Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.21
      1  1.21       agc /*	$NetBSD: crypt.c,v 1.21 2003/08/07 16:44:17 agc Exp $	*/
      2   1.5       cgd 
      3   1.1       cgd /*
      4   1.5       cgd  * Copyright (c) 1989, 1993
      5   1.5       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * This code is derived from software contributed to Berkeley by
      8   1.1       cgd  * Tom Truscott.
      9   1.1       cgd  *
     10   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1       cgd  * modification, are permitted provided that the following conditions
     12   1.1       cgd  * are met:
     13   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18  1.21       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1       cgd  *    may be used to endorse or promote products derived from this software
     20   1.1       cgd  *    without specific prior written permission.
     21   1.1       cgd  *
     22   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1       cgd  * SUCH DAMAGE.
     33   1.1       cgd  */
     34   1.1       cgd 
     35   1.7     lukem #include <sys/cdefs.h>
     36   1.7     lukem #if !defined(lint)
     37   1.5       cgd #if 0
     38   1.5       cgd static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     39   1.7     lukem #else
     40  1.21       agc __RCSID("$NetBSD: crypt.c,v 1.21 2003/08/07 16:44:17 agc Exp $");
     41   1.5       cgd #endif
     42   1.7     lukem #endif /* not lint */
     43   1.1       cgd 
     44   1.1       cgd #include <limits.h>
     45   1.1       cgd #include <pwd.h>
     46  1.12    kleink #include <stdlib.h>
     47   1.6     mikel #include <unistd.h>
     48   1.1       cgd 
     49   1.1       cgd /*
     50   1.1       cgd  * UNIX password, and DES, encryption.
     51   1.1       cgd  * By Tom Truscott, trt (at) rti.rti.org,
     52   1.1       cgd  * from algorithms by Robert W. Baldwin and James Gillogly.
     53   1.1       cgd  *
     54   1.1       cgd  * References:
     55   1.1       cgd  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     56   1.1       cgd  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     57   1.1       cgd  *
     58   1.1       cgd  * "Password Security: A Case History," R. Morris and Ken Thompson,
     59   1.1       cgd  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     60   1.1       cgd  *
     61   1.1       cgd  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     62   1.1       cgd  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     63   1.1       cgd  */
     64   1.1       cgd 
     65   1.1       cgd /* =====  Configuration ==================== */
     66   1.1       cgd 
     67   1.1       cgd /*
     68   1.1       cgd  * define "MUST_ALIGN" if your compiler cannot load/store
     69   1.1       cgd  * long integers at arbitrary (e.g. odd) memory locations.
     70   1.1       cgd  * (Either that or never pass unaligned addresses to des_cipher!)
     71   1.1       cgd  */
     72  1.13      matt #if !defined(__vax__) && !defined(__i386__)
     73   1.1       cgd #define	MUST_ALIGN
     74   1.1       cgd #endif
     75   1.1       cgd 
     76   1.1       cgd #ifdef CHAR_BITS
     77   1.1       cgd #if CHAR_BITS != 8
     78   1.1       cgd 	#error C_block structure assumes 8 bit characters
     79   1.1       cgd #endif
     80   1.1       cgd #endif
     81   1.1       cgd 
     82   1.1       cgd /*
     83   1.1       cgd  * define "B64" to be the declaration for a 64 bit integer.
     84   1.1       cgd  * XXX this feature is currently unused, see "endian" comment below.
     85   1.1       cgd  */
     86   1.1       cgd #if defined(cray)
     87   1.1       cgd #define	B64	long
     88   1.1       cgd #endif
     89   1.1       cgd #if defined(convex)
     90   1.1       cgd #define	B64	long long
     91   1.1       cgd #endif
     92   1.1       cgd 
     93   1.1       cgd /*
     94   1.1       cgd  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
     95   1.1       cgd  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
     96   1.1       cgd  * little effect on crypt().
     97   1.1       cgd  */
     98   1.1       cgd #if defined(notdef)
     99   1.1       cgd #define	LARGEDATA
    100   1.1       cgd #endif
    101   1.1       cgd 
    102   1.6     mikel /* compile with "-DSTATIC=void" when profiling */
    103   1.1       cgd #ifndef STATIC
    104   1.6     mikel #define	STATIC	static void
    105   1.1       cgd #endif
    106   1.1       cgd 
    107   1.1       cgd /* ==================================== */
    108   1.1       cgd 
    109   1.1       cgd /*
    110   1.1       cgd  * Cipher-block representation (Bob Baldwin):
    111   1.1       cgd  *
    112   1.1       cgd  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    113   1.1       cgd  * representation is to store one bit per byte in an array of bytes.  Bit N of
    114   1.1       cgd  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    115   1.1       cgd  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    116   1.1       cgd  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    117   1.1       cgd  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    118   1.1       cgd  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    119   1.1       cgd  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    120   1.1       cgd  * converted to LSB format, and the output 64-bit block is converted back into
    121   1.1       cgd  * MSB format.
    122   1.1       cgd  *
    123   1.1       cgd  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    124   1.1       cgd  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    125   1.1       cgd  * the computation, the expansion is applied only once, the expanded
    126   1.1       cgd  * representation is maintained during the encryption, and a compression
    127   1.1       cgd  * permutation is applied only at the end.  To speed up the S-box lookups,
    128   1.1       cgd  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    129   1.1       cgd  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    130   1.1       cgd  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    131   1.1       cgd  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    132   1.1       cgd  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    133   1.1       cgd  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    134   1.1       cgd  * used, in which the output is the 64 bit result of an S-box lookup which
    135   1.1       cgd  * has been permuted by P and expanded by E, and is ready for use in the next
    136   1.1       cgd  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    137   1.1       cgd  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    138   1.1       cgd  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    139   1.1       cgd  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    140   1.1       cgd  * 8*64*8 = 4K bytes.
    141   1.1       cgd  *
    142   1.1       cgd  * To speed up bit-parallel operations (such as XOR), the 8 byte
    143   1.1       cgd  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    144   1.1       cgd  * machines which support it, a 64 bit value "b64".  This data structure,
    145   1.1       cgd  * "C_block", has two problems.  First, alignment restrictions must be
    146   1.1       cgd  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    147   1.1       cgd  * the architecture becomes visible.
