crypt.c revision 1.20 1 1.20 jdolecek /* $NetBSD: crypt.c,v 1.20 2003/08/06 08:44:22 jdolecek Exp $ */
2 1.5 cgd
3 1.1 cgd /*
4 1.5 cgd * Copyright (c) 1989, 1993
5 1.5 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Tom Truscott.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.7 lukem #include <sys/cdefs.h>
40 1.7 lukem #if !defined(lint)
41 1.5 cgd #if 0
42 1.5 cgd static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
43 1.7 lukem #else
44 1.20 jdolecek __RCSID("$NetBSD: crypt.c,v 1.20 2003/08/06 08:44:22 jdolecek Exp $");
45 1.5 cgd #endif
46 1.7 lukem #endif /* not lint */
47 1.1 cgd
48 1.1 cgd #include <limits.h>
49 1.1 cgd #include <pwd.h>
50 1.12 kleink #include <stdlib.h>
51 1.6 mikel #include <unistd.h>
52 1.1 cgd
53 1.1 cgd /*
54 1.1 cgd * UNIX password, and DES, encryption.
55 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
56 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
57 1.1 cgd *
58 1.1 cgd * References:
59 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
60 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
61 1.1 cgd *
62 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
63 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
64 1.1 cgd *
65 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
66 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
67 1.1 cgd */
68 1.1 cgd
69 1.1 cgd /* ===== Configuration ==================== */
70 1.1 cgd
71 1.1 cgd /*
72 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
73 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
74 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
75 1.1 cgd */
76 1.13 matt #if !defined(__vax__) && !defined(__i386__)
77 1.1 cgd #define MUST_ALIGN
78 1.1 cgd #endif
79 1.1 cgd
80 1.1 cgd #ifdef CHAR_BITS
81 1.1 cgd #if CHAR_BITS != 8
82 1.1 cgd #error C_block structure assumes 8 bit characters
83 1.1 cgd #endif
84 1.1 cgd #endif
85 1.1 cgd
86 1.1 cgd /*
87 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
88 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
89 1.1 cgd */
90 1.1 cgd #if defined(cray)
91 1.1 cgd #define B64 long
92 1.1 cgd #endif
93 1.1 cgd #if defined(convex)
94 1.1 cgd #define B64 long long
95 1.1 cgd #endif
96 1.1 cgd
97 1.1 cgd /*
98 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
99 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
100 1.1 cgd * little effect on crypt().
101 1.1 cgd */
102 1.1 cgd #if defined(notdef)
103 1.1 cgd #define LARGEDATA
104 1.1 cgd #endif
105 1.1 cgd
106 1.6 mikel /* compile with "-DSTATIC=void" when profiling */
107 1.1 cgd #ifndef STATIC
108 1.6 mikel #define STATIC static void
109 1.1 cgd #endif
110 1.1 cgd
111 1.1 cgd /* ==================================== */
112 1.1 cgd
113 1.1 cgd /*
114 1.1 cgd * Cipher-block representation (Bob Baldwin):
115 1.1 cgd *
116 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
117 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
118 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
119 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
120 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
121 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
122 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
123 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
124 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
125 1.1 cgd * MSB format.
126 1.1 cgd *
127 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
128 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
129 1.1 cgd * the computation, the expansion is applied only once, the expanded
130 1.1 cgd * representation is maintained during the encryption, and a compression
131 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
132 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
133 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
134 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
135 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
136 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
137 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
138 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
139 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
140 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
141 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
142 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
143 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
144 1.1 cgd * 8*64*8 = 4K bytes.
145 1.1 cgd *
146 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
147 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
148 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
149 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
150 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
151 1.1 cgd * the architecture becomes visible.
152 1.1 cgd *
153 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
154 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
155 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
156 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
157 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
158 1.1 cgd * operations that depend on byte order. This largely precludes use of the
159 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
160 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
161 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
162 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
163 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
164 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
165 1.1 cgd *
166 1.1 cgd * Permutation representation (Jim Gillogly):
167 1.1 cgd *
168 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
169 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
170 1.1 cgd * the input distributed appropriately. The transformation is then the OR
171 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
172 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
173 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
174 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
175 1.1 cgd * is slower but tolerable, particularly for password encryption in which
176 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
177 1.1 cgd * bytes, the large tables total 72K bytes.
