crypt.c revision 1.21 1 1.21 agc /* $NetBSD: crypt.c,v 1.21 2003/08/07 16:44:17 agc Exp $ */
2 1.5 cgd
3 1.1 cgd /*
4 1.5 cgd * Copyright (c) 1989, 1993
5 1.5 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Tom Truscott.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.21 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.7 lukem #include <sys/cdefs.h>
36 1.7 lukem #if !defined(lint)
37 1.5 cgd #if 0
38 1.5 cgd static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 1.7 lukem #else
40 1.21 agc __RCSID("$NetBSD: crypt.c,v 1.21 2003/08/07 16:44:17 agc Exp $");
41 1.5 cgd #endif
42 1.7 lukem #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <limits.h>
45 1.1 cgd #include <pwd.h>
46 1.12 kleink #include <stdlib.h>
47 1.6 mikel #include <unistd.h>
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * UNIX password, and DES, encryption.
51 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
52 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
53 1.1 cgd *
54 1.1 cgd * References:
55 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
56 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
57 1.1 cgd *
58 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
59 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
60 1.1 cgd *
61 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
62 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
63 1.1 cgd */
64 1.1 cgd
65 1.1 cgd /* ===== Configuration ==================== */
66 1.1 cgd
67 1.1 cgd /*
68 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
69 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
70 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
71 1.1 cgd */
72 1.13 matt #if !defined(__vax__) && !defined(__i386__)
73 1.1 cgd #define MUST_ALIGN
74 1.1 cgd #endif
75 1.1 cgd
76 1.1 cgd #ifdef CHAR_BITS
77 1.1 cgd #if CHAR_BITS != 8
78 1.1 cgd #error C_block structure assumes 8 bit characters
79 1.1 cgd #endif
80 1.1 cgd #endif
81 1.1 cgd
82 1.1 cgd /*
83 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
84 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
85 1.1 cgd */
86 1.1 cgd #if defined(cray)
87 1.1 cgd #define B64 long
88 1.1 cgd #endif
89 1.1 cgd #if defined(convex)
90 1.1 cgd #define B64 long long
91 1.1 cgd #endif
92 1.1 cgd
93 1.1 cgd /*
94 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
95 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
96 1.1 cgd * little effect on crypt().
97 1.1 cgd */
98 1.1 cgd #if defined(notdef)
99 1.1 cgd #define LARGEDATA
100 1.1 cgd #endif
101 1.1 cgd
102 1.6 mikel /* compile with "-DSTATIC=void" when profiling */
103 1.1 cgd #ifndef STATIC
104 1.6 mikel #define STATIC static void
105 1.1 cgd #endif
106 1.1 cgd
107 1.1 cgd /* ==================================== */
108 1.1 cgd
109 1.1 cgd /*
110 1.1 cgd * Cipher-block representation (Bob Baldwin):
111 1.1 cgd *
112 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
113 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
114 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
115 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
116 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
117 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
118 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
119 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
120 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
121 1.1 cgd * MSB format.
122 1.1 cgd *
123 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
124 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
125 1.1 cgd * the computation, the expansion is applied only once, the expanded
126 1.1 cgd * representation is maintained during the encryption, and a compression
127 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
128 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
129 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
130 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
131 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
132 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
133 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
134 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
135 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
136 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
137 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
138 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
139 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
140 1.1 cgd * 8*64*8 = 4K bytes.
141 1.1 cgd *
142 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
143 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
144 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
145 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
146 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
147 1.1 cgd * the architecture becomes visible.
148 1.1 cgd *
149 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
150 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
151 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
152 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
153 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
154 1.1 cgd * operations that depend on byte order. This largely precludes use of the
155 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
156 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
157 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
158 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
159 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
160 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
161 1.1 cgd *
162 1.1 cgd * Permutation representation (Jim Gillogly):
163 1.1 cgd *
164 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
165 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
166 1.1 cgd * the input distributed appropriately. The transformation is then the OR
167 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
168 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
169 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
170 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
171 1.1 cgd * is slower but tolerable, particularly for password encryption in which
172 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
173 1.1 cgd * bytes, the large tables total 72K bytes.
174 1.1 cgd *
175 1.1 cgd * The transformations used are:
176 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
177 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
178 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
179 1.1 cgd * bits and applying the same transformation. Since there are only
180 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
181 1.1 cgd * the usual table.