    148   1.1       cgd  *
    149   1.1       cgd  * The byte-order problem is unfortunate, since on the one hand it is good
    150   1.1       cgd  * to have a machine-independent C_block representation (bits 1..8 in the
    151   1.1       cgd  * first byte, etc.), and on the other hand it is good for the LSB of the
    152   1.1       cgd  * first byte to be the LSB of i0.  We cannot have both these things, so we
    153   1.1       cgd  * currently use the "little-endian" representation and avoid any multi-byte
    154   1.1       cgd  * operations that depend on byte order.  This largely precludes use of the
    155   1.1       cgd  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    156   1.1       cgd  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    157   1.1       cgd  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    158   1.1       cgd  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    159   1.1       cgd  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    160   1.1       cgd  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    161   1.1       cgd  *
    162   1.1       cgd  * Permutation representation (Jim Gillogly):
    163   1.1       cgd  *
    164   1.1       cgd  * A transformation is defined by its effect on each of the 8 bytes of the
    165   1.1       cgd  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    166   1.1       cgd  * the input distributed appropriately.  The transformation is then the OR
    167   1.1       cgd  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    168   1.1       cgd  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    169   1.1       cgd  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    170   1.1       cgd  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    171   1.1       cgd  * is slower but tolerable, particularly for password encryption in which
    172   1.1       cgd  * the SPE transformation is iterated many times.  The small tables total 9K
    173   1.1       cgd  * bytes, the large tables total 72K bytes.
    174   1.1       cgd  *
    175   1.1       cgd  * The transformations used are:
    176   1.1       cgd  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    177   1.1       cgd  *	This is done by collecting the 32 even-numbered bits and applying
    178   1.1       cgd  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    179   1.1       cgd  *	bits and applying the same transformation.  Since there are only
    180   1.1       cgd  *	32 input bits, the IE3264 transformation table is half the size of
    181   1.1       cgd  *	the usual table.
    182   1.1       cgd  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    183   1.1       cgd  *	This is done by two trivial 48->32 bit compressions to obtain
    184   1.1       cgd  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    185   1.1       cgd  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    186   1.1       cgd  *	be possible to group the bits in the 64-bit block so that 2
    187   1.1       cgd  *	identical 32->32 bit transformations could be used instead,
    188   1.1       cgd  *	saving a factor of 4 in space and possibly 2 in time, but
    189   1.1       cgd  *	byte-ordering and other complications rear their ugly head.
    190   1.1       cgd  *	Similar opportunities/problems arise in the key schedule
    191   1.1       cgd  *	transforms.)
    192   1.1       cgd  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    193   1.1       cgd  *	This admittedly baroque 64->64 bit transformation is used to
    194   1.1       cgd  *	produce the first code (in 8*(6+2) format) of the key schedule.
    195   1.1       cgd  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    196   1.1       cgd  *	It would be possible to define 15 more transformations, each
    197   1.1       cgd  *	with a different rotation, to generate the entire key schedule.
    198   1.1       cgd  *	To save space, however, we instead permute each code into the
    199   1.1       cgd  *	next by using a transformation that "undoes" the PC2 permutation,
    200   1.1       cgd  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    201   1.1       cgd  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    202   1.1       cgd  *	invertible.  We get around that problem by using a modified PC2
    203   1.1       cgd  *	which retains the 8 otherwise-lost bits in the unused low-order
    204   1.1       cgd  *	bits of each byte.  The low-order bits are cleared when the
    205   1.1       cgd  *	codes are stored into the key schedule.
    206   1.1       cgd  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    207   1.1       cgd  *	This is faster than applying PC2ROT[0] twice,
    208   1.1       cgd  *
    209   1.1       cgd  * The Bell Labs "salt" (Bob Baldwin):
    210   1.1       cgd  *
    211   1.1       cgd  * The salting is a simple permutation applied to the 48-bit result of E.
    212   1.1       cgd  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    213   1.1       cgd  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    214   1.1       cgd  * 16777216 possible values.  (The original salt was 12 bits and could not
    215   1.1       cgd  * swap bits 13..24 with 36..48.)
    216   1.1       cgd  *
    217   1.1       cgd  * It is possible, but ugly, to warp the SPE table to account for the salt
    218   1.1       cgd  * permutation.  Fortunately, the conditional bit swapping requires only
    219   1.1       cgd  * about four machine instructions and can be done on-the-fly with about an
    220   1.1       cgd  * 8% performance penalty.
    221   1.1       cgd  */
    222   1.1       cgd 
    223   1.1       cgd typedef union {
    224   1.1       cgd 	unsigned char b[8];
    225   1.1       cgd 	struct {
    226   1.4       cgd 		int32_t	i0;
    227   1.4       cgd 		int32_t	i1;
    228   1.1       cgd 	} b32;
    229   1.1       cgd #if defined(B64)
    230   1.1       cgd 	B64	b64;
    231   1.1       cgd #endif
    232   1.1       cgd } C_block;
    233   1.1       cgd 
    234   1.1       cgd /*
    235   1.1       cgd  * Convert twenty-four-bit long in host-order
    236   1.1       cgd  * to six bits (and 2 low-order zeroes) per char little-endian format.
    237   1.1       cgd  */
    238   1.1       cgd #define	TO_SIX_BIT(rslt, src) {				\
    239   1.1       cgd 		C_block cvt;				\
    240   1.1       cgd 		cvt.b[0] = src; src >>= 6;		\
    241   1.1       cgd 		cvt.b[1] = src; src >>= 6;		\
    242   1.1       cgd 		cvt.b[2] = src; src >>= 6;		\
    243   1.1       cgd 		cvt.b[3] = src;				\
    244   1.1       cgd 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    245   1.1       cgd 	}
    246   1.1       cgd 
    247   1.1       cgd /*
    248   1.1       cgd  * These macros may someday permit efficient use of 64-bit integers.