178 1.1 cgd *
179 1.1 cgd * The transformations used are:
180 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
181 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
182 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
183 1.1 cgd * bits and applying the same transformation. Since there are only
184 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
185 1.1 cgd * the usual table.
186 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
187 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
188 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
189 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
190 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
191 1.1 cgd * identical 32->32 bit transformations could be used instead,
192 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
193 1.1 cgd * byte-ordering and other complications rear their ugly head.
194 1.1 cgd * Similar opportunities/problems arise in the key schedule
195 1.1 cgd * transforms.)
196 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
197 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
198 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
199 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
200 1.1 cgd * It would be possible to define 15 more transformations, each
201 1.1 cgd * with a different rotation, to generate the entire key schedule.
202 1.1 cgd * To save space, however, we instead permute each code into the
203 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
204 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
205 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
206 1.1 cgd * invertible. We get around that problem by using a modified PC2
207 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
208 1.1 cgd * bits of each byte. The low-order bits are cleared when the
209 1.1 cgd * codes are stored into the key schedule.
210 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
211 1.1 cgd * This is faster than applying PC2ROT[0] twice,
212 1.1 cgd *
213 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
214 1.1 cgd *
215 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
216 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
217 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
218 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
219 1.1 cgd * swap bits 13..24 with 36..48.)
220 1.1 cgd *
221 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
222 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
223 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
224 1.1 cgd * 8% performance penalty.
225 1.1 cgd */
226 1.1 cgd
227 1.1 cgd typedef union {
228 1.1 cgd unsigned char b[8];
229 1.1 cgd struct {
230 1.4 cgd int32_t i0;
231 1.4 cgd int32_t i1;
232 1.1 cgd } b32;
233 1.1 cgd #if defined(B64)
234 1.1 cgd B64 b64;
235 1.1 cgd #endif
236 1.1 cgd } C_block;
237 1.1 cgd
238 1.1 cgd /*
239 1.1 cgd * Convert twenty-four-bit long in host-order
240 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
241 1.1 cgd */
242 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
243 1.1 cgd C_block cvt; \
244 1.1 cgd cvt.b[0] = src; src >>= 6; \
245 1.1 cgd cvt.b[1] = src; src >>= 6; \
246 1.1 cgd cvt.b[2] = src; src >>= 6; \
247 1.1 cgd cvt.b[3] = src; \
248 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
249 1.1 cgd }
250 1.1 cgd
251 1.1 cgd /*
252 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
253 1.1 cgd */
254 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
255 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
256 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
257 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
258 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
259 1.4 cgd #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
260 1.1 cgd
261 1.1 cgd #if defined(LARGEDATA)
262 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
263 1.1 cgd #define LGCHUNKBITS 3
264 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
265 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
266 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
267 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
268 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
269 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
270 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
271 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
272 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
273 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
274 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
275 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
276 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
277 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
278 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
279 1.1 cgd #else
280 1.1 cgd /* "small data" */
281 1.1 cgd #define LGCHUNKBITS 2
282 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
283 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
284 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
285 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
286 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
287 1.8 mikel #endif /* LARGEDATA */
288 1.7 lukem
289 1.7 lukem STATIC init_des __P((void));
290 1.9 cgd STATIC init_perm __P((C_block [64/CHUNKBITS][1<<CHUNKBITS], unsigned char [64], int, int));
291 1.8 mikel #ifndef LARGEDATA
292 1.7 lukem STATIC permute __P((unsigned char *, C_block *, C_block *, int));
293 1.8 mikel #endif
294 1.7 lukem #ifdef DEBUG
295 1.7 lukem STATIC prtab __P((char *, unsigned char *, int));
296 1.7 lukem #endif
297 1.7 lukem
298 1.7 lukem
299 1.8 mikel #ifndef LARGEDATA
300 1.1 cgd STATIC
301 1.1 cgd permute(cp, out, p, chars_in)
302 1.1 cgd unsigned char *cp;
303 1.1 cgd C_block *out;
304 1.7 lukem C_block *p;
305 1.1 cgd int chars_in;
306 1.1 cgd {
307 1.7 lukem DCL_BLOCK(D,D0,D1);
308 1.7 lukem C_block *tp;
309 1.7 lukem int t;
310 1.1 cgd
311 1.1 cgd ZERO(D,D0,D1);
312 1.1 cgd do {
313 1.1 cgd t = *cp++;
314 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
315 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
316 1.1 cgd } while (--chars_in > 0);
317 1.1 cgd STORE(D,D0,D1,*out);
318 1.1 cgd }
319 1.1 cgd #endif /* LARGEDATA */
320 1.1 cgd
321 1.1 cgd
322 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
323 1.1 cgd
324 1.20 jdolecek static const unsigned char IP[] = { /* initial permutation */
325 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
326 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
327 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
328 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
329 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
330 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
331 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
