; i++) {
959 1.1 cgd for (j = 0; j < 8; j++) {
960 1.1 cgd (void)printf("%3d", t[i*8+j]);
961 1.1 cgd }
962 1.1 cgd (void)printf("\n");
963 1.1 cgd }
964 1.1 cgd (void)printf("\n");
965 1.1 cgd }
966 1.1 cgd #endif
967