crypt.c revision 1.27 1 1.27 perry /* $NetBSD: crypt.c,v 1.27 2009/05/01 00:20:08 perry Exp $ */
2 1.5 cgd
3 1.1 cgd /*
4 1.5 cgd * Copyright (c) 1989, 1993
5 1.5 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Tom Truscott.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.21 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.7 lukem #include <sys/cdefs.h>
36 1.7 lukem #if !defined(lint)
37 1.5 cgd #if 0
38 1.5 cgd static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 1.7 lukem #else
40 1.27 perry __RCSID("$NetBSD: crypt.c,v 1.27 2009/05/01 00:20:08 perry Exp $");
41 1.5 cgd #endif
42 1.7 lukem #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <limits.h>
45 1.1 cgd #include <pwd.h>
46 1.12 kleink #include <stdlib.h>
47 1.6 mikel #include <unistd.h>
48 1.26 hubertf #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49 1.23 christos #include <stdio.h>
50 1.23 christos #endif
51 1.1 cgd
52 1.22 sjg #include "crypt.h"
53 1.22 sjg
54 1.1 cgd /*
55 1.1 cgd * UNIX password, and DES, encryption.
56 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
57 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
58 1.1 cgd *
59 1.1 cgd * References:
60 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62 1.1 cgd *
63 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
64 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65 1.1 cgd *
66 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68 1.1 cgd */
69 1.1 cgd
70 1.1 cgd /* ===== Configuration ==================== */
71 1.1 cgd
72 1.1 cgd /*
73 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
74 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
75 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
76 1.1 cgd */
77 1.13 matt #if !defined(__vax__) && !defined(__i386__)
78 1.1 cgd #define MUST_ALIGN
79 1.1 cgd #endif
80 1.1 cgd
81 1.1 cgd #ifdef CHAR_BITS
82 1.1 cgd #if CHAR_BITS != 8
83 1.1 cgd #error C_block structure assumes 8 bit characters
84 1.1 cgd #endif
85 1.1 cgd #endif
86 1.1 cgd
87 1.1 cgd /*
88 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
89 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
90 1.1 cgd */
91 1.1 cgd #if defined(cray)
92 1.1 cgd #define B64 long
93 1.1 cgd #endif
94 1.1 cgd #if defined(convex)
95 1.1 cgd #define B64 long long
96 1.1 cgd #endif
97 1.1 cgd
98 1.1 cgd /*
99 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 1.1 cgd * little effect on crypt().
102 1.1 cgd */
103 1.1 cgd #if defined(notdef)
104 1.1 cgd #define LARGEDATA
105 1.1 cgd #endif
106 1.1 cgd
107 1.6 mikel /* compile with "-DSTATIC=void" when profiling */
108 1.1 cgd #ifndef STATIC
109 1.6 mikel #define STATIC static void
110 1.1 cgd #endif
111 1.1 cgd
112 1.1 cgd /* ==================================== */
113 1.1 cgd
114 1.1 cgd /*
115 1.1 cgd * Cipher-block representation (Bob Baldwin):
116 1.1 cgd *
117 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
118 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
119 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
122 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
125 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
126 1.1 cgd * MSB format.
127 1.1 cgd *
128 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
130 1.1 cgd * the computation, the expansion is applied only once, the expanded
131 1.1 cgd * representation is maintained during the encryption, and a compression
132 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
133 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
135 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
136 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
139 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
140 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
141 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
143 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
144 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
145 1.1 cgd * 8*64*8 = 4K bytes.
146 1.1 cgd *
147 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
148 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
150 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
151 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
152 1.1 cgd * the architecture becomes visible.
153 1.1 cgd *
154 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
155 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
156 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
157 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
158 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
159 1.1 cgd * operations that depend on byte order. This largely precludes use of the
160 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
161 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
162 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
164 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
166 1.1 cgd *
167 1.1 cgd * Permutation representation (Jim Gillogly):
168 1.1 cgd *
169 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
170 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
171 1.1 cgd * the input distributed appropriately. The transformation is then the OR
172 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
173 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
174 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
176 1.1 cgd * is slower but tolerable, particularly for password encryption in which
177 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
178 1.1 cgd * bytes, the large tables total 72K bytes.
179 1.1 cgd *
180 1.1 cgd * The transformations used are:
181 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
183 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 1.1 cgd * bits and applying the same transformation. Since there are only
185 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
186 1.1 cgd * the usual table.