182 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
183 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
184 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
185 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
186 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
187 1.1 cgd * identical 32->32 bit transformations could be used instead,
188 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
189 1.1 cgd * byte-ordering and other complications rear their ugly head.
190 1.1 cgd * Similar opportunities/problems arise in the key schedule
191 1.1 cgd * transforms.)
192 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
193 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
194 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
195 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
196 1.1 cgd * It would be possible to define 15 more transformations, each
197 1.1 cgd * with a different rotation, to generate the entire key schedule.
198 1.1 cgd * To save space, however, we instead permute each code into the
199 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
200 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
201 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
202 1.1 cgd * invertible. We get around that problem by using a modified PC2
203 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
204 1.1 cgd * bits of each byte. The low-order bits are cleared when the
205 1.1 cgd * codes are stored into the key schedule.
206 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
207 1.1 cgd * This is faster than applying PC2ROT[0] twice,
208 1.1 cgd *
209 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
210 1.1 cgd *
211 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
212 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
213 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
214 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
215 1.1 cgd * swap bits 13..24 with 36..48.)
216 1.1 cgd *
217 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
218 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
219 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
220 1.1 cgd * 8% performance penalty.
221 1.1 cgd */
222 1.1 cgd
223 1.1 cgd typedef union {
224 1.1 cgd unsigned char b[8];
225 1.1 cgd struct {
226 1.4 cgd int32_t i0;
227 1.4 cgd int32_t i1;
228 1.1 cgd } b32;
229 1.1 cgd #if defined(B64)
230 1.1 cgd B64 b64;
231 1.1 cgd #endif
232 1.1 cgd } C_block;
233 1.1 cgd
234 1.1 cgd /*
235 1.1 cgd * Convert twenty-four-bit long in host-order
236 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
237 1.1 cgd */
238 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
239 1.1 cgd C_block cvt; \
240 1.1 cgd cvt.b[0] = src; src >>= 6; \
241 1.1 cgd cvt.b[1] = src; src >>= 6; \
242 1.1 cgd cvt.b[2] = src; src >>= 6; \
243 1.1 cgd cvt.b[3] = src; \
244 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
245 1.1 cgd }
246 1.1 cgd
247 1.1 cgd /*
248 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
249 1.1 cgd */
250 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
251 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
252 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
253 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
254 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
255 1.4 cgd #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
256 1.1 cgd
257 1.1 cgd #if defined(LARGEDATA)
258 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
259 1.1 cgd #define LGCHUNKBITS 3
260 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
261 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
262 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
263 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
264 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
265 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
266 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
267 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
268 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
269 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
270 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
271 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
272 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
273 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
274 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
275 1.1 cgd #else
276 1.1 cgd /* "small data" */
277 1.1 cgd #define LGCHUNKBITS 2
278 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
279 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
280 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
281 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
282 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
283 1.8 mikel #endif /* LARGEDATA */
284 1.7 lukem
285 1.7 lukem STATIC init_des __P((void));
286 1.9 cgd STATIC init_perm __P((C_block [64/CHUNKBITS][1<<CHUNKBITS], unsigned char [64], int, int));
287 1.8 mikel #ifndef LARGEDATA
288 1.7 lukem STATIC permute __P((unsigned char *, C_block *, C_block *, int));
289 1.8 mikel #endif
290 1.7 lukem #ifdef DEBUG
291 1.7 lukem STATIC prtab __P((char *, unsigned char *, int));
292 1.7 lukem #endif
293 1.7 lukem
294 1.7 lukem
295 1.8 mikel #ifndef LARGEDATA
296 1.1 cgd STATIC
297 1.1 cgd permute(cp, out, p, chars_in)
298 1.1 cgd unsigned char *cp;
299 1.1 cgd C_block *out;
300 1.7 lukem C_block *p;
301 1.1 cgd int chars_in;
302 1.1 cgd {
303 1.7 lukem DCL_BLOCK(D,D0,D1);
304 1.7 lukem C_block *tp;
305 1.7 lukem int t;
306 1.1 cgd
307 1.1 cgd ZERO(D,D0,D1);
308 1.1 cgd do {
309 1.1 cgd t = *cp++;
310 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
311 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
312 1.1 cgd } while (--chars_in > 0);
313 1.1 cgd STORE(D,D0,D1,*out);
314 1.1 cgd }
315 1.1 cgd #endif /* LARGEDATA */
316 1.1 cgd
317 1.1 cgd
318 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
319 1.1 cgd
320 1.20 jdolecek static const unsigned char IP[] = { /* initial permutation */
321 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
322 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
323 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
324 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
325 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
326 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
327 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
328 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
329 1.1 cgd };
330 1.1 cgd
331 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
332 1.1 cgd
333 1.20 jdolecek static const unsigned char ExpandTr[] = { /* expansion operation */