332 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
333 1.1 cgd };
334 1.1 cgd
335 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
336 1.1 cgd
337 1.20 jdolecek static const unsigned char ExpandTr[] = { /* expansion operation */
338 1.1 cgd 32, 1, 2, 3, 4, 5,
339 1.1 cgd 4, 5, 6, 7, 8, 9,
340 1.1 cgd 8, 9, 10, 11, 12, 13,
341 1.1 cgd 12, 13, 14, 15, 16, 17,
342 1.1 cgd 16, 17, 18, 19, 20, 21,
343 1.1 cgd 20, 21, 22, 23, 24, 25,
344 1.1 cgd 24, 25, 26, 27, 28, 29,
345 1.1 cgd 28, 29, 30, 31, 32, 1,
346 1.1 cgd };
347 1.1 cgd
348 1.20 jdolecek static const unsigned char PC1[] = { /* permuted choice table 1 */
349 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
350 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
351 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
352 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
353 1.1 cgd
354 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
355 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
356 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
357 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
358 1.1 cgd };
359 1.1 cgd
360 1.20 jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
361 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
362 1.1 cgd };
363 1.1 cgd
364 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
365 1.20 jdolecek static const unsigned char PC2[] = { /* permuted choice table 2 */
366 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
367 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
368 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
369 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
370 1.1 cgd
371 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
372 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
373 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
374 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
375 1.1 cgd };
376 1.1 cgd
377 1.20 jdolecek static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
378 1.1 cgd /* S[1] */
379 1.6 mikel { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
380 1.6 mikel 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
381 1.6 mikel 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
382 1.6 mikel 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
383 1.1 cgd /* S[2] */
384 1.6 mikel { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
385 1.6 mikel 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
386 1.6 mikel 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
387 1.6 mikel 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
388 1.1 cgd /* S[3] */
389 1.6 mikel { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
390 1.6 mikel 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
391 1.6 mikel 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
392 1.6 mikel 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
393 1.1 cgd /* S[4] */
394 1.6 mikel { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
395 1.6 mikel 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
396 1.6 mikel 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
397 1.6 mikel 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
398 1.1 cgd /* S[5] */
399 1.6 mikel { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
400 1.6 mikel 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
401 1.6 mikel 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
402 1.6 mikel 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
403 1.1 cgd /* S[6] */
404 1.6 mikel { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
405 1.6 mikel 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
406 1.6 mikel 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
407 1.6 mikel 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
408 1.1 cgd /* S[7] */
409 1.6 mikel { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
410 1.6 mikel 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
411 1.6 mikel 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
412 1.6 mikel 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
413 1.1 cgd /* S[8] */
414 1.6 mikel { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
415 1.6 mikel 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
416 1.6 mikel 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
417 1.6 mikel 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
418 1.1 cgd };
419 1.1 cgd
420 1.20 jdolecek static const unsigned char P32Tr[] = { /* 32-bit permutation function */
421 1.1 cgd 16, 7, 20, 21,
422 1.1 cgd 29, 12, 28, 17,
423 1.1 cgd 1, 15, 23, 26,
424 1.1 cgd 5, 18, 31, 10,
425 1.1 cgd 2, 8, 24, 14,
426 1.1 cgd 32, 27, 3, 9,
427 1.1 cgd 19, 13, 30, 6,
428 1.1 cgd 22, 11, 4, 25,
429 1.1 cgd };
430 1.1 cgd
431 1.20 jdolecek static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
432 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
433 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
434 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
435 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
436 1.1 cgd
437 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
438 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
439 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
440 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
441 1.1 cgd };
442 1.1 cgd
443 1.20 jdolecek static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
444 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
445 1.1 cgd
446 1.1 cgd
447 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
448 1.1 cgd
449 1.1 cgd
450 1.1 cgd static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
451 1.1 cgd
452 1.1 cgd /* Initial key schedule permutation */
453 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
454 1.1 cgd
455 1.1 cgd /* Subsequent key schedule rotation permutations */
456 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
457 1.1 cgd
458 1.1 cgd /* Initial permutation/expansion table */
459 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
460 1.1 cgd
461 1.1 cgd /* Table that combines the S, P, and E operations. */
462 1.4 cgd static int32_t SPE[2][8][64];
463 1.1 cgd
464 1.1 cgd /* compressed/interleaved => final permutation table */
465 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
466 1.1 cgd
467 1.1 cgd
468 1.1 cgd /* ==================================== */
469 1.1 cgd
470 1.1 cgd
471 1.1 cgd static C_block constdatablock; /* encryption constant */
472 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
473 1.1 cgd
474 1.17 christos extern char *__md5crypt(const char *, const char *); /* XXX */
475 1.19 itojun extern char *__bcrypt(const char *, const char *); /* XXX */
476 1.19 itojun
477 1.17 christos
478 1.1 cgd /*
479 1.1 cgd * Return a pointer to static data consisting of the "setting"
480 1.1 cgd * followed by an encryption produced by the "key" and "setting".