187 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
189 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
190 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
191 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
192 1.1 cgd * identical 32->32 bit transformations could be used instead,
193 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
194 1.1 cgd * byte-ordering and other complications rear their ugly head.
195 1.1 cgd * Similar opportunities/problems arise in the key schedule
196 1.1 cgd * transforms.)
197 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
199 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
200 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 1.1 cgd * It would be possible to define 15 more transformations, each
202 1.1 cgd * with a different rotation, to generate the entire key schedule.
203 1.1 cgd * To save space, however, we instead permute each code into the
204 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
205 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
206 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 1.1 cgd * invertible. We get around that problem by using a modified PC2
208 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
209 1.1 cgd * bits of each byte. The low-order bits are cleared when the
210 1.1 cgd * codes are stored into the key schedule.
211 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 1.1 cgd * This is faster than applying PC2ROT[0] twice,
213 1.1 cgd *
214 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
215 1.1 cgd *
216 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
217 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
219 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
220 1.1 cgd * swap bits 13..24 with 36..48.)
221 1.1 cgd *
222 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
223 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
224 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
225 1.1 cgd * 8% performance penalty.
226 1.1 cgd */
227 1.1 cgd
228 1.1 cgd typedef union {
229 1.1 cgd unsigned char b[8];
230 1.1 cgd struct {
231 1.4 cgd int32_t i0;
232 1.4 cgd int32_t i1;
233 1.1 cgd } b32;
234 1.1 cgd #if defined(B64)
235 1.1 cgd B64 b64;
236 1.1 cgd #endif
237 1.1 cgd } C_block;
238 1.1 cgd
239 1.1 cgd /*
240 1.1 cgd * Convert twenty-four-bit long in host-order
241 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
242 1.1 cgd */
243 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
244 1.1 cgd C_block cvt; \
245 1.1 cgd cvt.b[0] = src; src >>= 6; \
246 1.1 cgd cvt.b[1] = src; src >>= 6; \
247 1.1 cgd cvt.b[2] = src; src >>= 6; \
248 1.1 cgd cvt.b[3] = src; \
249 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
250 1.1 cgd }
251 1.1 cgd
252 1.1 cgd /*
253 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
254 1.1 cgd */
255 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
256 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
258 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
260 1.4 cgd #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
261 1.1 cgd
262 1.1 cgd #if defined(LARGEDATA)
263 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
264 1.1 cgd #define LGCHUNKBITS 3
265 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
266 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
267 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
268 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
269 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
270 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
271 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
272 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
273 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
274 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
276 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 1.1 cgd #else
281 1.1 cgd /* "small data" */
282 1.1 cgd #define LGCHUNKBITS 2
283 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
284 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
285 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
287 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 1.8 mikel #endif /* LARGEDATA */
289 1.7 lukem
290 1.27 perry STATIC init_des(void);
291 1.27 perry STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292 1.27 perry const unsigned char [64], int, int);
293 1.8 mikel #ifndef LARGEDATA
294 1.27 perry STATIC permute(const unsigned char *, C_block *, C_block *, int);
295 1.8 mikel #endif
296 1.7 lukem #ifdef DEBUG
297 1.27 perry STATIC prtab(const char *, unsigned char *, int);
298 1.7 lukem #endif
299 1.7 lukem
300 1.7 lukem
301 1.8 mikel #ifndef LARGEDATA
302 1.1 cgd STATIC
303 1.1 cgd permute(cp, out, p, chars_in)
304 1.24 drochner const unsigned char *cp;
305 1.1 cgd C_block *out;
306 1.7 lukem C_block *p;
307 1.1 cgd int chars_in;
308 1.1 cgd {
309 1.7 lukem DCL_BLOCK(D,D0,D1);
310 1.7 lukem C_block *tp;
311 1.7 lukem int t;
312 1.1 cgd
313 1.1 cgd ZERO(D,D0,D1);
314 1.1 cgd do {
315 1.1 cgd t = *cp++;
316 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
317 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
318 1.1 cgd } while (--chars_in > 0);
319 1.1 cgd STORE(D,D0,D1,*out);
320 1.1 cgd }
321 1.1 cgd #endif /* LARGEDATA */
322 1.1 cgd
323 1.1 cgd
324 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
325 1.1 cgd
326 1.20 jdolecek static const unsigned char IP[] = { /* initial permutation */
327 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
328 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
329 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
330 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
331 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
332 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
333 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
334 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
335 1.1 cgd };
336 1.1 cgd
337 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
338 1.1 cgd
339 1.20 jdolecek static const unsigned char ExpandTr[] = { /* expansion operation */
340 1.1 cgd 32, 1, 2, 3, 4, 5,
341 1.1 cgd 4, 5, 6, 7, 8, 9,
342 1.1 cgd 8, 9, 10, 11, 12, 13,
343 1.1 cgd 12, 13, 14, 15, 16, 17,
344 1.1 cgd 16, 17, 18, 19, 20, 21,