334 1.1 cgd 32, 1, 2, 3, 4, 5,
335 1.1 cgd 4, 5, 6, 7, 8, 9,
336 1.1 cgd 8, 9, 10, 11, 12, 13,
337 1.1 cgd 12, 13, 14, 15, 16, 17,
338 1.1 cgd 16, 17, 18, 19, 20, 21,
339 1.1 cgd 20, 21, 22, 23, 24, 25,
340 1.1 cgd 24, 25, 26, 27, 28, 29,
341 1.1 cgd 28, 29, 30, 31, 32, 1,
342 1.1 cgd };
343 1.1 cgd
344 1.20 jdolecek static const unsigned char PC1[] = { /* permuted choice table 1 */
345 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
346 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
347 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
348 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
349 1.1 cgd
350 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
351 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
352 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
353 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
354 1.1 cgd };
355 1.1 cgd
356 1.20 jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
357 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
358 1.1 cgd };
359 1.1 cgd
360 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
361 1.20 jdolecek static const unsigned char PC2[] = { /* permuted choice table 2 */
362 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
363 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
364 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
365 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
366 1.1 cgd
367 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
368 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
369 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
370 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
371 1.1 cgd };
372 1.1 cgd
373 1.20 jdolecek static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
374 1.1 cgd /* S[1] */
375 1.6 mikel { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
376 1.6 mikel 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
377 1.6 mikel 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
378 1.6 mikel 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
379 1.1 cgd /* S[2] */
380 1.6 mikel { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
381 1.6 mikel 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
382 1.6 mikel 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
383 1.6 mikel 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
384 1.1 cgd /* S[3] */
385 1.6 mikel { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
386 1.6 mikel 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
387 1.6 mikel 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
388 1.6 mikel 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
389 1.1 cgd /* S[4] */
390 1.6 mikel { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
391 1.6 mikel 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
392 1.6 mikel 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
393 1.6 mikel 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
394 1.1 cgd /* S[5] */
395 1.6 mikel { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
396 1.6 mikel 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
397 1.6 mikel 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
398 1.6 mikel 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
399 1.1 cgd /* S[6] */
400 1.6 mikel { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
401 1.6 mikel 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
402 1.6 mikel 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
403 1.6 mikel 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
404 1.1 cgd /* S[7] */
405 1.6 mikel { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
406 1.6 mikel 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
407 1.6 mikel 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
408 1.6 mikel 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
409 1.1 cgd /* S[8] */
410 1.6 mikel { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
411 1.6 mikel 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
412 1.6 mikel 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
413 1.6 mikel 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
414 1.1 cgd };
415 1.1 cgd
416 1.20 jdolecek static const unsigned char P32Tr[] = { /* 32-bit permutation function */
417 1.1 cgd 16, 7, 20, 21,
418 1.1 cgd 29, 12, 28, 17,
419 1.1 cgd 1, 15, 23, 26,
420 1.1 cgd 5, 18, 31, 10,
421 1.1 cgd 2, 8, 24, 14,
422 1.1 cgd 32, 27, 3, 9,
423 1.1 cgd 19, 13, 30, 6,
424 1.1 cgd 22, 11, 4, 25,
425 1.1 cgd };
426 1.1 cgd
427 1.20 jdolecek static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
428 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
429 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
430 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
431 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
432 1.1 cgd
433 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
434 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
435 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
436 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
437 1.1 cgd };
438 1.1 cgd
439 1.20 jdolecek static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
440 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
441 1.1 cgd
442 1.1 cgd
443 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
444 1.1 cgd
445 1.1 cgd
446 1.1 cgd static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
447 1.1 cgd
448 1.1 cgd /* Initial key schedule permutation */
449 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
450 1.1 cgd
451 1.1 cgd /* Subsequent key schedule rotation permutations */
452 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
453 1.1 cgd
454 1.1 cgd /* Initial permutation/expansion table */
455 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
456 1.1 cgd
457 1.1 cgd /* Table that combines the S, P, and E operations. */
458 1.4 cgd static int32_t SPE[2][8][64];
459 1.1 cgd
460 1.1 cgd /* compressed/interleaved => final permutation table */
461 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
462 1.1 cgd
463 1.1 cgd
464 1.1 cgd /* ==================================== */
465 1.1 cgd
466 1.1 cgd
467 1.1 cgd static C_block constdatablock; /* encryption constant */
468 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
469 1.1 cgd
470 1.17 christos extern char *__md5crypt(const char *, const char *); /* XXX */
471 1.19 itojun extern char *__bcrypt(const char *, const char *); /* XXX */
472 1.19 itojun
473 1.17 christos
474 1.1 cgd /*
475 1.1 cgd * Return a pointer to static data consisting of the "setting"
476 1.1 cgd * followed by an encryption produced by the "key" and "setting".
