crypt.c revision 1.2 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1989 The Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Tom Truscott.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
38 1.2 mycroft /*static char sccsid[] = "from: @(#)crypt.c 5.11 (Berkeley) 6/25/91";*/
39 1.2 mycroft static char rcsid[] = "$Id: crypt.c,v 1.2 1993/08/01 18:36:03 mycroft Exp $";
40 1.1 cgd #endif /* LIBC_SCCS and not lint */
41 1.1 cgd
42 1.1 cgd #include <unistd.h>
43 1.1 cgd #include <limits.h>
44 1.1 cgd #include <pwd.h>
45 1.1 cgd
46 1.1 cgd /*
47 1.1 cgd * UNIX password, and DES, encryption.
48 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
49 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
50 1.1 cgd *
51 1.1 cgd * References:
52 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
53 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
54 1.1 cgd *
55 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
56 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
57 1.1 cgd *
58 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
59 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
60 1.1 cgd */
61 1.1 cgd
62 1.1 cgd /* ===== Configuration ==================== */
63 1.1 cgd
64 1.1 cgd /*
65 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
66 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
67 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
68 1.1 cgd */
69 1.1 cgd #if !defined(vax)
70 1.1 cgd #define MUST_ALIGN
71 1.1 cgd #endif
72 1.1 cgd
73 1.1 cgd #ifdef CHAR_BITS
74 1.1 cgd #if CHAR_BITS != 8
75 1.1 cgd #error C_block structure assumes 8 bit characters
76 1.1 cgd #endif
77 1.1 cgd #endif
78 1.1 cgd
79 1.1 cgd /*
80 1.1 cgd * define "LONG_IS_32_BITS" only if sizeof(long)==4.
81 1.1 cgd * This avoids use of bit fields (your compiler may be sloppy with them).
82 1.1 cgd */
83 1.1 cgd #if !defined(cray)
84 1.1 cgd #define LONG_IS_32_BITS
85 1.1 cgd #endif
86 1.1 cgd
87 1.1 cgd /*
88 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
89 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
90 1.1 cgd */
91 1.1 cgd #if defined(cray)
92 1.1 cgd #define B64 long
93 1.1 cgd #endif
94 1.1 cgd #if defined(convex)
95 1.1 cgd #define B64 long long
96 1.1 cgd #endif
97 1.1 cgd
98 1.1 cgd /*
99 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 1.1 cgd * little effect on crypt().
102 1.1 cgd */
103 1.1 cgd #if defined(notdef)
104 1.1 cgd #define LARGEDATA
105 1.1 cgd #endif
106 1.1 cgd
107 1.1 cgd /* compile with "-DSTATIC=int" when profiling */
108 1.1 cgd #ifndef STATIC
109 1.1 cgd #define STATIC static
110 1.1 cgd #endif
111 1.1 cgd STATIC init_des(), init_perm(), permute();
112 1.1 cgd #ifdef DEBUG
113 1.1 cgd STATIC prtab();
114 1.1 cgd #endif
115 1.1 cgd
116 1.1 cgd /* ==================================== */
117 1.1 cgd
118 1.1 cgd /*
119 1.1 cgd * Cipher-block representation (Bob Baldwin):
120 1.1 cgd *
121 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
122 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
123 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
124 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
125 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
126 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
127 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
128 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
129 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
130 1.1 cgd * MSB format.
131 1.1 cgd *
132 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
133 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
134 1.1 cgd * the computation, the expansion is applied only once, the expanded
135 1.1 cgd * representation is maintained during the encryption, and a compression
136 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
137 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
138 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
139 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
140 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
141 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
142 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
143 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
144 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
145 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
146 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
147 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
148 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
149 1.1 cgd * 8*64*8 = 4K bytes.
150 1.1 cgd *
151 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
152 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
153 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
154 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
155 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
156 1.1 cgd * the architecture becomes visible.
157 1.1 cgd *
158 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
159 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
160 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
161 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
162 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
163 1.1 cgd * operations that depend on byte order. This largely precludes use of the
164 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
165 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
166 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
167 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
168 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
169 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
170 1.1 cgd *
171 1.1 cgd * Permutation representation (Jim Gillogly):
172 1.1 cgd *
173 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
174 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
175 1.1 cgd * the input distributed appropriately. The transformation is then the OR
176 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
177 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
178 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
179 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
180 1.1 cgd * is slower but tolerable, particularly for password encryption in which
181 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
182 1.1 cgd * bytes, the large tables total 72K bytes.