    249   1.1       cgd  */
    250   1.1       cgd #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    251   1.1       cgd #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    252   1.1       cgd #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    253   1.1       cgd #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    254   1.1       cgd #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    255   1.4       cgd #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    256   1.1       cgd 
    257   1.1       cgd #if defined(LARGEDATA)
    258   1.1       cgd 	/* Waste memory like crazy.  Also, do permutations in line */
    259   1.1       cgd #define	LGCHUNKBITS	3
    260   1.1       cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    261   1.1       cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    262   1.1       cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    263   1.1       cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    264   1.1       cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    265   1.1       cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    266   1.1       cgd 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    267   1.1       cgd 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    268   1.1       cgd 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    269   1.1       cgd 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    270   1.1       cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    271   1.1       cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    272   1.1       cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    273   1.1       cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    274   1.1       cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    275   1.1       cgd #else
    276   1.1       cgd 	/* "small data" */
    277   1.1       cgd #define	LGCHUNKBITS	2
    278   1.1       cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    279   1.1       cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    280   1.1       cgd 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    281   1.1       cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    282   1.1       cgd 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    283   1.8     mikel #endif /* LARGEDATA */
    284   1.7     lukem 
    285   1.7     lukem STATIC	init_des __P((void));
    286   1.9       cgd STATIC	init_perm __P((C_block [64/CHUNKBITS][1<<CHUNKBITS], unsigned char [64], int, int));
    287   1.8     mikel #ifndef LARGEDATA
    288   1.7     lukem STATIC	permute __P((unsigned char *, C_block *, C_block *, int));
    289   1.8     mikel #endif
    290   1.7     lukem #ifdef DEBUG
    291   1.7     lukem STATIC	prtab __P((char *, unsigned char *, int));
    292   1.7     lukem #endif
    293   1.7     lukem 
    294   1.7     lukem 
    295   1.8     mikel #ifndef LARGEDATA
    296   1.1       cgd STATIC
    297   1.1       cgd permute(cp, out, p, chars_in)
    298   1.1       cgd 	unsigned char *cp;
    299   1.1       cgd 	C_block *out;
    300   1.7     lukem 	C_block *p;
    301   1.1       cgd 	int chars_in;
    302   1.1       cgd {
    303   1.7     lukem 	DCL_BLOCK(D,D0,D1);
    304   1.7     lukem 	C_block *tp;
    305   1.7     lukem 	int t;
    306   1.1       cgd 
    307   1.1       cgd 	ZERO(D,D0,D1);
    308   1.1       cgd 	do {
    309   1.1       cgd 		t = *cp++;
    310   1.1       cgd 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    311   1.1       cgd 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    312   1.1       cgd 	} while (--chars_in > 0);
    313   1.1       cgd 	STORE(D,D0,D1,*out);
    314   1.1       cgd }
    315   1.1       cgd #endif /* LARGEDATA */
    316   1.1       cgd 
    317   1.1       cgd 
    318   1.1       cgd /* =====  (mostly) Standard DES Tables ==================== */
    319   1.1       cgd 
    320  1.20  jdolecek static const unsigned char IP[] = {	/* initial permutation */
    321   1.1       cgd 	58, 50, 42, 34, 26, 18, 10,  2,
    322   1.1       cgd 	60, 52, 44, 36, 28, 20, 12,  4,
    323   1.1       cgd 	62, 54, 46, 38, 30, 22, 14,  6,
    324   1.1       cgd 	64, 56, 48, 40, 32, 24, 16,  8,
    325   1.1       cgd 	57, 49, 41, 33, 25, 17,  9,  1,
    326   1.1       cgd 	59, 51, 43, 35, 27, 19, 11,  3,
    327   1.1       cgd 	61, 53, 45, 37, 29, 21, 13,  5,
    328   1.1       cgd 	63, 55, 47, 39, 31, 23, 15,  7,
    329   1.1       cgd };
    330   1.1       cgd 
    331   1.1       cgd /* The final permutation is the inverse of IP - no table is necessary */
    332   1.1       cgd 
    333  1.20  jdolecek static const unsigned char ExpandTr[] = {	/* expansion operation */
    334   1.1       cgd 	32,  1,  2,  3,  4,  5,
    335   1.1       cgd 	 4,  5,  6,  7,  8,  9,
    336   1.1       cgd 	 8,  9, 10, 11, 12, 13,
    337   1.1       cgd 	12, 13, 14, 15, 16, 17,
    338   1.1       cgd 	16, 17, 18, 19, 20, 21,
    339   1.1       cgd 	20, 21, 22, 23, 24, 25,
    340   1.1       cgd 	24, 25, 26, 27, 28, 29,
    341   1.1       cgd 	28, 29, 30, 31, 32,  1,
    342   1.1       cgd };
    343   1.1       cgd 
    344  1.20  jdolecek static const unsigned char PC1[] = {	/* permuted choice table 1 */
    345   1.1       cgd 	57, 49, 41, 33, 25, 17,  9,
    346   1.1       cgd 	 1, 58, 50, 42, 34, 26, 18,
    347   1.1       cgd 	10,  2, 59, 51, 43, 35, 27,
    348   1.1       cgd 	19, 11,  3, 60, 52, 44, 36,
    349   1.1       cgd 
    350   1.1       cgd 	63, 55, 47, 39, 31, 23, 15,
    351   1.1       cgd 	 7, 62, 54, 46, 38, 30, 22,
    352   1.1       cgd 	14,  6, 61, 53, 45, 37, 29,
    353   1.1       cgd 	21, 13,  5, 28, 20, 12,  4,
    354   1.1       cgd };
    355   1.1       cgd 
    356  1.20  jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
    357   1.1       cgd 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    358   1.1       cgd };
    359   1.1       cgd 
    360   1.1       cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    361  1.20  jdolecek static const unsigned char PC2[] = {	/* permuted choice table 2 */
    362   1.1       cgd 	 9, 18,    14, 17, 11, 24,  1,  5,
    363   1.1       cgd 	22, 25,     3, 28, 15,  6, 21, 10,
    364   1.1       cgd 	35, 38,    23, 19, 12,  4, 26,  8,
    365   1.1       cgd 	43, 54,    16,  7, 27, 20, 13,  2,
    366   1.1       cgd 
    367   1.1       cgd 	 0,  0,    41, 52, 31, 37, 47, 55,
    368   1.1       cgd 	 0,  0,    30, 40, 51, 45, 33, 48,
    369   1.1       cgd 	 0,  0,    44, 49, 39, 56, 34, 53,
    370   1.1       cgd 	 0,  0,    46, 42, 50, 36, 29, 32,
    371   1.1       cgd };
    372   1.1       cgd 
    373  1.20  jdolecek static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    374   1.1       cgd 					/* S[1]			*/
    375   1.6     mikel 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    376   1.6     mikel 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    377   1.6     mikel 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    378   1.6     mikel 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    379   1.1       cgd 					/* S[2]			*/