345 1.1 cgd 20, 21, 22, 23, 24, 25,
346 1.1 cgd 24, 25, 26, 27, 28, 29,
347 1.1 cgd 28, 29, 30, 31, 32, 1,
348 1.1 cgd };
349 1.1 cgd
350 1.20 jdolecek static const unsigned char PC1[] = { /* permuted choice table 1 */
351 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
352 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
353 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
354 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
355 1.1 cgd
356 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
357 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
358 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
359 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
360 1.1 cgd };
361 1.1 cgd
362 1.20 jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
363 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
364 1.1 cgd };
365 1.1 cgd
366 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
367 1.20 jdolecek static const unsigned char PC2[] = { /* permuted choice table 2 */
368 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
369 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
370 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
371 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
372 1.1 cgd
373 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
374 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
375 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
376 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
377 1.1 cgd };
378 1.1 cgd
379 1.20 jdolecek static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
380 1.1 cgd /* S[1] */
381 1.6 mikel { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
382 1.6 mikel 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
383 1.6 mikel 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
384 1.6 mikel 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
385 1.1 cgd /* S[2] */
386 1.6 mikel { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
387 1.6 mikel 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
388 1.6 mikel 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
389 1.6 mikel 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
390 1.1 cgd /* S[3] */
391 1.6 mikel { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
392 1.6 mikel 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
393 1.6 mikel 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
394 1.6 mikel 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
395 1.1 cgd /* S[4] */
396 1.6 mikel { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
397 1.6 mikel 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
398 1.6 mikel 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
399 1.6 mikel 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
400 1.1 cgd /* S[5] */
401 1.6 mikel { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
402 1.6 mikel 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
403 1.6 mikel 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
404 1.6 mikel 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
405 1.1 cgd /* S[6] */
406 1.6 mikel { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
407 1.6 mikel 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
408 1.6 mikel 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
409 1.6 mikel 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
410 1.1 cgd /* S[7] */
411 1.6 mikel { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
412 1.6 mikel 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
413 1.6 mikel 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
414 1.6 mikel 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
415 1.1 cgd /* S[8] */
416 1.6 mikel { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
417 1.6 mikel 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
418 1.6 mikel 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
419 1.6 mikel 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
420 1.1 cgd };
421 1.1 cgd
422 1.20 jdolecek static const unsigned char P32Tr[] = { /* 32-bit permutation function */
423 1.1 cgd 16, 7, 20, 21,
424 1.1 cgd 29, 12, 28, 17,
425 1.1 cgd 1, 15, 23, 26,
426 1.1 cgd 5, 18, 31, 10,
427 1.1 cgd 2, 8, 24, 14,
428 1.1 cgd 32, 27, 3, 9,
429 1.1 cgd 19, 13, 30, 6,
430 1.1 cgd 22, 11, 4, 25,
431 1.1 cgd };
432 1.1 cgd
433 1.20 jdolecek static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
434 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
435 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
436 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
437 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
438 1.1 cgd
439 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
440 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
441 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
442 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
443 1.1 cgd };
444 1.1 cgd
445 1.20 jdolecek static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
446 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
447 1.1 cgd
448 1.1 cgd
449 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
450 1.1 cgd
451 1.1 cgd
452 1.1 cgd static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
453 1.1 cgd
454 1.1 cgd /* Initial key schedule permutation */
455 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
456 1.1 cgd
457 1.1 cgd /* Subsequent key schedule rotation permutations */
458 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
459 1.1 cgd
460 1.1 cgd /* Initial permutation/expansion table */
461 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
462 1.1 cgd
463 1.1 cgd /* Table that combines the S, P, and E operations. */
464 1.4 cgd static int32_t SPE[2][8][64];
465 1.1 cgd
466 1.1 cgd /* compressed/interleaved => final permutation table */
467 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
468 1.1 cgd
469 1.1 cgd
470 1.1 cgd /* ==================================== */
471 1.1 cgd
472 1.1 cgd
473 1.1 cgd static C_block constdatablock; /* encryption constant */
474 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
475 1.1 cgd
476 1.17 christos
477 1.1 cgd /*
478 1.1 cgd * Return a pointer to static data consisting of the "setting"
479 1.1 cgd * followed by an encryption produced by the "key" and "setting".