477 1.1 cgd */
478 1.1 cgd char *
479 1.1 cgd crypt(key, setting)
480 1.7 lukem const char *key;
481 1.7 lukem const char *setting;
482 1.1 cgd {
483 1.7 lukem char *encp;
484 1.7 lukem int32_t i;
485 1.7 lukem int t;
486 1.4 cgd int32_t salt;
487 1.1 cgd int num_iter, salt_size;
488 1.1 cgd C_block keyblock, rsltblock;
489 1.16 ad
490 1.16 ad /* Non-DES encryption schemes hook in here. */
491 1.16 ad if (setting[0] == _PASSWORD_NONDES) {
492 1.16 ad switch (setting[1]) {
493 1.16 ad case '2':
494 1.16 ad return (__bcrypt(key, setting));
495 1.16 ad case '1':
496 1.16 ad default:
497 1.16 ad return (__md5crypt(key, setting));
498 1.16 ad }
499 1.16 ad }
500 1.1 cgd
501 1.1 cgd for (i = 0; i < 8; i++) {
502 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
503 1.1 cgd key++;
504 1.1 cgd keyblock.b[i] = t;
505 1.1 cgd }
506 1.1 cgd if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
507 1.1 cgd return (NULL);
508 1.1 cgd
509 1.1 cgd encp = &cryptresult[0];
510 1.1 cgd switch (*setting) {
511 1.1 cgd case _PASSWORD_EFMT1:
512 1.1 cgd /*
513 1.1 cgd * Involve the rest of the password 8 characters at a time.
514 1.1 cgd */
515 1.1 cgd while (*key) {
516 1.18 wiz if (des_cipher((char *)(void *)&keyblock,
517 1.18 wiz (char *)(void *)&keyblock, 0L, 1))
518 1.1 cgd return (NULL);
519 1.1 cgd for (i = 0; i < 8; i++) {
520 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
521 1.1 cgd key++;
522 1.1 cgd keyblock.b[i] ^= t;
523 1.1 cgd }
524 1.1 cgd if (des_setkey((char *)keyblock.b))
525 1.1 cgd return (NULL);
526 1.1 cgd }
527 1.1 cgd
528 1.1 cgd *encp++ = *setting++;
529 1.1 cgd
530 1.1 cgd /* get iteration count */
531 1.1 cgd num_iter = 0;
532 1.1 cgd for (i = 4; --i >= 0; ) {
533 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
534 1.1 cgd t = '.';
535 1.1 cgd encp[i] = t;
536 1.1 cgd num_iter = (num_iter<<6) | a64toi[t];
537 1.1 cgd }
538 1.1 cgd setting += 4;
539 1.1 cgd encp += 4;
540 1.1 cgd salt_size = 4;
541 1.1 cgd break;
542 1.1 cgd default:
543 1.1 cgd num_iter = 25;
544 1.1 cgd salt_size = 2;
545 1.1 cgd }
546 1.1 cgd
547 1.1 cgd salt = 0;
548 1.1 cgd for (i = salt_size; --i >= 0; ) {
549 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
550 1.1 cgd t = '.';
551 1.1 cgd encp[i] = t;
552 1.1 cgd salt = (salt<<6) | a64toi[t];
553 1.1 cgd }
554 1.1 cgd encp += salt_size;
555 1.18 wiz if (des_cipher((char *)(void *)&constdatablock,
556 1.18 wiz (char *)(void *)&rsltblock, salt, num_iter))
557 1.1 cgd return (NULL);
558 1.1 cgd
559 1.1 cgd /*
560 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
561 1.1 cgd */
562 1.4 cgd i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
563 1.4 cgd rsltblock.b[2];
564 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
565 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
566 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
567 1.1 cgd encp[0] = itoa64[i]; encp += 4;
568 1.4 cgd i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
569 1.4 cgd rsltblock.b[5];
570 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
571 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
572 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