    380   1.6     mikel 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    381   1.6     mikel 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    382   1.6     mikel 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    383   1.6     mikel 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    384   1.1       cgd 					/* S[3]			*/
    385   1.6     mikel 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    386   1.6     mikel 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    387   1.6     mikel 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    388   1.6     mikel 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    389   1.1       cgd 					/* S[4]			*/
    390   1.6     mikel 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    391   1.6     mikel 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    392   1.6     mikel 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    393   1.6     mikel 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    394   1.1       cgd 					/* S[5]			*/
    395   1.6     mikel 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    396   1.6     mikel 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    397   1.6     mikel 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    398   1.6     mikel 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    399   1.1       cgd 					/* S[6]			*/
    400   1.6     mikel 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    401   1.6     mikel 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    402   1.6     mikel 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    403   1.6     mikel 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    404   1.1       cgd 					/* S[7]			*/
    405   1.6     mikel 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    406   1.6     mikel 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    407   1.6     mikel 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    408   1.6     mikel 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    409   1.1       cgd 					/* S[8]			*/
    410   1.6     mikel 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    411   1.6     mikel 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    412   1.6     mikel 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    413   1.6     mikel 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    414   1.1       cgd };
    415   1.1       cgd 
    416  1.20  jdolecek static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
    417   1.1       cgd 	16,  7, 20, 21,
    418   1.1       cgd 	29, 12, 28, 17,
    419   1.1       cgd 	 1, 15, 23, 26,
    420   1.1       cgd 	 5, 18, 31, 10,
    421   1.1       cgd 	 2,  8, 24, 14,
    422   1.1       cgd 	32, 27,  3,  9,
    423   1.1       cgd 	19, 13, 30,  6,
    424   1.1       cgd 	22, 11,  4, 25,
    425   1.1       cgd };
    426   1.1       cgd 
    427  1.20  jdolecek static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
    428   1.1       cgd 	 1,  2,  3,  4,   17, 18, 19, 20,
    429   1.1       cgd 	 5,  6,  7,  8,   21, 22, 23, 24,
    430   1.1       cgd 	 9, 10, 11, 12,   25, 26, 27, 28,
    431   1.1       cgd 	13, 14, 15, 16,   29, 30, 31, 32,
    432   1.1       cgd 
    433   1.1       cgd 	33, 34, 35, 36,   49, 50, 51, 52,
    434   1.1       cgd 	37, 38, 39, 40,   53, 54, 55, 56,
    435   1.1       cgd 	41, 42, 43, 44,   57, 58, 59, 60,
    436   1.1       cgd 	45, 46, 47, 48,   61, 62, 63, 64,
    437   1.1       cgd };
    438   1.1       cgd 
    439  1.20  jdolecek static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    440   1.1       cgd 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    441   1.1       cgd 
    442   1.1       cgd 
    443   1.1       cgd /* =====  Tables that are initialized at run time  ==================== */
    444   1.1       cgd 
    445   1.1       cgd 
    446   1.1       cgd static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    447   1.1       cgd 
    448   1.1       cgd /* Initial key schedule permutation */
    449   1.1       cgd static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    450   1.1       cgd 
    451   1.1       cgd /* Subsequent key schedule rotation permutations */
    452   1.1       cgd static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    453   1.1       cgd 
    454   1.1       cgd /* Initial permutation/expansion table */
    455   1.1       cgd static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    456   1.1       cgd 
    457   1.1       cgd /* Table that combines the S, P, and E operations.  */
    458   1.4       cgd static int32_t SPE[2][8][64];
    459   1.1       cgd 
    460   1.1       cgd /* compressed/interleaved => final permutation table */
    461   1.1       cgd static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    462   1.1       cgd 
    463   1.1       cgd 
    464   1.1       cgd /* ==================================== */
    465   1.1       cgd 
    466   1.1       cgd 
    467   1.1       cgd static C_block	constdatablock;			/* encryption constant */
    468   1.1       cgd static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    469   1.1       cgd 
    470  1.17  christos extern char *__md5crypt(const char *, const char *);	/* XXX */
    471  1.19    itojun extern char *__bcrypt(const char *, const char *);	/* XXX */
    472  1.19    itojun 
    473  1.17  christos 
    474   1.1       cgd /*
    475   1.1       cgd  * Return a pointer to static data consisting of the "setting"
    476   1.1       cgd  * followed by an encryption produced by the "key" and "setting".
    477   1.1       cgd  */
    478   1.1       cgd char *
    479   1.1       cgd crypt(key, setting)
    480   1.7     lukem 	const char *key;
    481   1.7     lukem 	const char *setting;
    482   1.1       cgd {
    483   1.7     lukem 	char *encp;
    484   1.7     lukem 	int32_t i;
    485   1.7     lukem 	int t;
    486   1.4       cgd 	int32_t salt;
    487   1.1       cgd 	int num_iter, salt_size;
    488   1.1       cgd 	C_block keyblock, rsltblock;
    489  1.16        ad 
    490  1.16        ad 	/* Non-DES encryption schemes hook in here. */
    491  1.16        ad 	if (setting[0] == _PASSWORD_NONDES) {
    492  1.16        ad 		switch (setting[1]) {
    493  1.16        ad 		case '2':
    494  1.16        ad 			return (__bcrypt(key, setting));
    495  1.16        ad 		case '1':
    496  1.16        ad 		default:
    497  1.16        ad 			return (__md5crypt(key, setting));
    498  1.16        ad 		}
    499  1.16        ad 	}
    500   1.1       cgd 
    501   1.1       cgd 	for (i = 0; i < 8; i++) {
    502   1.1       cgd 		if ((t = 2*(unsigned char)(*key)) != 0)
    503   1.1       cgd 			key++;
    504   1.1       cgd 		keyblock.b[i] = t;
    505   1.1       cgd 	}
    506   1.1       cgd 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    507   1.1       cgd 		return (NULL);
    508   1.1       cgd 
    509   1.1       cgd 	encp = &cryptresult[0];
    510   1.1       cgd 	switch (*setting) {
    511   1.1       cgd 	case _PASSWORD_EFMT1:
    512   1.1       cgd 		/*
    513   1.1       cgd 		 * Involve the rest of the password 8 characters at a time.