480 1.1 cgd */
481 1.1 cgd char *
482 1.1 cgd crypt(key, setting)
483 1.7 lukem const char *key;
484 1.7 lukem const char *setting;
485 1.1 cgd {
486 1.7 lukem char *encp;
487 1.7 lukem int32_t i;
488 1.7 lukem int t;
489 1.4 cgd int32_t salt;
490 1.1 cgd int num_iter, salt_size;
491 1.1 cgd C_block keyblock, rsltblock;
492 1.16 ad
493 1.16 ad /* Non-DES encryption schemes hook in here. */
494 1.16 ad if (setting[0] == _PASSWORD_NONDES) {
495 1.16 ad switch (setting[1]) {
496 1.16 ad case '2':
497 1.16 ad return (__bcrypt(key, setting));
498 1.22 sjg case 's':
499 1.22 sjg return (__crypt_sha1(key, setting));
500 1.16 ad case '1':
501 1.16 ad default:
502 1.16 ad return (__md5crypt(key, setting));
503 1.16 ad }
504 1.16 ad }
505 1.1 cgd
506 1.1 cgd for (i = 0; i < 8; i++) {
507 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
508 1.1 cgd key++;
509 1.1 cgd keyblock.b[i] = t;
510 1.1 cgd }
511 1.1 cgd if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
512 1.1 cgd return (NULL);
513 1.1 cgd
514 1.1 cgd encp = &cryptresult[0];
515 1.1 cgd switch (*setting) {
516 1.1 cgd case _PASSWORD_EFMT1:
517 1.1 cgd /*
518 1.1 cgd * Involve the rest of the password 8 characters at a time.
519 1.1 cgd */
520 1.1 cgd while (*key) {
521 1.18 wiz if (des_cipher((char *)(void *)&keyblock,
522 1.18 wiz (char *)(void *)&keyblock, 0L, 1))
523 1.1 cgd return (NULL);
524 1.1 cgd for (i = 0; i < 8; i++) {
525 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
526 1.1 cgd key++;
527 1.1 cgd keyblock.b[i] ^= t;
528 1.1 cgd }
529 1.1 cgd if (des_setkey((char *)keyblock.b))
530 1.1 cgd return (NULL);
531 1.1 cgd }
532 1.1 cgd
533 1.1 cgd *encp++ = *setting++;
534 1.1 cgd
535 1.1 cgd /* get iteration count */
536 1.1 cgd num_iter = 0;
537 1.1 cgd for (i = 4; --i >= 0; ) {
538 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
539 1.1 cgd t = '.';
540 1.1 cgd encp[i] = t;
541 1.1 cgd num_iter = (num_iter<<6) | a64toi[t];
542 1.1 cgd }
543 1.1 cgd setting += 4;
544 1.1 cgd encp += 4;
545 1.1 cgd salt_size = 4;
546 1.1 cgd break;
547 1.1 cgd default:
548 1.1 cgd num_iter = 25;
549 1.1 cgd salt_size = 2;
550 1.1 cgd }
551 1.1 cgd
552 1.1 cgd salt = 0;
553 1.1 cgd for (i = salt_size; --i >= 0; ) {
554 1.1 cgd if ((t = (unsigned char)setting[i]) == '\0')
555 1.1 cgd t = '.';
556 1.1 cgd encp[i] = t;
557 1.1 cgd salt = (salt<<6) | a64toi[t];
558 1.1 cgd }
559 1.1 cgd encp += salt_size;
560 1.18 wiz if (des_cipher((char *)(void *)&constdatablock,
561 1.18 wiz (char *)(void *)&rsltblock, salt, num_iter))
562 1.1 cgd return (NULL);
563 1.1 cgd
564 1.1 cgd /*
565 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
566 1.1 cgd */
567 1.4 cgd i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
568 1.4 cgd rsltblock.b[2];
569 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
570 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
571 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
572 1.1 cgd encp[0] = itoa64[i]; encp += 4;
573 1.4 cgd i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
574 1.4 cgd rsltblock.b[5];
575 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
576 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
577 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
578 1.1 cgd encp[0] = itoa64[i]; encp += 4;
579 1.4 cgd i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
580 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
581 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
582 1.1 cgd encp[0] = itoa64[i];
583 1.1 cgd
584 1.1 cgd encp[3] = 0;
585 1.1 cgd
586 1.1 cgd return (cryptresult);
587 1.1 cgd }
588 1.1 cgd
589 1.1 cgd
590 1.1 cgd /*
591 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
592 1.1 cgd */
593 1.1 cgd #define KS_SIZE 16
594 1.1 cgd static C_block KS[KS_SIZE];
595 1.1 cgd
596 1.1 cgd /*
597 1.1 cgd * Set up the key schedule from the key.