481 1.1 cgd */
482 1.1 cgd char *
483 1.1 cgd crypt(key, setting)
484 1.7 lukem const char *key;
485 1.7 lukem const char *setting;
486 1.1 cgd {
487 1.7 lukem char *encp;
488 1.7 lukem int32_t i;
489 1.7 lukem int t;
490 1.4 cgd int32_t salt;
491 1.1 cgd int num_iter, salt_size;
492 1.1 cgd C_block keyblock, rsltblock;
493 1.16 ad
494 1.16 ad /* Non-DES encryption schemes hook in here. */
495 1.16 ad if (setting[0] == _PASSWORD_NONDES) {
496 1.16 ad switch (setting[1]) {
497 1.16 ad case '2':
498 1.16 ad return (__bcrypt(key, setting));
499 1.16 ad case '1':
500 1.16 ad default:
501 1.16 ad return (__md5crypt(key, setting));
502 1.16 ad }
503 1.16 ad }
504 1.1 cgd
505 1.1 cgd for (i = 0; i < 8; i++) {
506 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
507 1.1 cgd key++;
508 1.1 cgd keyblock.b[i] = t;
509 1.1 cgd }
510 1.1 cgd if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
511 1.1 cgd return (NULL);
512 1.1 cgd
513 1.1 cgd encp = &cryptresult[0];
514 1.1 cgd switch (*setting) {
515 1.1 cgd case _PASSWORD_EFMT1:
516 1.1 cgd /*
517 1.1 cgd * Involve the rest of the password 8 characters at a time.
518 1.1 cgd */
519 1.1 cgd while (*key) {
520 1.18 wiz if (des_cipher((char *)(void *)&keyblock,
521 1.18 wiz (char *)(void *)&keyblock, 0L, 1))
522 1.1 cgd return (NULL);
523 1.1 cgd for (i = 0; i < 8; i++) {
524 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
525 1.1 cgd key++;
526 1.1 cgd keyblock.b[i] ^= t;
527 1.1 cgd }
528 1.1 cgd if (des_setkey((char *)keyblock.b))
529 1.1 cgd return (NULL);
530 1.1 cgd }
531 1.1 cgd
532 1.1 cgd *encp++ = *setting++;
533 1.1 cgd
534 1.1 cgd /* get iteration count */
535 1.1 cgd num_iter = 0;
536 1.1 cgd for (i = 4; --i >= 0; ) {
537 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
538 1.1 cgd t = '.';
539 1.1 cgd encp[i] = t;
540 1.1 cgd num_iter = (num_iter<<6) | a64toi[t];
541 1.1 cgd }
542 1.1 cgd setting += 4;
543 1.1 cgd encp += 4;
544 1.1 cgd salt_size = 4;
545 1.1 cgd break;
546 1.1 cgd default:
547 1.1 cgd num_iter = 25;
548 1.1 cgd salt_size = 2;
549 1.1 cgd }
550 1.1 cgd
551 1.1 cgd salt = 0;
552 1.1 cgd for (i = salt_size; --i >= 0; ) {
553 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
554 1.1 cgd t = '.';
555 1.1 cgd encp[i] = t;
556 1.1 cgd salt = (salt<<6) | a64toi[t];
557 1.1 cgd }
558 1.1 cgd encp += salt_size;
559 1.18 wiz if (des_cipher((char *)(void *)&constdatablock,
560 1.18 wiz (char *)(void *)&rsltblock, salt, num_iter))
561 1.1 cgd return (NULL);
562 1.1 cgd
563 1.1 cgd /*
564 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
565 1.1 cgd */
566 1.4 cgd i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
567 1.4 cgd rsltblock.b[2];
568 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
569 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
570 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
571 1.1 cgd encp[0] = itoa64[i]; encp += 4;
572 1.4 cgd i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
573 1.4 cgd rsltblock.b[5];
574 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
575 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
576 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