183 1.1 cgd *
184 1.1 cgd * The transformations used are:
185 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
186 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
187 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
188 1.1 cgd * bits and applying the same transformation. Since there are only
189 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
190 1.1 cgd * the usual table.
191 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
192 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
193 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
194 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
195 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
196 1.1 cgd * identical 32->32 bit transformations could be used instead,
197 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
198 1.1 cgd * byte-ordering and other complications rear their ugly head.
199 1.1 cgd * Similar opportunities/problems arise in the key schedule
200 1.1 cgd * transforms.)
201 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
202 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
203 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
204 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
205 1.1 cgd * It would be possible to define 15 more transformations, each
206 1.1 cgd * with a different rotation, to generate the entire key schedule.
207 1.1 cgd * To save space, however, we instead permute each code into the
208 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
209 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
210 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
211 1.1 cgd * invertible. We get around that problem by using a modified PC2
212 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
213 1.1 cgd * bits of each byte. The low-order bits are cleared when the
214 1.1 cgd * codes are stored into the key schedule.
215 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
216 1.1 cgd * This is faster than applying PC2ROT[0] twice,
217 1.1 cgd *
218 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
219 1.1 cgd *
220 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
221 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
222 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
223 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
224 1.1 cgd * swap bits 13..24 with 36..48.)
225 1.1 cgd *
226 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
227 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
228 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
229 1.1 cgd * 8% performance penalty.
230 1.1 cgd */
231 1.1 cgd
232 1.1 cgd typedef union {
233 1.1 cgd unsigned char b[8];
234 1.1 cgd struct {
235 1.1 cgd #if defined(LONG_IS_32_BITS)
236 1.1 cgd /* long is often faster than a 32-bit bit field */
237 1.1 cgd long i0;
238 1.1 cgd long i1;
239 1.1 cgd #else
240 1.1 cgd long i0: 32;
241 1.1 cgd long i1: 32;
242 1.1 cgd #endif
243 1.1 cgd } b32;
244 1.1 cgd #if defined(B64)
245 1.1 cgd B64 b64;
246 1.1 cgd #endif
247 1.1 cgd } C_block;
248 1.1 cgd
249 1.1 cgd /*
250 1.1 cgd * Convert twenty-four-bit long in host-order
251 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
252 1.1 cgd */
253 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
254 1.1 cgd C_block cvt; \
255 1.1 cgd cvt.b[0] = src; src >>= 6; \
256 1.1 cgd cvt.b[1] = src; src >>= 6; \
257 1.1 cgd cvt.b[2] = src; src >>= 6; \
258 1.1 cgd cvt.b[3] = src; \
259 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
260 1.1 cgd }
261 1.1 cgd
262 1.1 cgd /*
263 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
264 1.1 cgd */
265 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
266 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
267 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
268 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
269 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
270 1.1 cgd #define DCL_BLOCK(d,d0,d1) long d0, d1
271 1.1 cgd
272 1.1 cgd #if defined(LARGEDATA)
273 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
274 1.1 cgd #define LGCHUNKBITS 3
275 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
276 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
277 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
278 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
279 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
280 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
281 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
282 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
283 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
284 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
285 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
286 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
287 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
288 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
289 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
290 1.1 cgd #else
291 1.1 cgd /* "small data" */
292 1.1 cgd #define LGCHUNKBITS 2
293 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
294 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
295 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
296 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
297 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
298 1.1 cgd
299 1.1 cgd STATIC
300 1.1 cgd permute(cp, out, p, chars_in)
301 1.1 cgd unsigned char *cp;
302 1.1 cgd C_block *out;