    514   1.1       cgd 		 */
    515   1.1       cgd 		while (*key) {
    516  1.18       wiz 			if (des_cipher((char *)(void *)&keyblock,
    517  1.18       wiz 			    (char *)(void *)&keyblock, 0L, 1))
    518   1.1       cgd 				return (NULL);
    519   1.1       cgd 			for (i = 0; i < 8; i++) {
    520   1.1       cgd 				if ((t = 2*(unsigned char)(*key)) != 0)
    521   1.1       cgd 					key++;
    522   1.1       cgd 				keyblock.b[i] ^= t;
    523   1.1       cgd 			}
    524   1.1       cgd 			if (des_setkey((char *)keyblock.b))
    525   1.1       cgd 				return (NULL);
    526   1.1       cgd 		}
    527   1.1       cgd 
    528   1.1       cgd 		*encp++ = *setting++;
    529   1.1       cgd 
    530   1.1       cgd 		/* get iteration count */
    531   1.1       cgd 		num_iter = 0;
    532   1.1       cgd 		for (i = 4; --i >= 0; ) {
    533   1.1       cgd 			if ((t = (unsigned char)setting[i]) == '\0')
    534   1.1       cgd 				t = '.';
    535   1.1       cgd 			encp[i] = t;
    536   1.1       cgd 			num_iter = (num_iter<<6) | a64toi[t];
    537   1.1       cgd 		}
    538   1.1       cgd 		setting += 4;
    539   1.1       cgd 		encp += 4;
    540   1.1       cgd 		salt_size = 4;
    541   1.1       cgd 		break;
    542   1.1       cgd 	default:
    543   1.1       cgd 		num_iter = 25;
    544   1.1       cgd 		salt_size = 2;
    545   1.1       cgd 	}
    546   1.1       cgd 
    547   1.1       cgd 	salt = 0;
    548   1.1       cgd 	for (i = salt_size; --i >= 0; ) {
    549   1.1       cgd 		if ((t = (unsigned char)setting[i]) == '\0')
    550   1.1       cgd 			t = '.';
    551   1.1       cgd 		encp[i] = t;
    552   1.1       cgd 		salt = (salt<<6) | a64toi[t];
    553   1.1       cgd 	}
    554   1.1       cgd 	encp += salt_size;
    555  1.18       wiz 	if (des_cipher((char *)(void *)&constdatablock,
    556  1.18       wiz 	    (char *)(void *)&rsltblock, salt, num_iter))
    557   1.1       cgd 		return (NULL);
    558   1.1       cgd 
    559   1.1       cgd 	/*
    560   1.1       cgd 	 * Encode the 64 cipher bits as 11 ascii characters.
    561   1.1       cgd 	 */
    562   1.4       cgd 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    563   1.4       cgd 	    rsltblock.b[2];
    564   1.1       cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    565   1.1       cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    566   1.1       cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    567   1.1       cgd 	encp[0] = itoa64[i];		encp += 4;
    568   1.4       cgd 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    569   1.4       cgd 	    rsltblock.b[5];
    570   1.1       cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    571   1.1       cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    572   1.1       cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    573   1.1       cgd 	encp[0] = itoa64[i];		encp += 4;
    574   1.4       cgd 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    575   1.1       cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    576   1.1       cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    577   1.1       cgd 	encp[0] = itoa64[i];
    578   1.1       cgd 
    579   1.1       cgd 	encp[3] = 0;
    580   1.1       cgd 
    581   1.1       cgd 	return (cryptresult);
    582   1.1       cgd }
    583   1.1       cgd 
    584   1.1       cgd 
    585   1.1       cgd /*
    586   1.1       cgd  * The Key Schedule, filled in by des_setkey() or setkey().
    587   1.1       cgd  */
    588   1.1       cgd #define	KS_SIZE	16
    589   1.1       cgd static C_block	KS[KS_SIZE];
    590   1.1       cgd 
    591   1.1       cgd /*
    592   1.1       cgd  * Set up the key schedule from the key.
    593   1.1       cgd  */
    594   1.6     mikel int
    595   1.1       cgd des_setkey(key)
    596   1.7     lukem 	const char *key;
    597   1.1       cgd {
    598   1.7     lukem 	DCL_BLOCK(K, K0, K1);
    599   1.7     lukem 	C_block *ptabp;
    600   1.7     lukem 	int i;
    601   1.1       cgd 	static int des_ready = 0;
    602   1.1       cgd 
    603   1.1       cgd 	if (!des_ready) {
    604   1.1       cgd 		init_des();
    605   1.1       cgd 		des_ready = 1;
    606   1.1       cgd 	}
    607   1.1       cgd 
    608   1.1       cgd 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
    609   1.1       cgd 	key = (char *)&KS[0];
    610   1.1       cgd 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    611   1.1       cgd 	for (i = 1; i < 16; i++) {
    612   1.1       cgd 		key += sizeof(C_block);
    613   1.1       cgd 		STORE(K,K0,K1,*(C_block *)key);
    614   1.1       cgd 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    615   1.1       cgd 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
    616   1.1       cgd 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    617   1.1       cgd 	}
    618   1.1       cgd 	return (0);
    619   1.1       cgd }
    620   1.1       cgd 
    621   1.1       cgd /*
    622   1.1       cgd  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    623  1.14     soren  * iterations of DES, using the given 24-bit salt and the pre-computed key
    624   1.1       cgd  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    625   1.1       cgd  *
    626   1.1       cgd  * NOTE: the performance of this routine is critically dependent on your
    627   1.1       cgd  * compiler and machine architecture.