573 1.1 cgd encp[0] = itoa64[i]; encp += 4;
574 1.4 cgd i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
575 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
576 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
577 1.1 cgd encp[0] = itoa64[i];
578 1.1 cgd
579 1.1 cgd encp[3] = 0;
580 1.1 cgd
581 1.1 cgd return (cryptresult);
582 1.1 cgd }
583 1.1 cgd
584 1.1 cgd
585 1.1 cgd /*
586 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
587 1.1 cgd */
588 1.1 cgd #define KS_SIZE 16
589 1.1 cgd static C_block KS[KS_SIZE];
590 1.1 cgd
591 1.1 cgd /*
592 1.1 cgd * Set up the key schedule from the key.
593 1.1 cgd */
594 1.6 mikel int
595 1.1 cgd des_setkey(key)
596 1.7 lukem const char *key;
597 1.1 cgd {
598 1.7 lukem DCL_BLOCK(K, K0, K1);
599 1.7 lukem C_block *ptabp;
600 1.7 lukem int i;
601 1.1 cgd static int des_ready = 0;
602 1.1 cgd
603 1.1 cgd if (!des_ready) {
604 1.1 cgd init_des();
605 1.1 cgd des_ready = 1;
606 1.1 cgd }
607 1.1 cgd
608 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
609 1.1 cgd key = (char *)&KS[0];
610 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
611 1.1 cgd for (i = 1; i < 16; i++) {
612 1.1 cgd key += sizeof(C_block);
613 1.1 cgd STORE(K,K0,K1,*(C_block *)key);
614 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
615 1.1 cgd PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
616 1.1 cgd STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
617 1.1 cgd }
618 1.1 cgd return (0);
619 1.1 cgd }
620 1.1 cgd
621 1.1 cgd /*
622 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
623 1.14 soren * iterations of DES, using the given 24-bit salt and the pre-computed key
624 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
625 1.1 cgd *
626 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
627 1.1 cgd * compiler and machine architecture.
628 1.1 cgd */
629 1.6 mikel int
630 1.1 cgd des_cipher(in, out, salt, num_iter)
631 1.1 cgd const char *in;
632 1.1 cgd char *out;
633 1.1 cgd long salt;
634 1.1 cgd int num_iter;
635 1.1 cgd {
636 1.1 cgd /* variables that we want in registers, most important first */
637 1.1 cgd #if defined(pdp11)
638 1.10 perry int j;
639 1.1 cgd #endif
640 1.10 perry int32_t L0, L1, R0, R1, k;
641 1.10 perry C_block *kp;
642 1.10 perry int ks_inc, loop_count;
643 1.1 cgd C_block B;
644 1.1 cgd
645 1.1 cgd L0 = salt;
646 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
647 1.1 cgd
648 1.13 matt #if defined(__vax__) || defined(pdp11)
649 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
650 1.1 cgd #define SALT (~salt)
651 1.1 cgd #else
652 1.1 cgd #define SALT salt
653 1.1 cgd #endif
654 1.1 cgd
655 1.1 cgd #if defined(MUST_ALIGN)
656 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
657 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
658 1.1 cgd LOAD(L,L0,L1,B);
659 1.1 cgd #else
660 1.1 cgd LOAD(L,L0,L1,*(C_block *)in);
661 1.1 cgd #endif
662 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
663 1.1 cgd L0 &= 0x55555555L;
664 1.1 cgd L1 &= 0x55555555L;
665 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
666 1.1 cgd R0 &= 0xaaaaaaaaL;
667 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
668 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