303 1.1 cgd register C_block *p;
304 1.1 cgd int chars_in;
305 1.1 cgd {
306 1.1 cgd register DCL_BLOCK(D,D0,D1);
307 1.1 cgd register C_block *tp;
308 1.1 cgd register int t;
309 1.1 cgd
310 1.1 cgd ZERO(D,D0,D1);
311 1.1 cgd do {
312 1.1 cgd t = *cp++;
313 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
315 1.1 cgd } while (--chars_in > 0);
316 1.1 cgd STORE(D,D0,D1,*out);
317 1.1 cgd }
318 1.1 cgd #endif /* LARGEDATA */
319 1.1 cgd
320 1.1 cgd
321 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
322 1.1 cgd
323 1.1 cgd static unsigned char IP[] = { /* initial permutation */
324 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
325 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
326 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
327 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
328 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
329 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
330 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
331 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
332 1.1 cgd };
333 1.1 cgd
334 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
335 1.1 cgd
336 1.1 cgd static unsigned char ExpandTr[] = { /* expansion operation */
337 1.1 cgd 32, 1, 2, 3, 4, 5,
338 1.1 cgd 4, 5, 6, 7, 8, 9,
339 1.1 cgd 8, 9, 10, 11, 12, 13,
340 1.1 cgd 12, 13, 14, 15, 16, 17,
341 1.1 cgd 16, 17, 18, 19, 20, 21,
342 1.1 cgd 20, 21, 22, 23, 24, 25,
343 1.1 cgd 24, 25, 26, 27, 28, 29,
344 1.1 cgd 28, 29, 30, 31, 32, 1,
345 1.1 cgd };
346 1.1 cgd
347 1.1 cgd static unsigned char PC1[] = { /* permuted choice table 1 */
348 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
349 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
350 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
351 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
352 1.1 cgd
353 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
354 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
355 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
356 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
357 1.1 cgd };
358 1.1 cgd
359 1.1 cgd static unsigned char Rotates[] = { /* PC1 rotation schedule */
360 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
361 1.1 cgd };
362 1.1 cgd
363 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
364 1.1 cgd static unsigned char PC2[] = { /* permuted choice table 2 */
365 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
366 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
367 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
368 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
369 1.1 cgd
370 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
371 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
372 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
373 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
374 1.1 cgd };
375 1.1 cgd
376 1.1 cgd static unsigned char S[8][64] = { /* 48->32 bit substitution tables */
377 1.1 cgd /* S[1] */
378 1.1 cgd 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
379 1.1 cgd 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
380 1.1 cgd 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
381 1.1 cgd 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
382 1.1 cgd /* S[2] */
383 1.1 cgd 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
384 1.1 cgd 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
385 1.1 cgd 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
386 1.1 cgd 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
387 1.1 cgd /* S[3] */
388 1.1 cgd 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
389 1.1 cgd 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
390 1.1 cgd 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
391 1.1 cgd 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
392 1.1 cgd /* S[4] */
393 1.1 cgd 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
394 1.1 cgd 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
395 1.1 cgd 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
396 1.1 cgd 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
397 1.1 cgd /* S[5] */
398 1.1 cgd 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
399 1.1 cgd 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
400 1.1 cgd 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
401 1.1 cgd 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
402 1.1 cgd /* S[6] */
403 1.1 cgd 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
404 1.1 cgd 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
405 1.1 cgd 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
406 1.1 cgd 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
407 1.1 cgd /* S[7] */
408 1.1 cgd 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
409 1.1 cgd 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
410 1.1 cgd 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
411 1.1 cgd 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
412 1.1 cgd /* S[8] */
413 1.1 cgd 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
414 1.1 cgd 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
415 1.1 cgd 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
416 1.1 cgd 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
417 1.1 cgd };
418 1.1 cgd
419 1.1 cgd static unsigned char P32Tr[] = { /* 32-bit permutation function */
420 1.1 cgd 16, 7, 20, 21,
421 1.1 cgd 29, 12, 28, 17,
422 1.1 cgd 1, 15, 23, 26,