    628   1.1       cgd  */
    629   1.6     mikel int
    630   1.1       cgd des_cipher(in, out, salt, num_iter)
    631   1.1       cgd 	const char *in;
    632   1.1       cgd 	char *out;
    633   1.1       cgd 	long salt;
    634   1.1       cgd 	int num_iter;
    635   1.1       cgd {
    636   1.1       cgd 	/* variables that we want in registers, most important first */
    637   1.1       cgd #if defined(pdp11)
    638  1.10     perry 	int j;
    639   1.1       cgd #endif
    640  1.10     perry 	int32_t L0, L1, R0, R1, k;
    641  1.10     perry 	C_block *kp;
    642  1.10     perry 	int ks_inc, loop_count;
    643   1.1       cgd 	C_block B;
    644   1.1       cgd 
    645   1.1       cgd 	L0 = salt;
    646   1.1       cgd 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    647   1.1       cgd 
    648  1.13      matt #if defined(__vax__) || defined(pdp11)
    649   1.1       cgd 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    650   1.1       cgd #define	SALT (~salt)
    651   1.1       cgd #else
    652   1.1       cgd #define	SALT salt
    653   1.1       cgd #endif
    654   1.1       cgd 
    655   1.1       cgd #if defined(MUST_ALIGN)
    656   1.1       cgd 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    657   1.1       cgd 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    658   1.1       cgd 	LOAD(L,L0,L1,B);
    659   1.1       cgd #else
    660   1.1       cgd 	LOAD(L,L0,L1,*(C_block *)in);
    661   1.1       cgd #endif
    662   1.1       cgd 	LOADREG(R,R0,R1,L,L0,L1);
    663   1.1       cgd 	L0 &= 0x55555555L;
    664   1.1       cgd 	L1 &= 0x55555555L;
    665   1.1       cgd 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    666   1.1       cgd 	R0 &= 0xaaaaaaaaL;
    667   1.1       cgd 	R1 = (R1 >> 1) & 0x55555555L;
    668   1.1       cgd 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    669   1.1       cgd 	STORE(L,L0,L1,B);
    670   1.1       cgd 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    671   1.1       cgd 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    672   1.1       cgd 
    673   1.1       cgd 	if (num_iter >= 0)
    674   1.1       cgd 	{		/* encryption */
    675   1.1       cgd 		kp = &KS[0];
    676   1.1       cgd 		ks_inc  = sizeof(*kp);
    677   1.1       cgd 	}
    678   1.1       cgd 	else
    679   1.1       cgd 	{		/* decryption */
    680  1.15   thorpej 		num_iter = -num_iter;
    681  1.15   thorpej 		kp = &KS[KS_SIZE-1];
    682  1.15   thorpej 		ks_inc  = -(long)sizeof(*kp);
    683   1.1       cgd 	}
    684   1.1       cgd 
    685   1.1       cgd 	while (--num_iter >= 0) {
    686   1.1       cgd 		loop_count = 8;
    687   1.1       cgd 		do {
    688   1.1       cgd 
    689   1.4       cgd #define	SPTAB(t, i) \
    690   1.5       cgd 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    691   1.1       cgd #if defined(gould)
    692   1.1       cgd 			/* use this if B.b[i] is evaluated just once ... */
    693   1.1       cgd #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    694   1.1       cgd #else
    695   1.1       cgd #if defined(pdp11)
    696   1.1       cgd 			/* use this if your "long" int indexing is slow */
    697   1.1       cgd #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    698   1.1       cgd #else
    699  1.11     mikel 			/* use this if "k" is allocated to a register ... */
    700   1.1       cgd #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    701   1.1       cgd #endif
    702   1.1       cgd #endif
    703   1.1       cgd 
    704   1.1       cgd #define	CRUNCH(p0, p1, q0, q1)	\
    705   1.1       cgd 			k = (q0 ^ q1) & SALT;	\
    706   1.1       cgd 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    707   1.1       cgd 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    708   1.1       cgd 			kp = (C_block *)((char *)kp+ks_inc);	\
    709   1.1       cgd 							\
    710   1.1       cgd 			DOXOR(p0, p1, 0);		\
    711   1.1       cgd 			DOXOR(p0, p1, 1);		\
    712   1.1       cgd 			DOXOR(p0, p1, 2);		\
    713   1.1       cgd 			DOXOR(p0, p1, 3);		\
    714   1.1       cgd 			DOXOR(p0, p1, 4);		\
    715   1.1       cgd 			DOXOR(p0, p1, 5);		\
    716   1.1       cgd 			DOXOR(p0, p1, 6);		\
    717   1.1       cgd 			DOXOR(p0, p1, 7);
    718   1.1       cgd 
    719   1.1       cgd 			CRUNCH(L0, L1, R0, R1);
    720   1.1       cgd 			CRUNCH(R0, R1, L0, L1);
    721   1.1       cgd 		} while (--loop_count != 0);
    722   1.1       cgd 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    723   1.1       cgd 
    724   1.1       cgd 
    725   1.1       cgd 		/* swap L and R */
    726   1.1       cgd 		L0 ^= R0;  L1 ^= R1;
    727   1.1       cgd 		R0 ^= L0;  R1 ^= L1;
    728   1.1       cgd 		L0 ^= R0;  L1 ^= R1;
    729   1.1       cgd 	}
    730   1.1       cgd 
    731   1.1       cgd 	/* store the encrypted (or decrypted) result */
    732   1.1       cgd 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    733   1.1       cgd 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    734   1.1       cgd 	STORE(L,L0,L1,B);
    735   1.1       cgd 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    736   1.1       cgd #if defined(MUST_ALIGN)
    737   1.1       cgd 	STORE(L,L0,L1,B);
    738   1.1       cgd 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    739   1.1       cgd 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    740   1.1       cgd #else
    741   1.1       cgd 	STORE(L,L0,L1,*(C_block *)out);
    742   1.1       cgd #endif
    743   1.1       cgd 	return (0);
    744   1.1       cgd }
    745   1.1       cgd 
    746   1.1       cgd 
    747   1.1       cgd /*
    748   1.1       cgd  * Initialize various tables.  This need only be done once.  It could even be
    749   1.1       cgd  * done at compile time, if the compiler were capable of that sort of thing.