598 1.1 cgd */
599 1.6 mikel int
600 1.1 cgd des_setkey(key)
601 1.7 lukem const char *key;
602 1.1 cgd {
603 1.7 lukem DCL_BLOCK(K, K0, K1);
604 1.24 drochner C_block *help, *ptabp;
605 1.7 lukem int i;
606 1.1 cgd static int des_ready = 0;
607 1.1 cgd
608 1.1 cgd if (!des_ready) {
609 1.1 cgd init_des();
610 1.1 cgd des_ready = 1;
611 1.1 cgd }
612 1.1 cgd
613 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
614 1.24 drochner help = &KS[0];
615 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
616 1.1 cgd for (i = 1; i < 16; i++) {
617 1.24 drochner help++;
618 1.24 drochner STORE(K,K0,K1,*help);
619 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
620 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
621 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
622 1.1 cgd }
623 1.1 cgd return (0);
624 1.1 cgd }
625 1.1 cgd
626 1.1 cgd /*
627 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
628 1.14 soren * iterations of DES, using the given 24-bit salt and the pre-computed key
629 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
630 1.1 cgd *
631 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
632 1.1 cgd * compiler and machine architecture.
633 1.1 cgd */
634 1.6 mikel int
635 1.1 cgd des_cipher(in, out, salt, num_iter)
636 1.1 cgd const char *in;
637 1.1 cgd char *out;
638 1.1 cgd long salt;
639 1.1 cgd int num_iter;
640 1.1 cgd {
641 1.1 cgd /* variables that we want in registers, most important first */
642 1.1 cgd #if defined(pdp11)
643 1.10 perry int j;
644 1.1 cgd #endif
645 1.10 perry int32_t L0, L1, R0, R1, k;
646 1.10 perry C_block *kp;
647 1.10 perry int ks_inc, loop_count;
648 1.1 cgd C_block B;
649 1.1 cgd
650 1.1 cgd L0 = salt;
651 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
652 1.1 cgd
653 1.13 matt #if defined(__vax__) || defined(pdp11)
654 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
655 1.1 cgd #define SALT (~salt)
656 1.1 cgd #else
657 1.1 cgd #define SALT salt
658 1.1 cgd #endif
659 1.1 cgd
660 1.1 cgd #if defined(MUST_ALIGN)
661 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
662 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
663 1.1 cgd LOAD(L,L0,L1,B);
664 1.1 cgd #else
665 1.24 drochner LOAD(L,L0,L1,*(const C_block *)in);
666 1.1 cgd #endif
667 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
668 1.1 cgd L0 &= 0x55555555L;
669 1.1 cgd L1 &= 0x55555555L;
670 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
671 1.1 cgd R0 &= 0xaaaaaaaaL;
672 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
673 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
674 1.1 cgd STORE(L,L0,L1,B);
675 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
676 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
677 1.1 cgd
678 1.1 cgd if (num_iter >= 0)
679 1.1 cgd { /* encryption */
680 1.1 cgd kp = &KS[0];
681 1.1 cgd ks_inc = sizeof(*kp);
682 1.1 cgd }
683 1.1 cgd else
684 1.1 cgd { /* decryption */
685 1.15 thorpej num_iter = -num_iter;
686 1.15 thorpej kp = &KS[KS_SIZE-1];
687 1.15 thorpej ks_inc = -(long)sizeof(*kp);
688 1.1 cgd }
689 1.1 cgd
690 1.1 cgd while (--num_iter >= 0) {
691 1.1 cgd loop_count = 8;
692 1.1 cgd do {
693 1.1 cgd
694 1.4 cgd #define SPTAB(t, i) \
695 1.5 cgd (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
696 1.1 cgd #if defined(gould)
697 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
698 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
699 1.1 cgd #else
700 1.1 cgd #if defined(pdp11)
701 1.1 cgd /* use this if your "long" int indexing is slow */
702 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
703 1.1 cgd #else
704 1.11 mikel /* use this if "k" is allocated to a register ... */