423 1.1 cgd 5, 18, 31, 10,
424 1.1 cgd 2, 8, 24, 14,
425 1.1 cgd 32, 27, 3, 9,
426 1.1 cgd 19, 13, 30, 6,
427 1.1 cgd 22, 11, 4, 25,
428 1.1 cgd };
429 1.1 cgd
430 1.1 cgd static unsigned char CIFP[] = { /* compressed/interleaved permutation */
431 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
432 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
433 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
434 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
435 1.1 cgd
436 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
437 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
438 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
439 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
440 1.1 cgd };
441 1.1 cgd
442 1.1 cgd static unsigned char itoa64[] = /* 0..63 => ascii-64 */
443 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
444 1.1 cgd
445 1.1 cgd
446 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
447 1.1 cgd
448 1.1 cgd
449 1.1 cgd static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
450 1.1 cgd
451 1.1 cgd /* Initial key schedule permutation */
452 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
453 1.1 cgd
454 1.1 cgd /* Subsequent key schedule rotation permutations */
455 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
456 1.1 cgd
457 1.1 cgd /* Initial permutation/expansion table */
458 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
459 1.1 cgd
460 1.1 cgd /* Table that combines the S, P, and E operations. */
461 1.1 cgd static long SPE[2][8][64];
462 1.1 cgd
463 1.1 cgd /* compressed/interleaved => final permutation table */
464 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
465 1.1 cgd
466 1.1 cgd
467 1.1 cgd /* ==================================== */
468 1.1 cgd
469 1.1 cgd
470 1.1 cgd static C_block constdatablock; /* encryption constant */
471 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
472 1.1 cgd
473 1.1 cgd /*
474 1.1 cgd * Return a pointer to static data consisting of the "setting"
475 1.1 cgd * followed by an encryption produced by the "key" and "setting".
476 1.1 cgd */
477 1.1 cgd char *
478 1.1 cgd crypt(key, setting)
479 1.1 cgd register const char *key;
480 1.1 cgd register const char *setting;
481 1.1 cgd {
482 1.1 cgd register char *encp;
483 1.1 cgd register long i;
484 1.1 cgd register int t;
485 1.1 cgd long salt;
486 1.1 cgd int num_iter, salt_size;
487 1.1 cgd C_block keyblock, rsltblock;
488 1.1 cgd
489 1.1 cgd for (i = 0; i < 8; i++) {
490 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
491 1.1 cgd key++;
492 1.1 cgd keyblock.b[i] = t;
493 1.1 cgd }
494 1.1 cgd if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
495 1.1 cgd return (NULL);
496 1.1 cgd
497 1.1 cgd encp = &cryptresult[0];
498 1.1 cgd switch (*setting) {
499 1.1 cgd case _PASSWORD_EFMT1:
500 1.1 cgd /*
501 1.1 cgd * Involve the rest of the password 8 characters at a time.
502 1.1 cgd */
503 1.1 cgd while (*key) {
504 1.1 cgd if (des_cipher((char *)&keyblock,
505 1.1 cgd (char *)&keyblock, 0L, 1))
506 1.1 cgd return (NULL);
507 1.1 cgd for (i = 0; i < 8; i++) {
508 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
509 1.1 cgd key++;
510 1.1 cgd keyblock.b[i] ^= t;
511 1.1 cgd }
512 1.1 cgd if (des_setkey((char *)keyblock.b))
513 1.1 cgd return (NULL);
514 1.1 cgd }
515 1.1 cgd
516 1.1 cgd *encp++ = *setting++;
517 1.1 cgd
518 1.1 cgd /* get iteration count */
519 1.1 cgd num_iter = 0;
520 1.1 cgd for (i = 4; --i >= 0; ) {
521 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
522 1.1 cgd t = '.';
523 1.1 cgd encp[i] = t;
524 1.1 cgd num_iter = (num_iter<<6) | a64toi[t];
525 1.1 cgd }
526 1.1 cgd setting += 4;
527 1.1 cgd encp += 4;
528 1.1 cgd salt_size = 4;
529 1.1 cgd break;
530 1.1 cgd default:
531 1.1 cgd num_iter = 25;
532 1.1 cgd salt_size = 2;
533 1.1 cgd }
534 1.1 cgd
535 1.1 cgd salt = 0;
536 1.1 cgd for (i = salt_size; --i >= 0; ) {
537 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
538 1.1 cgd t = '.';
539 1.1 cgd encp[i] = t;
540 1.1 cgd salt = (salt<<6) | a64toi[t];
541 1.1 cgd }
542 1.1 cgd encp += salt_size;
543 1.1 cgd if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
544 1.1 cgd salt, num_iter))
545 1.1 cgd return (NULL);
546 1.1 cgd
547 1.1 cgd /*
548 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
549 1.1 cgd */
550 1.1 cgd i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
551 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
552 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
553 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
554 1.1 cgd encp[0] = itoa64[i]; encp += 4;
555 1.1 cgd i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
556 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
557 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
558 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
559 1.1 cgd encp[0] = itoa64[i]; encp += 4;
560 1.1 cgd i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
561 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
562 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
563 1.1 cgd encp[0] = itoa64[i];
564 1.1 cgd
565 1.1 cgd encp[3] = 0;
566 1.1 cgd
567 1.1 cgd return (cryptresult);
568 1.1 cgd }
569 1.1 cgd
570 1.1 cgd
571 1.1 cgd /*
572 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
573 1.1 cgd */
574 1.1 cgd #define KS_SIZE 16
575 1.1 cgd static C_block KS[KS_SIZE];
576 1.1 cgd
577 1.1 cgd /*
578 1.1 cgd * Set up the key schedule from the key.