577 1.1 cgd encp[0] = itoa64[i]; encp += 4;
578 1.4 cgd i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
579 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
580 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
581 1.1 cgd encp[0] = itoa64[i];
582 1.1 cgd
583 1.1 cgd encp[3] = 0;
584 1.1 cgd
585 1.1 cgd return (cryptresult);
586 1.1 cgd }
587 1.1 cgd
588 1.1 cgd
589 1.1 cgd /*
590 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
591 1.1 cgd */
592 1.1 cgd #define KS_SIZE 16
593 1.1 cgd static C_block KS[KS_SIZE];
594 1.1 cgd
595 1.1 cgd /*
596 1.1 cgd * Set up the key schedule from the key.
597 1.1 cgd */
598 1.6 mikel int
599 1.1 cgd des_setkey(key)
600 1.7 lukem const char *key;
601 1.1 cgd {
602 1.7 lukem DCL_BLOCK(K, K0, K1);
603 1.7 lukem C_block *ptabp;
604 1.7 lukem int i;
605 1.1 cgd static int des_ready = 0;
606 1.1 cgd
607 1.1 cgd if (!des_ready) {
608 1.1 cgd init_des();
609 1.1 cgd des_ready = 1;
610 1.1 cgd }
611 1.1 cgd
612 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
613 1.1 cgd key = (char *)&KS[0];
614 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
615 1.1 cgd for (i = 1; i < 16; i++) {
616 1.1 cgd key += sizeof(C_block);
617 1.1 cgd STORE(K,K0,K1,*(C_block *)key);
618 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
619 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
620 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
621 1.1 cgd }
622 1.1 cgd return (0);
623 1.1 cgd }
624 1.1 cgd
625 1.1 cgd /*
626 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
627 1.14 soren * iterations of DES, using the given 24-bit salt and the pre-computed key
628 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
629 1.1 cgd *
630 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
631 1.1 cgd * compiler and machine architecture.
632 1.1 cgd */
633 1.6 mikel int
634 1.1 cgd des_cipher(in, out, salt, num_iter)
635 1.1 cgd const char *in;
636 1.1 cgd char *out;
637 1.1 cgd long salt;
638 1.1 cgd int num_iter;
639 1.1 cgd {
640 1.1 cgd /* variables that we want in registers, most important first */
641 1.1 cgd #if defined(pdp11)
642 1.10 perry int j;
643 1.1 cgd #endif
644 1.10 perry int32_t L0, L1, R0, R1, k;
645 1.10 perry C_block *kp;
646 1.10 perry int ks_inc, loop_count;
647 1.1 cgd C_block B;
648 1.1 cgd
649 1.1 cgd L0 = salt;
650 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
651 1.1 cgd
652 1.13 matt #if defined(__vax__) || defined(pdp11)
653 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
654 1.1 cgd #define SALT (~salt)
655 1.1 cgd #else
656 1.1 cgd #define SALT salt
657 1.1 cgd #endif
658 1.1 cgd
659 1.1 cgd #if defined(MUST_ALIGN)
660 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
661 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
662 1.1 cgd LOAD(L,L0,L1,B);
663 1.1 cgd #else
664 1.1 cgd LOAD(L,L0,L1,*(C_block *)in);
665 1.1 cgd #endif
666 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
667 1.1 cgd L0 &= 0x55555555L;
668 1.1 cgd L1 &= 0x55555555L;
669 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
670 1.1 cgd R0 &= 0xaaaaaaaaL;
671 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
672 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