669 1.1 cgd STORE(L,L0,L1,B);
670 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
671 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
672 1.1 cgd
673 1.1 cgd if (num_iter >= 0)
674 1.1 cgd { /* encryption */
675 1.1 cgd kp = &KS[0];
676 1.1 cgd ks_inc = sizeof(*kp);
677 1.1 cgd }
678 1.1 cgd else
679 1.1 cgd { /* decryption */
680 1.15 thorpej num_iter = -num_iter;
681 1.15 thorpej kp = &KS[KS_SIZE-1];
682 1.15 thorpej ks_inc = -(long)sizeof(*kp);
683 1.1 cgd }
684 1.1 cgd
685 1.1 cgd while (--num_iter >= 0) {
686 1.1 cgd loop_count = 8;
687 1.1 cgd do {
688 1.1 cgd
689 1.4 cgd #define SPTAB(t, i) \
690 1.5 cgd (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
691 1.1 cgd #if defined(gould)
692 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
693 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
694 1.1 cgd #else
695 1.1 cgd #if defined(pdp11)
696 1.1 cgd /* use this if your "long" int indexing is slow */
697 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
698 1.1 cgd #else
699 1.11 mikel /* use this if "k" is allocated to a register ... */
700 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
701 1.1 cgd #endif
702 1.1 cgd #endif
703 1.1 cgd
704 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
705 1.1 cgd k = (q0 ^ q1) & SALT; \
706 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
707 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
708 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
709 1.1 cgd \
710 1.1 cgd DOXOR(p0, p1, 0); \
711 1.1 cgd DOXOR(p0, p1, 1); \
712 1.1 cgd DOXOR(p0, p1, 2); \
713 1.1 cgd DOXOR(p0, p1, 3); \
714 1.1 cgd DOXOR(p0, p1, 4); \
715 1.1 cgd DOXOR(p0, p1, 5); \
716 1.1 cgd DOXOR(p0, p1, 6); \
717 1.1 cgd DOXOR(p0, p1, 7);
718 1.1 cgd
719 1.1 cgd CRUNCH(L0, L1, R0, R1);
720 1.1 cgd CRUNCH(R0, R1, L0, L1);
721 1.1 cgd } while (--loop_count != 0);
722 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
723 1.1 cgd
724 1.1 cgd
725 1.1 cgd /* swap L and R */
726 1.1 cgd L0 ^= R0; L1 ^= R1;
727 1.1 cgd R0 ^= L0; R1 ^= L1;
728 1.1 cgd L0 ^= R0; L1 ^= R1;
729 1.1 cgd }
730 1.1 cgd
731 1.1 cgd /* store the encrypted (or decrypted) result */
732 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
733 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
734 1.1 cgd STORE(L,L0,L1,B);
735 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
736 1.1 cgd #if defined(MUST_ALIGN)
737 1.1 cgd STORE(L,L0,L1,B);
738 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
739 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
740 1.1 cgd #else
741 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
742 1.1 cgd #endif
743 1.1 cgd return (0);
744 1.1 cgd }
745 1.1 cgd
746 1.1 cgd
747 1.1 cgd /*
748 1.1 cgd * Initialize various tables. This need only be done once. It could even be
749 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
750 1.1 cgd */
751 1.1 cgd STATIC
752 1.1 cgd init_des()
753 1.1 cgd {
754 1.7 lukem int i, j;
755 1.7 lukem int32_t k;
756 1.7 lukem int tableno;
757 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
758 1.1 cgd
759 1.1 cgd /*
760 1.1 cgd * table that converts chars "./0-9A-Za-z"to integers 0-63.