579 1.1 cgd */
580 1.1 cgd des_setkey(key)
581 1.1 cgd register const char *key;
582 1.1 cgd {
583 1.1 cgd register DCL_BLOCK(K, K0, K1);
584 1.1 cgd register C_block *ptabp;
585 1.1 cgd register int i;
586 1.1 cgd static int des_ready = 0;
587 1.1 cgd
588 1.1 cgd if (!des_ready) {
589 1.1 cgd init_des();
590 1.1 cgd des_ready = 1;
591 1.1 cgd }
592 1.1 cgd
593 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
594 1.1 cgd key = (char *)&KS[0];
595 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
596 1.1 cgd for (i = 1; i < 16; i++) {
597 1.1 cgd key += sizeof(C_block);
598 1.1 cgd STORE(K,K0,K1,*(C_block *)key);
599 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
600 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
601 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
602 1.1 cgd }
603 1.1 cgd return (0);
604 1.1 cgd }
605 1.1 cgd
606 1.1 cgd /*
607 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
608 1.1 cgd * iterations of DES, using the the given 24-bit salt and the pre-computed key
609 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
610 1.1 cgd *
611 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
612 1.1 cgd * compiler and machine architecture.
613 1.1 cgd */
614 1.1 cgd des_cipher(in, out, salt, num_iter)
615 1.1 cgd const char *in;
616 1.1 cgd char *out;
617 1.1 cgd long salt;
618 1.1 cgd int num_iter;
619 1.1 cgd {
620 1.1 cgd /* variables that we want in registers, most important first */
621 1.1 cgd #if defined(pdp11)
622 1.1 cgd register int j;
623 1.1 cgd #endif
624 1.1 cgd register long L0, L1, R0, R1, k;
625 1.1 cgd register C_block *kp;
626 1.1 cgd register int ks_inc, loop_count;
627 1.1 cgd C_block B;
628 1.1 cgd
629 1.1 cgd L0 = salt;
630 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
631 1.1 cgd
632 1.1 cgd #if defined(vax) || defined(pdp11)
633 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
634 1.1 cgd #define SALT (~salt)
635 1.1 cgd #else
636 1.1 cgd #define SALT salt
637 1.1 cgd #endif
638 1.1 cgd
639 1.1 cgd #if defined(MUST_ALIGN)
640 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
641 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
642 1.1 cgd LOAD(L,L0,L1,B);
643 1.1 cgd #else
644 1.1 cgd LOAD(L,L0,L1,*(C_block *)in);
645 1.1 cgd #endif
646 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
647 1.1 cgd L0 &= 0x55555555L;
648 1.1 cgd L1 &= 0x55555555L;
649 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
650 1.1 cgd R0 &= 0xaaaaaaaaL;
651 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
652 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
653 1.1 cgd STORE(L,L0,L1,B);
654 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
655 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
656 1.1 cgd
657 1.1 cgd if (num_iter >= 0)
658 1.1 cgd { /* encryption */
659 1.1 cgd kp = &KS[0];
660 1.1 cgd ks_inc = sizeof(*kp);