    750   1.1       cgd  */
    751   1.1       cgd STATIC
    752   1.1       cgd init_des()
    753   1.1       cgd {
    754   1.7     lukem 	int i, j;
    755   1.7     lukem 	int32_t k;
    756   1.7     lukem 	int tableno;
    757   1.1       cgd 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    758   1.1       cgd 
    759   1.1       cgd 	/*
    760   1.1       cgd 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    761   1.1       cgd 	 */
    762   1.1       cgd 	for (i = 0; i < 64; i++)
    763   1.1       cgd 		a64toi[itoa64[i]] = i;
    764   1.1       cgd 
    765   1.1       cgd 	/*
    766   1.1       cgd 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    767   1.1       cgd 	 */
    768   1.1       cgd 	for (i = 0; i < 64; i++)
    769   1.1       cgd 		perm[i] = 0;
    770   1.1       cgd 	for (i = 0; i < 64; i++) {
    771   1.1       cgd 		if ((k = PC2[i]) == 0)
    772   1.1       cgd 			continue;
    773   1.1       cgd 		k += Rotates[0]-1;
    774   1.1       cgd 		if ((k%28) < Rotates[0]) k -= 28;
    775   1.1       cgd 		k = PC1[k];
    776   1.1       cgd 		if (k > 0) {
    777   1.1       cgd 			k--;
    778   1.1       cgd 			k = (k|07) - (k&07);
    779   1.1       cgd 			k++;
    780   1.1       cgd 		}
    781   1.1       cgd 		perm[i] = k;
    782   1.1       cgd 	}
    783   1.1       cgd #ifdef DEBUG
    784   1.1       cgd 	prtab("pc1tab", perm, 8);
    785   1.1       cgd #endif
    786   1.1       cgd 	init_perm(PC1ROT, perm, 8, 8);
    787   1.1       cgd 
    788   1.1       cgd 	/*
    789   1.1       cgd 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    790   1.1       cgd 	 */
    791   1.1       cgd 	for (j = 0; j < 2; j++) {
    792   1.1       cgd 		unsigned char pc2inv[64];
    793   1.1       cgd 		for (i = 0; i < 64; i++)
    794   1.1       cgd 			perm[i] = pc2inv[i] = 0;
    795   1.1       cgd 		for (i = 0; i < 64; i++) {
    796   1.1       cgd 			if ((k = PC2[i]) == 0)
    797   1.1       cgd 				continue;
    798   1.1       cgd 			pc2inv[k-1] = i+1;
    799   1.1       cgd 		}
    800   1.1       cgd 		for (i = 0; i < 64; i++) {
    801   1.1       cgd 			if ((k = PC2[i]) == 0)
    802   1.1       cgd 				continue;
    803   1.1       cgd 			k += j;
    804   1.1       cgd 			if ((k%28) <= j) k -= 28;
    805   1.1       cgd 			perm[i] = pc2inv[k];
    806   1.1       cgd 		}
    807   1.1       cgd #ifdef DEBUG
    808   1.1       cgd 		prtab("pc2tab", perm, 8);
    809   1.1       cgd #endif
    810   1.1       cgd 		init_perm(PC2ROT[j], perm, 8, 8);
    811   1.1       cgd 	}
    812   1.1       cgd 
    813   1.1       cgd 	/*
    814   1.1       cgd 	 * Bit reverse, then initial permutation, then expansion.
    815   1.1       cgd 	 */
    816   1.1       cgd 	for (i = 0; i < 8; i++) {
    817   1.1       cgd 		for (j = 0; j < 8; j++) {
    818   1.1       cgd 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    819   1.1       cgd 			if (k > 32)
    820   1.1       cgd 				k -= 32;
    821   1.1       cgd 			else if (k > 0)
    822   1.1       cgd 				k--;
    823   1.1       cgd 			if (k > 0) {
    824   1.1       cgd 				k--;
    825   1.1       cgd 				k = (k|07) - (k&07);
    826   1.1       cgd 				k++;
    827   1.1       cgd 			}
    828   1.1       cgd 			perm[i*8+j] = k;
    829   1.1       cgd 		}
    830   1.1       cgd 	}
    831   1.1       cgd #ifdef DEBUG
    832   1.1       cgd 	prtab("ietab", perm, 8);
    833   1.1       cgd #endif
    834   1.1       cgd 	init_perm(IE3264, perm, 4, 8);
    835   1.1       cgd 
    836   1.1       cgd 	/*
    837   1.1       cgd 	 * Compression, then final permutation, then bit reverse.
    838   1.1       cgd 	 */
    839   1.1       cgd 	for (i = 0; i < 64; i++) {
    840   1.1       cgd 		k = IP[CIFP[i]-1];
    841   1.1       cgd 		if (k > 0) {
    842   1.1       cgd 			k--;
    843   1.1       cgd 			k = (k|07) - (k&07);
    844   1.1       cgd 			k++;
    845   1.1       cgd 		}
    846   1.1       cgd 		perm[k-1] = i+1;
    847   1.1       cgd 	}
    848   1.1       cgd #ifdef DEBUG
    849   1.1       cgd 	prtab("cftab", perm, 8);
    850   1.1       cgd #endif
    851   1.1       cgd 	init_perm(CF6464, perm, 8, 8);
    852   1.1       cgd 
    853   1.1       cgd 	/*
    854   1.1       cgd 	 * SPE table
    855   1.1       cgd 	 */
    856   1.1       cgd 	for (i = 0; i < 48; i++)
    857   1.1       cgd 		perm[i] = P32Tr[ExpandTr[i]-1];
    858   1.1       cgd 	for (tableno = 0; tableno < 8; tableno++) {
    859   1.1       cgd 		for (j = 0; j < 64; j++)  {
    860   1.1       cgd 			k = (((j >> 0) &01) << 5)|
    861   1.1       cgd 			    (((j >> 1) &01) << 3)|
    862   1.1       cgd 			    (((j >> 2) &01) << 2)|
    863   1.1       cgd 			    (((j >> 3) &01) << 1)|
    864   1.1       cgd 			    (((j >> 4) &01) << 0)|
    865   1.1       cgd 			    (((j >> 5) &01) << 4);
    866   1.1       cgd 			k = S[tableno][k];
    867   1.1       cgd 			k = (((k >> 3)&01) << 0)|
    868   1.1       cgd 			    (((k >> 2)&01) << 1)|
    869   1.1       cgd 			    (((k >> 1)&01) << 2)|
    870   1.1       cgd 			    (((k >> 0)&01) << 3);
    871   1.1       cgd 			for (i = 0; i < 32; i++)
    872   1.1       cgd 				tmp32[i] = 0;
    873   1.1       cgd 			for (i = 0; i < 4; i++)
    874   1.1       cgd 				tmp32[4 * tableno + i] = (k >> i) & 01;
    875   1.1       cgd 			k = 0;
    876   1.1       cgd 			for (i = 24; --i >= 0; )
    877   1.1       cgd 				k = (k<<1) | tmp32[perm[i]-1];
    878   1.1       cgd 			TO_SIX_BIT(SPE[0][tableno][j], k);
    879   1.1       cgd 			k = 0;
    880   1.1       cgd 			for (i = 24; --i >= 0; )
    881   1.1       cgd 				k = (k<<1) | tmp32[perm[i+24]-1];
    882   1.1       cgd 			TO_SIX_BIT(SPE[1][tableno][j], k);
    883   1.1       cgd 		}
    884   1.1       cgd 	}
    885   1.1       cgd }
    886   1.1       cgd 
    887   1.1       cgd /*
    888   1.1       cgd  * Initialize "perm" to represent transformation "p", which rearranges
    889   1.1       cgd  * (perhaps with expansion and/or contraction) one packed array of bits
    890   1.1       cgd  * (of size "chars_in" characters) into another array (of size "chars_out"
    891   1.1       cgd  * characters).