761 1.1 cgd */
762 1.1 cgd for (i = 0; i < 64; i++)
763 1.1 cgd a64toi[itoa64[i]] = i;
764 1.1 cgd
765 1.1 cgd /*
766 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
767 1.1 cgd */
768 1.1 cgd for (i = 0; i < 64; i++)
769 1.1 cgd perm[i] = 0;
770 1.1 cgd for (i = 0; i < 64; i++) {
771 1.1 cgd if ((k = PC2[i]) == 0)
772 1.1 cgd continue;
773 1.1 cgd k += Rotates[0]-1;
774 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
775 1.1 cgd k = PC1[k];
776 1.1 cgd if (k > 0) {
777 1.1 cgd k--;
778 1.1 cgd k = (k|07) - (k&07);
779 1.1 cgd k++;
780 1.1 cgd }
781 1.1 cgd perm[i] = k;
782 1.1 cgd }
783 1.1 cgd #ifdef DEBUG
784 1.1 cgd prtab("pc1tab", perm, 8);
785 1.1 cgd #endif
786 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
787 1.1 cgd
788 1.1 cgd /*
789 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
790 1.1 cgd */
791 1.1 cgd for (j = 0; j < 2; j++) {
792 1.1 cgd unsigned char pc2inv[64];
793 1.1 cgd for (i = 0; i < 64; i++)
794 1.1 cgd perm[i] = pc2inv[i] = 0;
795 1.1 cgd for (i = 0; i < 64; i++) {
796 1.1 cgd if ((k = PC2[i]) == 0)
797 1.1 cgd continue;
798 1.1 cgd pc2inv[k-1] = i+1;
799 1.1 cgd }
800 1.1 cgd for (i = 0; i < 64; i++) {
801 1.1 cgd if ((k = PC2[i]) == 0)
802 1.1 cgd continue;
803 1.1 cgd k += j;
804 1.1 cgd if ((k%28) <= j) k -= 28;
805 1.1 cgd perm[i] = pc2inv[k];
806 1.1 cgd }
807 1.1 cgd #ifdef DEBUG
808 1.1 cgd prtab("pc2tab", perm, 8);
809 1.1 cgd #endif
810 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
811 1.1 cgd }
812 1.1 cgd
813 1.1 cgd /*
814 1.1 cgd * Bit reverse, then initial permutation, then expansion.
815 1.1 cgd */
816 1.1 cgd for (i = 0; i < 8; i++) {
817 1.1 cgd for (j = 0; j < 8; j++) {
818 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
819 1.1 cgd if (k > 32)
820 1.1 cgd k -= 32;
821 1.1 cgd else if (k > 0)
822 1.1 cgd k--;
823 1.1 cgd if (k > 0) {
824 1.1 cgd k--;
825 1.1 cgd k = (k|07) - (k&07);
826 1.1 cgd k++;
827 1.1 cgd }
828 1.1 cgd perm[i*8+j] = k;
829 1.1 cgd }
830 1.1 cgd }
831 1.1 cgd #ifdef DEBUG
832 1.1 cgd prtab("ietab", perm, 8);
833 1.1 cgd #endif
834 1.1 cgd init_perm(IE3264, perm, 4, 8);
835 1.1 cgd
836 1.1 cgd /*
837 1.1 cgd * Compression, then final permutation, then bit reverse.
838 1.1 cgd */
839 1.1 cgd for (i = 0; i < 64; i++) {
840 1.1 cgd k = IP[CIFP[i]-1];
841 1.1 cgd if (k > 0) {
842 1.1 cgd k--;
843 1.1 cgd k = (k|07) - (k&07);
844 1.1 cgd k++;
845 1.1 cgd }
846 1.1 cgd perm[k-1] = i+1;
847 1.1 cgd }
848 1.1 cgd #ifdef DEBUG
849 1.1 cgd prtab("cftab", perm, 8);
850 1.1 cgd #endif
851 1.1 cgd init_perm(CF6464, perm, 8, 8);
852 1.1 cgd
853 1.1 cgd /*
854 1.1 cgd * SPE table
855 1.1 cgd */
856 1.1 cgd for (i = 0; i < 48; i++)
857 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
858 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
859 1.1 cgd for (j = 0; j < 64; j++) {
860 1.1 cgd k = (((j >> 0) &01) << 5)|
861 1.1 cgd (((j >> 1) &01) << 3)|
862 1.1 cgd (((j >> 2) &01) << 2)|
863 1.1 cgd (((j >> 3) &01) << 1)|
864 1.1 cgd (((j >> 4) &01) << 0)|
865 1.1 cgd (((j >> 5) &01) << 4);
866 1.1 cgd k = S[tableno][k];
867 1.1 cgd k = (((k >> 3)&01) << 0)|
868 1.1 cgd (((k >> 2)&01) << 1)|
869 1.1 cgd (((k >> 1)&01) << 2)|
870 1.1 cgd (((k >> 0)&01) << 3);
871 1.1 cgd for (i = 0; i < 32; i++)
872 1.1 cgd tmp32[i] = 0;
873 1.1 cgd for (i = 0; i < 4; i++)
874 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
875 1.1 cgd k = 0;
876 1.1 cgd for (i = 24; --i >= 0; )
877 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
878 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
879 1.1 cgd k = 0;
880 1.1 cgd for (i = 24; --i >= 0; )
881 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
882 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
883 1.1 cgd }
884 1.1 cgd }
885 1.1 cgd }
886 1.1 cgd
887 1.1 cgd /*
888 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
889 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
890 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
891 1.1 cgd * characters).