661 1.1 cgd }
662 1.1 cgd else
663 1.1 cgd { /* decryption */
664 1.1 cgd num_iter = -num_iter;
665 1.1 cgd kp = &KS[KS_SIZE-1];
666 1.1 cgd ks_inc = -sizeof(*kp);
667 1.1 cgd }
668 1.1 cgd
669 1.1 cgd while (--num_iter >= 0) {
670 1.1 cgd loop_count = 8;
671 1.1 cgd do {
672 1.1 cgd
673 1.1 cgd #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
674 1.1 cgd #if defined(gould)
675 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
676 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
677 1.1 cgd #else
678 1.1 cgd #if defined(pdp11)
679 1.1 cgd /* use this if your "long" int indexing is slow */
680 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
681 1.1 cgd #else
682 1.1 cgd /* use this if "k" is allocated to a register ... */
683 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
684 1.1 cgd #endif
685 1.1 cgd #endif
686 1.1 cgd
687 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
688 1.1 cgd k = (q0 ^ q1) & SALT; \
689 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
690 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
691 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
692 1.1 cgd \
693 1.1 cgd DOXOR(p0, p1, 0); \
694 1.1 cgd DOXOR(p0, p1, 1); \
695 1.1 cgd DOXOR(p0, p1, 2); \
696 1.1 cgd DOXOR(p0, p1, 3); \
697 1.1 cgd DOXOR(p0, p1, 4); \
698 1.1 cgd DOXOR(p0, p1, 5); \
699 1.1 cgd DOXOR(p0, p1, 6); \
700 1.1 cgd DOXOR(p0, p1, 7);
701 1.1 cgd
702 1.1 cgd CRUNCH(L0, L1, R0, R1);
703 1.1 cgd CRUNCH(R0, R1, L0, L1);
704 1.1 cgd } while (--loop_count != 0);
705 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
706 1.1 cgd
707 1.1 cgd
708 1.1 cgd /* swap L and R */
709 1.1 cgd L0 ^= R0; L1 ^= R1;
710 1.1 cgd R0 ^= L0; R1 ^= L1;
711 1.1 cgd L0 ^= R0; L1 ^= R1;
712 1.1 cgd }
713 1.1 cgd
714 1.1 cgd /* store the encrypted (or decrypted) result */
715 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
716 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
717 1.1 cgd STORE(L,L0,L1,B);
718 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
719 1.1 cgd #if defined(MUST_ALIGN)
720 1.1 cgd STORE(L,L0,L1,B);
721 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
722 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
723 1.1 cgd #else
724 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
725 1.1 cgd #endif
726 1.1 cgd return (0);
727 1.1 cgd }
728 1.1 cgd
729 1.1 cgd
730 1.1 cgd /*
731 1.1 cgd * Initialize various tables. This need only be done once. It could even be
732 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
733 1.1 cgd */
734 1.1 cgd STATIC
735 1.1 cgd init_des()
736 1.1 cgd {
737 1.1 cgd register int i, j;
738 1.1 cgd register long k;
739 1.1 cgd register int tableno;
740 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
741 1.1 cgd
742 1.1 cgd /*
743 1.1 cgd * table that converts chars "./0-9A-Za-z"to integers 0-63.