    892   1.1       cgd  *
    893   1.1       cgd  * "perm" must be all-zeroes on entry to this routine.
    894   1.1       cgd  */
    895   1.1       cgd STATIC
    896   1.1       cgd init_perm(perm, p, chars_in, chars_out)
    897   1.1       cgd 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
    898   1.1       cgd 	unsigned char p[64];
    899   1.1       cgd 	int chars_in, chars_out;
    900   1.1       cgd {
    901   1.7     lukem 	int i, j, k, l;
    902   1.1       cgd 
    903   1.1       cgd 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    904   1.1       cgd 		l = p[k] - 1;		/* where this bit comes from */
    905   1.1       cgd 		if (l < 0)
    906   1.1       cgd 			continue;	/* output bit is always 0 */
    907   1.1       cgd 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    908   1.1       cgd 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    909   1.1       cgd 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    910   1.1       cgd 			if ((j & l) != 0)
    911   1.1       cgd 				perm[i][j].b[k>>3] |= 1<<(k&07);
    912   1.1       cgd 		}
    913   1.1       cgd 	}
    914   1.1       cgd }
    915   1.1       cgd 
    916   1.1       cgd /*
    917   1.1       cgd  * "setkey" routine (for backwards compatibility)
    918   1.1       cgd  */
    919   1.6     mikel int
    920   1.1       cgd setkey(key)
    921   1.7     lukem 	const char *key;
    922   1.1       cgd {
    923   1.7     lukem 	int i, j, k;
    924   1.1       cgd 	C_block keyblock;
    925   1.1       cgd 
    926   1.1       cgd 	for (i = 0; i < 8; i++) {
    927   1.1       cgd 		k = 0;
    928   1.1       cgd 		for (j = 0; j < 8; j++) {
    929   1.1       cgd 			k <<= 1;
    930   1.1       cgd 			k |= (unsigned char)*key++;
    931   1.1       cgd 		}
    932   1.1       cgd 		keyblock.b[i] = k;
    933   1.1       cgd 	}
    934   1.1       cgd 	return (des_setkey((char *)keyblock.b));
    935   1.1       cgd }
    936   1.1       cgd 
    937   1.1       cgd /*
    938   1.1       cgd  * "encrypt" routine (for backwards compatibility)
    939   1.1       cgd  */
    940   1.6     mikel int
    941   1.1       cgd encrypt(block, flag)
    942   1.7     lukem 	char *block;
    943   1.1       cgd 	int flag;
    944   1.1       cgd {
    945   1.7     lukem 	int i, j, k;
    946   1.1       cgd 	C_block cblock;
    947   1.1       cgd 
    948   1.1       cgd 	for (i = 0; i < 8; i++) {
    949   1.1       cgd 		k = 0;
    950   1.1       cgd 		for (j = 0; j < 8; j++) {
    951   1.1       cgd 			k <<= 1;
    952   1.1       cgd 			k |= (unsigned char)*block++;
    953   1.1       cgd 		}
    954   1.1       cgd 		cblock.b[i] = k;
    955   1.1       cgd 	}
    956   1.1       cgd 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    957   1.1       cgd 		return (1);
    958   1.1       cgd 	for (i = 7; i >= 0; i--) {
    959   1.1       cgd 		k = cblock.b[i];
    960   1.1       cgd 		for (j = 7; j >= 0; j--) {
    961   1.1       cgd 			*--block = k&01;
    962   1.1       cgd 			k >>= 1;
    963   1.1       cgd 		}
    964   1.1       cgd 	}
    965   1.1       cgd 	return (0);
    966   1.1       cgd }
    967   1.1       cgd 
    968   1.1       cgd #ifdef DEBUG
    969   1.1       cgd STATIC
    970   1.1       cgd prtab(s, t, num_rows)
    971   1.1       cgd 	char *s;
    972   1.1       cgd 	unsigned char *t;
    973   1.1       cgd 	int num_rows;
    974   1.1       cgd {
    975   1.7     lukem 	int i, j;
    976   1.1       cgd 
    977   1.1       cgd 	(void)printf("%s:\n", s);
    978   1.1       cgd 	for (i = 0; i < num_rows; i++) {
    979   1.1       cgd 		for (j = 0; j < 8; j++) {
    980   1.1       cgd 			 (void)printf("%3d", t[i*8+j]);
    981   1.1       cgd 		}
    982   1.1       cgd 		(void)printf("\n");
    983   1.1       cgd 	}
    984   1.1       cgd 	(void)printf("\n");
    985   1.1       cgd }
    986   1.1       cgd #endif
    987