892 1.1 cgd *
893 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
894 1.1 cgd */
895 1.1 cgd STATIC
896 1.1 cgd init_perm(perm, p, chars_in, chars_out)
897 1.1 cgd C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
898 1.1 cgd unsigned char p[64];
899 1.1 cgd int chars_in, chars_out;
900 1.1 cgd {
901 1.7 lukem int i, j, k, l;
902 1.1 cgd
903 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
904 1.1 cgd l = p[k] - 1; /* where this bit comes from */
905 1.1 cgd if (l < 0)
906 1.1 cgd continue; /* output bit is always 0 */
907 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
908 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
909 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
910 1.1 cgd if ((j & l) != 0)
911 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
912 1.1 cgd }
913 1.1 cgd }
914 1.1 cgd }
915 1.1 cgd
916 1.1 cgd /*
917 1.1 cgd * "setkey" routine (for backwards compatibility)
918 1.1 cgd */
919 1.6 mikel int
920 1.1 cgd setkey(key)
921 1.7 lukem const char *key;
922 1.1 cgd {
923 1.7 lukem int i, j, k;
924 1.1 cgd C_block keyblock;
925 1.1 cgd
926 1.1 cgd for (i = 0; i < 8; i++) {
927 1.1 cgd k = 0;
928 1.1 cgd for (j = 0; j < 8; j++) {
929 1.1 cgd k <<= 1;
930 1.1 cgd k |= (unsigned char)*key++;
931 1.1 cgd }
932 1.1 cgd keyblock.b[i] = k;
933 1.1 cgd }
934 1.1 cgd return (des_setkey((char *)keyblock.b));
935 1.1 cgd }
936 1.1 cgd
937 1.1 cgd /*
938 1.1 cgd * "encrypt" routine (for backwards compatibility)
939 1.1 cgd */
940 1.6 mikel int
941 1.1 cgd encrypt(block, flag)
942 1.7 lukem char *block;
943 1.1 cgd int flag;
944 1.1 cgd {
945 1.7 lukem int i, j, k;
946 1.1 cgd C_block cblock;
947 1.1 cgd
948 1.1 cgd for (i = 0; i < 8; i++) {
949 1.1 cgd k = 0;
950 1.1 cgd for (j = 0; j < 8; j++) {
951 1.1 cgd k <<= 1;
952 1.1 cgd k |= (unsigned char)*block++;
953 1.1 cgd }
954 1.1 cgd cblock.b[i] = k;
955 1.1 cgd }
956 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
957 1.1 cgd return (1);
958 1.1 cgd for (i = 7; i >= 0; i--) {
959 1.1 cgd k = cblock.b[i];
960 1.1 cgd for (j = 7; j >= 0; j--) {
961 1.1 cgd *--block = k&01;
962 1.1 cgd k >>= 1;
963 1.1 cgd }
964 1.1 cgd }
965 1.1 cgd return (0);
966 1.1 cgd }
967 1.1 cgd
968 1.1 cgd #ifdef DEBUG
969 1.1 cgd STATIC
970 1.1 cgd prtab(s, t, num_rows)
971 1.1 cgd char *s;
972 1.1 cgd unsigned char *t;
973 1.1 cgd int num_rows;
974 1.1 cgd {
975 1.7 lukem int i, j;
976 1.1 cgd
977 1.1 cgd (void)printf("%s:\n", s);
978 1.1 cgd for (i = 0; i < num_rows; i++) {
979 1.1 cgd for (j = 0; j < 8; j++) {
980 1.1 cgd (void)printf("%3d", t[i*8+j]);
981 1.1 cgd }
982 1.1 cgd (void)printf("\n");
983 1.1 cgd }
984 1.1 cgd (void)printf("\n");
985 1.1 cgd }
986 1.1 cgd #endif
987