705 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
706 1.1 cgd #endif
707 1.1 cgd #endif
708 1.1 cgd
709 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
710 1.1 cgd k = (q0 ^ q1) & SALT; \
711 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
712 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
713 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
714 1.1 cgd \
715 1.1 cgd DOXOR(p0, p1, 0); \
716 1.1 cgd DOXOR(p0, p1, 1); \
717 1.1 cgd DOXOR(p0, p1, 2); \
718 1.1 cgd DOXOR(p0, p1, 3); \
719 1.1 cgd DOXOR(p0, p1, 4); \
720 1.1 cgd DOXOR(p0, p1, 5); \
721 1.1 cgd DOXOR(p0, p1, 6); \
722 1.1 cgd DOXOR(p0, p1, 7);
723 1.1 cgd
724 1.1 cgd CRUNCH(L0, L1, R0, R1);
725 1.1 cgd CRUNCH(R0, R1, L0, L1);
726 1.1 cgd } while (--loop_count != 0);
727 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
728 1.1 cgd
729 1.1 cgd
730 1.1 cgd /* swap L and R */
731 1.1 cgd L0 ^= R0; L1 ^= R1;
732 1.1 cgd R0 ^= L0; R1 ^= L1;
733 1.1 cgd L0 ^= R0; L1 ^= R1;
734 1.1 cgd }
735 1.1 cgd
736 1.1 cgd /* store the encrypted (or decrypted) result */
737 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
738 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
739 1.1 cgd STORE(L,L0,L1,B);
740 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
741 1.1 cgd #if defined(MUST_ALIGN)
742 1.1 cgd STORE(L,L0,L1,B);
743 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
744 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
745 1.1 cgd #else
746 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
747 1.1 cgd #endif
748 1.1 cgd return (0);
749 1.1 cgd }
750 1.1 cgd
751 1.1 cgd
752 1.1 cgd /*
753 1.1 cgd * Initialize various tables. This need only be done once. It could even be
754 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
755 1.1 cgd */
756 1.1 cgd STATIC
757 1.1 cgd init_des()
758 1.1 cgd {
759 1.7 lukem int i, j;
760 1.7 lukem int32_t k;
761 1.7 lukem int tableno;
762 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
763 1.1 cgd
764 1.1 cgd /*
765 1.1 cgd * table that converts chars "./0-9A-Za-z"to integers 0-63.
766 1.1 cgd */
767 1.1 cgd for (i = 0; i < 64; i++)
768 1.1 cgd a64toi[itoa64[i]] = i;
769 1.1 cgd
770 1.1 cgd /*
771 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
772 1.1 cgd */
773 1.1 cgd for (i = 0; i < 64; i++)
774 1.1 cgd perm[i] = 0;
775 1.1 cgd for (i = 0; i < 64; i++) {
776 1.1 cgd if ((k = PC2[i]) == 0)
777 1.1 cgd continue;
778 1.1 cgd k += Rotates[0]-1;
779 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
780 1.1 cgd k = PC1[k];
781 1.1 cgd if (k > 0) {
782 1.1 cgd k--;
783 1.1 cgd k = (k|07) - (k&07);
784 1.1 cgd k++;
785 1.1 cgd }
786 1.1 cgd perm[i] = k;
787 1.1 cgd }
788 1.1 cgd #ifdef DEBUG
789 1.1 cgd prtab("pc1tab", perm, 8);
790 1.1 cgd #endif
791 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
792 1.1 cgd
793 1.1 cgd /*
794 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
795 1.1 cgd */
796 1.1 cgd for (j = 0; j < 2; j++) {
797 1.1 cgd unsigned char pc2inv[64];
798 1.1 cgd for (i = 0; i < 64; i++)
799 1.1 cgd perm[i] = pc2inv[i] = 0;
800 1.1 cgd for (i = 0; i < 64; i++) {
801 1.1 cgd if ((k = PC2[i]) == 0)
802 1.1 cgd continue;
803 1.1 cgd pc2inv[k-1] = i+1;
804 1.1 cgd }
805 1.1 cgd for (i = 0; i < 64; i++) {
806 1.1 cgd if ((k = PC2[i]) == 0)
807 1.1 cgd continue;
808 1.1 cgd k += j;
809 1.1 cgd if ((k%28) <= j) k -= 28;
810 1.1 cgd perm[i] = pc2inv[k];
811 1.1 cgd }
812 1.1 cgd #ifdef DEBUG
813 1.1 cgd prtab("pc2tab", perm, 8);
814 1.1 cgd #endif
815 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
816 1.1 cgd }
817 1.1 cgd
818 1.1 cgd /*
819 1.1 cgd * Bit reverse, then initial permutation, then expansion.