673 1.1 cgd STORE(L,L0,L1,B);
674 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
675 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
676 1.1 cgd
677 1.1 cgd if (num_iter >= 0)
678 1.1 cgd { /* encryption */
679 1.1 cgd kp = &KS[0];
680 1.1 cgd ks_inc = sizeof(*kp);
681 1.1 cgd }
682 1.1 cgd else
683 1.1 cgd { /* decryption */
684 1.15 thorpej num_iter = -num_iter;
685 1.15 thorpej kp = &KS[KS_SIZE-1];
686 1.15 thorpej ks_inc = -(long)sizeof(*kp);
687 1.1 cgd }
688 1.1 cgd
689 1.1 cgd while (--num_iter >= 0) {
690 1.1 cgd loop_count = 8;
691 1.1 cgd do {
692 1.1 cgd
693 1.4 cgd #define SPTAB(t, i) \
694 1.5 cgd (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
695 1.1 cgd #if defined(gould)
696 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
697 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
698 1.1 cgd #else
699 1.1 cgd #if defined(pdp11)
700 1.1 cgd /* use this if your "long" int indexing is slow */
701 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
702 1.1 cgd #else
703 1.11 mikel /* use this if "k" is allocated to a register ... */
704 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
705 1.1 cgd #endif
706 1.1 cgd #endif
707 1.1 cgd
708 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
709 1.1 cgd k = (q0 ^ q1) & SALT; \
710 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
711 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
712 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
713 1.1 cgd \
714 1.1 cgd DOXOR(p0, p1, 0); \
715 1.1 cgd DOXOR(p0, p1, 1); \
716 1.1 cgd DOXOR(p0, p1, 2); \
717 1.1 cgd DOXOR(p0, p1, 3); \
718 1.1 cgd DOXOR(p0, p1, 4); \
719 1.1 cgd DOXOR(p0, p1, 5); \
720 1.1 cgd DOXOR(p0, p1, 6); \
721 1.1 cgd DOXOR(p0, p1, 7);
722 1.1 cgd
723 1.1 cgd CRUNCH(L0, L1, R0, R1);
724 1.1 cgd CRUNCH(R0, R1, L0, L1);
725 1.1 cgd } while (--loop_count != 0);
726 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
727 1.1 cgd
728 1.1 cgd
729 1.1 cgd /* swap L and R */
730 1.1 cgd L0 ^= R0; L1 ^= R1;
731 1.1 cgd R0 ^= L0; R1 ^= L1;
732 1.1 cgd L0 ^= R0; L1 ^= R1;
733 1.1 cgd }
734 1.1 cgd
735 1.1 cgd /* store the encrypted (or decrypted) result */
736 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
737 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
738 1.1 cgd STORE(L,L0,L1,B);
739 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
740 1.1 cgd #if defined(MUST_ALIGN)
741 1.1 cgd STORE(L,L0,L1,B);
742 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
743 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
744 1.1 cgd #else
745 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
746 1.1 cgd #endif
747 1.1 cgd return (0);
748 1.1 cgd }
749 1.1 cgd
750 1.1 cgd
751 1.1 cgd /*
752 1.1 cgd * Initialize various tables. This need only be done once. It could even be
753 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
754 1.1 cgd */
755 1.1 cgd STATIC
756 1.1 cgd init_des()
757 1.1 cgd {
758 1.7 lukem int i, j;
759 1.7 lukem int32_t k;
760 1.7 lukem int tableno;
761 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
762 1.1 cgd
763 1.1 cgd /*
764 1.1 cgd * table that converts chars "./0-9A-Za-z"to integers 0-63.