744 1.1 cgd */
745 1.1 cgd for (i = 0; i < 64; i++)
746 1.1 cgd a64toi[itoa64[i]] = i;
747 1.1 cgd
748 1.1 cgd /*
749 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
750 1.1 cgd */
751 1.1 cgd for (i = 0; i < 64; i++)
752 1.1 cgd perm[i] = 0;
753 1.1 cgd for (i = 0; i < 64; i++) {
754 1.1 cgd if ((k = PC2[i]) == 0)
755 1.1 cgd continue;
756 1.1 cgd k += Rotates[0]-1;
757 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
758 1.1 cgd k = PC1[k];
759 1.1 cgd if (k > 0) {
760 1.1 cgd k--;
761 1.1 cgd k = (k|07) - (k&07);
762 1.1 cgd k++;
763 1.1 cgd }
764 1.1 cgd perm[i] = k;
765 1.1 cgd }
766 1.1 cgd #ifdef DEBUG
767 1.1 cgd prtab("pc1tab", perm, 8);
768 1.1 cgd #endif
769 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
770 1.1 cgd
771 1.1 cgd /*
772 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
773 1.1 cgd */
774 1.1 cgd for (j = 0; j < 2; j++) {
775 1.1 cgd unsigned char pc2inv[64];
776 1.1 cgd for (i = 0; i < 64; i++)
777 1.1 cgd perm[i] = pc2inv[i] = 0;
778 1.1 cgd for (i = 0; i < 64; i++) {
779 1.1 cgd if ((k = PC2[i]) == 0)
780 1.1 cgd continue;
781 1.1 cgd pc2inv[k-1] = i+1;
782 1.1 cgd }
783 1.1 cgd for (i = 0; i < 64; i++) {
784 1.1 cgd if ((k = PC2[i]) == 0)
785 1.1 cgd continue;
786 1.1 cgd k += j;
787 1.1 cgd if ((k%28) <= j) k -= 28;
788 1.1 cgd perm[i] = pc2inv[k];
789 1.1 cgd }
790 1.1 cgd #ifdef DEBUG
791 1.1 cgd prtab("pc2tab", perm, 8);
792 1.1 cgd #endif
793 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
794 1.1 cgd }
795 1.1 cgd
796 1.1 cgd /*
797 1.1 cgd * Bit reverse, then initial permutation, then expansion.
798 1.1 cgd */
799 1.1 cgd for (i = 0; i < 8; i++) {
800 1.1 cgd for (j = 0; j < 8; j++) {
801 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
802 1.1 cgd if (k > 32)
803 1.1 cgd k -= 32;
804 1.1 cgd else if (k > 0)
805 1.1 cgd k--;
806 1.1 cgd if (k > 0) {
807 1.1 cgd k--;
808 1.1 cgd k = (k|07) - (k&07);
809 1.1 cgd k++;
810 1.1 cgd }
811 1.1 cgd perm[i*8+j] = k;
812 1.1 cgd }
813 1.1 cgd }
814 1.1 cgd #ifdef DEBUG
815 1.1 cgd prtab("ietab", perm, 8);
816 1.1 cgd #endif
817 1.1 cgd init_perm(IE3264, perm, 4, 8);
818 1.1 cgd
819 1.1 cgd /*
820 1.1 cgd * Compression, then final permutation, then bit reverse.
821 1.1 cgd */
822 1.1 cgd for (i = 0; i < 64; i++) {
823 1.1 cgd k = IP[CIFP[i]-1];
824 1.1 cgd if (k > 0) {
825 1.1 cgd k--;
826 1.1 cgd k = (k|07) - (k&07);
827 1.1 cgd k++;
828 1.1 cgd }
829 1.1 cgd perm[k-1] = i+1;
830 1.1 cgd }
831 1.1 cgd #ifdef DEBUG
832 1.1 cgd prtab("cftab", perm, 8);
833 1.1 cgd #endif
834 1.1 cgd init_perm(CF6464, perm, 8, 8);
835 1.1 cgd
836 1.1 cgd /*
837 1.1 cgd * SPE table
838 1.1 cgd */
839 1.1 cgd for (i = 0; i < 48; i++)
840 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
841 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
842 1.1 cgd for (j = 0; j < 64; j++) {
843 1.1 cgd k = (((j >> 0) &01) << 5)|
844 1.1 cgd (((j >> 1) &01) << 3)|
845 1.1 cgd (((j >> 2) &01) << 2)|
846 1.1 cgd (((j >> 3) &01) << 1)|
847 1.1 cgd (((j >> 4) &01) << 0)|
848 1.1 cgd (((j >> 5) &01) << 4);
849 1.1 cgd k = S[tableno][k];
850 1.1 cgd k = (((k >> 3)&01) << 0)|
851 1.1 cgd (((k >> 2)&01) << 1)|
852 1.1 cgd (((k >> 1)&01) << 2)|
853 1.1 cgd (((k >> 0)&01) << 3);
854 1.1 cgd for (i = 0; i < 32; i++)
855 1.1 cgd tmp32[i] = 0;
856 1.1 cgd for (i = 0; i < 4; i++)
857 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
858 1.1 cgd k = 0;
859 1.1 cgd for (i = 24; --i >= 0; )
860 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
861 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
862 1.1 cgd k = 0;
863 1.1 cgd for (i = 24; --i >= 0; )
864 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
865 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
866 1.1 cgd }
867 1.1 cgd }
868 1.1 cgd }
869 1.1 cgd
870 1.1 cgd /*
871 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
872 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
873 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
874 1.1 cgd * characters).