820 1.1 cgd */
821 1.1 cgd for (i = 0; i < 8; i++) {
822 1.1 cgd for (j = 0; j < 8; j++) {
823 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
824 1.1 cgd if (k > 32)
825 1.1 cgd k -= 32;
826 1.1 cgd else if (k > 0)
827 1.1 cgd k--;
828 1.1 cgd if (k > 0) {
829 1.1 cgd k--;
830 1.1 cgd k = (k|07) - (k&07);
831 1.1 cgd k++;
832 1.1 cgd }
833 1.1 cgd perm[i*8+j] = k;
834 1.1 cgd }
835 1.1 cgd }
836 1.1 cgd #ifdef DEBUG
837 1.1 cgd prtab("ietab", perm, 8);
838 1.1 cgd #endif
839 1.1 cgd init_perm(IE3264, perm, 4, 8);
840 1.1 cgd
841 1.1 cgd /*
842 1.1 cgd * Compression, then final permutation, then bit reverse.
843 1.1 cgd */
844 1.1 cgd for (i = 0; i < 64; i++) {
845 1.1 cgd k = IP[CIFP[i]-1];
846 1.1 cgd if (k > 0) {
847 1.1 cgd k--;
848 1.1 cgd k = (k|07) - (k&07);
849 1.1 cgd k++;
850 1.1 cgd }
851 1.1 cgd perm[k-1] = i+1;
852 1.1 cgd }
853 1.1 cgd #ifdef DEBUG
854 1.1 cgd prtab("cftab", perm, 8);
855 1.1 cgd #endif
856 1.1 cgd init_perm(CF6464, perm, 8, 8);
857 1.1 cgd
858 1.1 cgd /*
859 1.1 cgd * SPE table
860 1.1 cgd */
861 1.1 cgd for (i = 0; i < 48; i++)
862 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
863 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
864 1.1 cgd for (j = 0; j < 64; j++) {
865 1.1 cgd k = (((j >> 0) &01) << 5)|
866 1.1 cgd (((j >> 1) &01) << 3)|
867 1.1 cgd (((j >> 2) &01) << 2)|
868 1.1 cgd (((j >> 3) &01) << 1)|
869 1.1 cgd (((j >> 4) &01) << 0)|
870 1.1 cgd (((j >> 5) &01) << 4);
871 1.1 cgd k = S[tableno][k];
872 1.1 cgd k = (((k >> 3)&01) << 0)|
873 1.1 cgd (((k >> 2)&01) << 1)|
874 1.1 cgd (((k >> 1)&01) << 2)|
875 1.1 cgd (((k >> 0)&01) << 3);
876 1.1 cgd for (i = 0; i < 32; i++)
877 1.1 cgd tmp32[i] = 0;
878 1.1 cgd for (i = 0; i < 4; i++)
879 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
880 1.1 cgd k = 0;
881 1.1 cgd for (i = 24; --i >= 0; )
882 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
883 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
884 1.1 cgd k = 0;
885 1.1 cgd for (i = 24; --i >= 0; )
886 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
887 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
888 1.1 cgd }
889 1.1 cgd }
890 1.1 cgd }
891 1.1 cgd
892 1.1 cgd /*
893 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
894 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
895 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
896 1.1 cgd * characters).