765 1.1 cgd */
766 1.1 cgd for (i = 0; i < 64; i++)
767 1.1 cgd a64toi[itoa64[i]] = i;
768 1.1 cgd
769 1.1 cgd /*
770 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
771 1.1 cgd */
772 1.1 cgd for (i = 0; i < 64; i++)
773 1.1 cgd perm[i] = 0;
774 1.1 cgd for (i = 0; i < 64; i++) {
775 1.1 cgd if ((k = PC2[i]) == 0)
776 1.1 cgd continue;
777 1.1 cgd k += Rotates[0]-1;
778 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
779 1.1 cgd k = PC1[k];
780 1.1 cgd if (k > 0) {
781 1.1 cgd k--;
782 1.1 cgd k = (k|07) - (k&07);
783 1.1 cgd k++;
784 1.1 cgd }
785 1.1 cgd perm[i] = k;
786 1.1 cgd }
787 1.1 cgd #ifdef DEBUG
788 1.1 cgd prtab("pc1tab", perm, 8);
789 1.1 cgd #endif
790 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
791 1.1 cgd
792 1.1 cgd /*
793 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
794 1.1 cgd */
795 1.1 cgd for (j = 0; j < 2; j++) {
796 1.1 cgd unsigned char pc2inv[64];
797 1.1 cgd for (i = 0; i < 64; i++)
798 1.1 cgd perm[i] = pc2inv[i] = 0;
799 1.1 cgd for (i = 0; i < 64; i++) {
800 1.1 cgd if ((k = PC2[i]) == 0)
801 1.1 cgd continue;
802 1.1 cgd pc2inv[k-1] = i+1;
803 1.1 cgd }
804 1.1 cgd for (i = 0; i < 64; i++) {
805 1.1 cgd if ((k = PC2[i]) == 0)
806 1.1 cgd continue;
807 1.1 cgd k += j;
808 1.1 cgd if ((k%28) <= j) k -= 28;
809 1.1 cgd perm[i] = pc2inv[k];
810 1.1 cgd }
811 1.1 cgd #ifdef DEBUG
812 1.1 cgd prtab("pc2tab", perm, 8);
813 1.1 cgd #endif
814 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
815 1.1 cgd }
816 1.1 cgd
817 1.1 cgd /*
818 1.1 cgd * Bit reverse, then initial permutation, then expansion.
819 1.1 cgd */
820 1.1 cgd for (i = 0; i < 8; i++) {
821 1.1 cgd for (j = 0; j < 8; j++) {
822 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
823 1.1 cgd if (k > 32)
824 1.1 cgd k -= 32;
825 1.1 cgd else if (k > 0)
826 1.1 cgd k--;
827 1.1 cgd if (k > 0) {
828 1.1 cgd k--;
829 1.1 cgd k = (k|07) - (k&07);
830 1.1 cgd k++;
831 1.1 cgd }
832 1.1 cgd perm[i*8+j] = k;
833 1.1 cgd }
834 1.1 cgd }
835 1.1 cgd #ifdef DEBUG
836 1.1 cgd prtab("ietab", perm, 8);
837 1.1 cgd #endif
838 1.1 cgd init_perm(IE3264, perm, 4, 8);
839 1.1 cgd
840 1.1 cgd /*
841 1.1 cgd * Compression, then final permutation, then bit reverse.
842 1.1 cgd */
843 1.1 cgd for (i = 0; i < 64; i++) {
844 1.1 cgd k = IP[CIFP[i]-1];
845 1.1 cgd if (k > 0) {
846 1.1 cgd k--;
847 1.1 cgd k = (k|07) - (k&07);
848 1.1 cgd k++;
849 1.1 cgd }
850 1.1 cgd perm[k-1] = i+1;
851 1.1 cgd }
852 1.1 cgd #ifdef DEBUG
853 1.1 cgd prtab("cftab", perm, 8);
854 1.1 cgd #endif
855 1.1 cgd init_perm(CF6464, perm, 8, 8);
856 1.1 cgd
857 1.1 cgd /*
858 1.1 cgd * SPE table
859 1.1 cgd */
860 1.1 cgd for (i = 0; i < 48; i++)
861 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
862 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
863 1.1 cgd for (j = 0; j < 64; j++) {
864 1.1 cgd k = (((j >> 0) &01) << 5)|
865 1.1 cgd (((j >> 1) &01) << 3)|
866 1.1 cgd (((j >> 2) &01) << 2)|
867 1.1 cgd (((j >> 3) &01) << 1)|
868 1.1 cgd (((j >> 4) &01) << 0)|
869 1.1 cgd (((j >> 5) &01) << 4);
870 1.1 cgd k = S[tableno][k];
871 1.1 cgd k = (((k >> 3)&01) << 0)|
872 1.1 cgd (((k >> 2)&01) << 1)|
873 1.1 cgd (((k >> 1)&01) << 2)|
874 1.1 cgd (((k >> 0)&01) << 3);
875 1.1 cgd for (i = 0; i < 32; i++)
876 1.1 cgd tmp32[i] = 0;
877 1.1 cgd for (i = 0; i < 4; i++)
878 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
879 1.1 cgd k = 0;
880 1.1 cgd for (i = 24; --i >= 0; )
881 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
882 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
883 1.1 cgd k = 0;
884 1.1 cgd for (i = 24; --i >= 0; )
885 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
886 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
887 1.1 cgd }
888 1.1 cgd }
889 1.1 cgd }
890 1.1 cgd
891 1.1 cgd /*
892 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
893 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
894 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
895 1.1 cgd * characters).