875 1.1 cgd *
876 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
877 1.1 cgd */
878 1.1 cgd STATIC
879 1.1 cgd init_perm(perm, p, chars_in, chars_out)
880 1.1 cgd C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
881 1.1 cgd unsigned char p[64];
882 1.1 cgd int chars_in, chars_out;
883 1.1 cgd {
884 1.1 cgd register int i, j, k, l;
885 1.1 cgd
886 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
887 1.1 cgd l = p[k] - 1; /* where this bit comes from */
888 1.1 cgd if (l < 0)
889 1.1 cgd continue; /* output bit is always 0 */
890 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
891 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
892 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
893 1.1 cgd if ((j & l) != 0)
894 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
895 1.1 cgd }
896 1.1 cgd }
897 1.1 cgd }
898 1.1 cgd
899 1.1 cgd /*
900 1.1 cgd * "setkey" routine (for backwards compatibility)
901 1.1 cgd */
902 1.1 cgd setkey(key)
903 1.1 cgd register const char *key;
904 1.1 cgd {
905 1.1 cgd register int i, j, k;
906 1.1 cgd C_block keyblock;
907 1.1 cgd
908 1.1 cgd for (i = 0; i < 8; i++) {
909 1.1 cgd k = 0;
910 1.1 cgd for (j = 0; j < 8; j++) {
911 1.1 cgd k <<= 1;
912 1.1 cgd k |= (unsigned char)*key++;
913 1.1 cgd }
914 1.1 cgd keyblock.b[i] = k;
915 1.1 cgd }
916 1.1 cgd return (des_setkey((char *)keyblock.b));
917 1.1 cgd }
918 1.1 cgd
919 1.1 cgd /*
920 1.1 cgd * "encrypt" routine (for backwards compatibility)
921 1.1 cgd */
922 1.1 cgd encrypt(block, flag)
923 1.1 cgd register char *block;
924 1.1 cgd int flag;
925 1.1 cgd {
926 1.1 cgd register int i, j, k;
927 1.1 cgd C_block cblock;
928 1.1 cgd
929 1.1 cgd for (i = 0; i < 8; i++) {
930 1.1 cgd k = 0;
931 1.1 cgd for (j = 0; j < 8; j++) {
932 1.1 cgd k <<= 1;
933 1.1 cgd k |= (unsigned char)*block++;
934 1.1 cgd }
935 1.1 cgd cblock.b[i] = k;
936 1.1 cgd }
937 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
938 1.1 cgd return (1);
939 1.1 cgd for (i = 7; i >= 0; i--) {
940 1.1 cgd k = cblock.b[i];
941 1.1 cgd for (j = 7; j >= 0; j--) {
942 1.1 cgd *--block = k&01;
943 1.1 cgd k >>= 1;
944 1.1 cgd }
945 1.1 cgd }
946 1.1 cgd return (0);
947 1.1 cgd }
948 1.1 cgd
949 1.1 cgd #ifdef DEBUG
950 1.1 cgd STATIC
951 1.1 cgd prtab(s, t, num_rows)
952 1.1 cgd char *s;
953 1.1 cgd unsigned char *t;
954 1.1 cgd int num_rows;
955 1.1 cgd {
956 1.1 cgd register int i, j;
957 1.1 cgd
958 1.1 cgd (void)printf("%s:\n", s);
959 1.1 cgd for (i = 0; i < num_rows; i++) {
960 1.1 cgd for (j = 0; j < 8; j++) {
961 1.1 cgd (void)printf("%3d", t[i*8+j]);
962 1.1 cgd }
963 1.1 cgd (void)printf("\n");
964 1.1 cgd }
965 1.1 cgd (void)printf("\n");
966 1.1 cgd }
967 1.1 cgd #endif
968