897 1.1 cgd *
898 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
899 1.1 cgd */
900 1.1 cgd STATIC
901 1.1 cgd init_perm(perm, p, chars_in, chars_out)
902 1.1 cgd C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
903 1.24 drochner const unsigned char p[64];
904 1.1 cgd int chars_in, chars_out;
905 1.1 cgd {
906 1.7 lukem int i, j, k, l;
907 1.1 cgd
908 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
909 1.1 cgd l = p[k] - 1; /* where this bit comes from */
910 1.1 cgd if (l < 0)
911 1.1 cgd continue; /* output bit is always 0 */
912 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
913 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
914 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
915 1.1 cgd if ((j & l) != 0)
916 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
917 1.1 cgd }
918 1.1 cgd }
919 1.1 cgd }
920 1.1 cgd
921 1.1 cgd /*
922 1.1 cgd * "setkey" routine (for backwards compatibility)
923 1.1 cgd */
924 1.6 mikel int
925 1.1 cgd setkey(key)
926 1.7 lukem const char *key;
927 1.1 cgd {
928 1.7 lukem int i, j, k;
929 1.1 cgd C_block keyblock;
930 1.1 cgd
931 1.1 cgd for (i = 0; i < 8; i++) {
932 1.1 cgd k = 0;
933 1.1 cgd for (j = 0; j < 8; j++) {
934 1.1 cgd k <<= 1;
935 1.1 cgd k |= (unsigned char)*key++;
936 1.1 cgd }
937 1.1 cgd keyblock.b[i] = k;
938 1.1 cgd }
939 1.1 cgd return (des_setkey((char *)keyblock.b));
940 1.1 cgd }
941 1.1 cgd
942 1.1 cgd /*
943 1.1 cgd * "encrypt" routine (for backwards compatibility)
944 1.1 cgd */
945 1.6 mikel int
946 1.1 cgd encrypt(block, flag)
947 1.7 lukem char *block;
948 1.1 cgd int flag;
949 1.1 cgd {
950 1.7 lukem int i, j, k;
951 1.1 cgd C_block cblock;
952 1.1 cgd
953 1.1 cgd for (i = 0; i < 8; i++) {
954 1.1 cgd k = 0;
955 1.1 cgd for (j = 0; j < 8; j++) {
956 1.1 cgd k <<= 1;
957 1.1 cgd k |= (unsigned char)*block++;
958 1.1 cgd }
959 1.1 cgd cblock.b[i] = k;
960 1.1 cgd }
961 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
962 1.1 cgd return (1);
963 1.1 cgd for (i = 7; i >= 0; i--) {
964 1.1 cgd k = cblock.b[i];
965 1.1 cgd for (j = 7; j >= 0; j--) {
966 1.1 cgd *--block = k&01;
967 1.1 cgd k >>= 1;
968 1.1 cgd }
969 1.1 cgd }
970 1.1 cgd return (0);
971 1.1 cgd }
972 1.1 cgd
973 1.1 cgd #ifdef DEBUG
974 1.1 cgd STATIC
975 1.1 cgd prtab(s, t, num_rows)
976 1.25 freza const char *s;
977 1.1 cgd unsigned char *t;
978 1.1 cgd int num_rows;
979 1.1 cgd {
980 1.7 lukem int i, j;
981 1.1 cgd
982 1.1 cgd (void)printf("%s:\n", s);
983 1.1 cgd for (i = 0; i < num_rows; i++) {
984 1.1 cgd for (j = 0; j < 8; j++) {
985 1.1 cgd (void)printf("%3d", t[i*8+j]);
986 1.1 cgd }
987 1.1 cgd (void)printf("\n");
988 1.1 cgd }
989 1.1 cgd (void)printf("\n");
990 1.1 cgd }
991 1.1 cgd #endif
992 1.22 sjg
993 1.22 sjg #if defined(MAIN) || defined(UNIT_TEST)
994 1.22 sjg #include <err.h>
995 1.22 sjg
996 1.22 sjg int
997 1.22 sjg main (int argc, char *argv[])
998 1.22 sjg {
999 1.22 sjg if (argc < 2)
1000 1.22 sjg errx(1, "Usage: %s password [salt]\n", argv[0]);
1001 1.22 sjg
1002 1.22 sjg printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1003 1.22 sjg exit(0);
1004 1.22 sjg }
1005 1.22 sjg #endif
1006