896 1.1 cgd *
897 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
898 1.1 cgd */
899 1.1 cgd STATIC
900 1.1 cgd init_perm(perm, p, chars_in, chars_out)
901 1.1 cgd C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
902 1.1 cgd unsigned char p[64];
903 1.1 cgd int chars_in, chars_out;
904 1.1 cgd {
905 1.7 lukem int i, j, k, l;
906 1.1 cgd
907 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
908 1.1 cgd l = p[k] - 1; /* where this bit comes from */
909 1.1 cgd if (l < 0)
910 1.1 cgd continue; /* output bit is always 0 */
911 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
912 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
913 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
914 1.1 cgd if ((j & l) != 0)
915 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
916 1.1 cgd }
917 1.1 cgd }
918 1.1 cgd }
919 1.1 cgd
920 1.1 cgd /*
921 1.1 cgd * "setkey" routine (for backwards compatibility)
922 1.1 cgd */
923 1.6 mikel int
924 1.1 cgd setkey(key)
925 1.7 lukem const char *key;
926 1.1 cgd {
927 1.7 lukem int i, j, k;
928 1.1 cgd C_block keyblock;
929 1.1 cgd
930 1.1 cgd for (i = 0; i < 8; i++) {
931 1.1 cgd k = 0;
932 1.1 cgd for (j = 0; j < 8; j++) {
933 1.1 cgd k <<= 1;
934 1.1 cgd k |= (unsigned char)*key++;
935 1.1 cgd }
936 1.1 cgd keyblock.b[i] = k;
937 1.1 cgd }
938 1.1 cgd return (des_setkey((char *)keyblock.b));
939 1.1 cgd }
940 1.1 cgd
941 1.1 cgd /*
942 1.1 cgd * "encrypt" routine (for backwards compatibility)
943 1.1 cgd */
944 1.6 mikel int
945 1.1 cgd encrypt(block, flag)
946 1.7 lukem char *block;
947 1.1 cgd int flag;
948 1.1 cgd {
949 1.7 lukem int i, j, k;
950 1.1 cgd C_block cblock;
951 1.1 cgd
952 1.1 cgd for (i = 0; i < 8; i++) {
953 1.1 cgd k = 0;
954 1.1 cgd for (j = 0; j < 8; j++) {
955 1.1 cgd k <<= 1;
956 1.1 cgd k |= (unsigned char)*block++;
957 1.1 cgd }
958 1.1 cgd cblock.b[i] = k;
959 1.1 cgd }
960 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
961 1.1 cgd return (1);
962 1.1 cgd for (i = 7; i >= 0; i--) {
963 1.1 cgd k = cblock.b[i];
964 1.1 cgd for (j = 7; j >= 0; j--) {
965 1.1 cgd *--block = k&01;
966 1.1 cgd k >>= 1;
967 1.1 cgd }
968 1.1 cgd }
969 1.1 cgd return (0);
970 1.1 cgd }
971 1.1 cgd
972 1.1 cgd #ifdef DEBUG
973 1.1 cgd STATIC
974 1.1 cgd prtab(s, t, num_rows)
975 1.1 cgd char *s;
976 1.1 cgd unsigned char *t;
977 1.1 cgd int num_rows;
978 1.1 cgd {
979 1.7 lukem int i, j;
980 1.1 cgd
981 1.1 cgd (void)printf("%s:\n", s);
982 1.1 cgd for (i = 0; i < num_rows; i++) {
983 1.1 cgd for (j = 0; j < 8; j++) {
984 1.1 cgd (void)printf("%3d", t[i*8+j]);
985 1.1 cgd }
986 1.1 cgd (void)printf("\n");
987 1.1 cgd }
988 1.1 cgd (void)printf("\n");
989 1.1 cgd }
990 1.1 cgd #endif
991