crypt.c revision 1.33 1 1.33 christos /* $NetBSD: crypt.c,v 1.33 2011/12/28 03:13:09 christos Exp $ */
2 1.5 cgd
3 1.1 cgd /*
4 1.5 cgd * Copyright (c) 1989, 1993
5 1.5 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Tom Truscott.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.21 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.7 lukem #include <sys/cdefs.h>
36 1.7 lukem #if !defined(lint)
37 1.5 cgd #if 0
38 1.5 cgd static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 1.7 lukem #else
40 1.33 christos __RCSID("$NetBSD: crypt.c,v 1.33 2011/12/28 03:13:09 christos Exp $");
41 1.5 cgd #endif
42 1.7 lukem #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <limits.h>
45 1.1 cgd #include <pwd.h>
46 1.12 kleink #include <stdlib.h>
47 1.6 mikel #include <unistd.h>
48 1.26 hubertf #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49 1.23 christos #include <stdio.h>
50 1.23 christos #endif
51 1.1 cgd
52 1.22 sjg #include "crypt.h"
53 1.22 sjg
54 1.1 cgd /*
55 1.1 cgd * UNIX password, and DES, encryption.
56 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
57 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
58 1.1 cgd *
59 1.1 cgd * References:
60 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62 1.1 cgd *
63 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
64 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65 1.1 cgd *
66 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68 1.1 cgd */
69 1.1 cgd
70 1.1 cgd /* ===== Configuration ==================== */
71 1.1 cgd
72 1.1 cgd /*
73 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
74 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
75 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
76 1.1 cgd */
77 1.13 matt #if !defined(__vax__) && !defined(__i386__)
78 1.1 cgd #define MUST_ALIGN
79 1.1 cgd #endif
80 1.1 cgd
81 1.1 cgd #ifdef CHAR_BITS
82 1.1 cgd #if CHAR_BITS != 8
83 1.1 cgd #error C_block structure assumes 8 bit characters
84 1.1 cgd #endif
85 1.1 cgd #endif
86 1.1 cgd
87 1.1 cgd /*
88 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
89 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
90 1.1 cgd */
91 1.1 cgd #if defined(cray)
92 1.1 cgd #define B64 long
93 1.1 cgd #endif
94 1.1 cgd #if defined(convex)
95 1.1 cgd #define B64 long long
96 1.1 cgd #endif
97 1.1 cgd
98 1.1 cgd /*
99 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 1.1 cgd * little effect on crypt().
102 1.1 cgd */
103 1.1 cgd #if defined(notdef)
104 1.1 cgd #define LARGEDATA
105 1.1 cgd #endif
106 1.1 cgd
107 1.6 mikel /* compile with "-DSTATIC=void" when profiling */
108 1.1 cgd #ifndef STATIC
109 1.6 mikel #define STATIC static void
110 1.1 cgd #endif
111 1.1 cgd
112 1.1 cgd /* ==================================== */
113 1.1 cgd
114 1.1 cgd /*
115 1.1 cgd * Cipher-block representation (Bob Baldwin):
116 1.1 cgd *
117 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
118 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
119 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
122 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
125 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
126 1.1 cgd * MSB format.
127 1.1 cgd *
128 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
130 1.1 cgd * the computation, the expansion is applied only once, the expanded
131 1.1 cgd * representation is maintained during the encryption, and a compression
132 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
133 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
135 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
136 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
139 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
140 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
141 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
143 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
144 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
145 1.1 cgd * 8*64*8 = 4K bytes.
146 1.1 cgd *
147 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
148 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
150 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
151 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
152 1.1 cgd * the architecture becomes visible.
153 1.1 cgd *
154 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
155 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
156 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
157 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
158 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
159 1.1 cgd * operations that depend on byte order. This largely precludes use of the
160 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
161 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
162 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
164 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
166 1.1 cgd *
167 1.1 cgd * Permutation representation (Jim Gillogly):
168 1.1 cgd *
169 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
170 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
171 1.1 cgd * the input distributed appropriately. The transformation is then the OR
172 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
173 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
174 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
176 1.1 cgd * is slower but tolerable, particularly for password encryption in which
177 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
178 1.1 cgd * bytes, the large tables total 72K bytes.
179 1.1 cgd *
180 1.1 cgd * The transformations used are:
181 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
183 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 1.1 cgd * bits and applying the same transformation. Since there are only
185 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
186 1.1 cgd * the usual table.
187 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
189 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
190 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
191 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
192 1.1 cgd * identical 32->32 bit transformations could be used instead,
193 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
194 1.1 cgd * byte-ordering and other complications rear their ugly head.
195 1.1 cgd * Similar opportunities/problems arise in the key schedule
196 1.1 cgd * transforms.)
197 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
199 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
200 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 1.1 cgd * It would be possible to define 15 more transformations, each
202 1.1 cgd * with a different rotation, to generate the entire key schedule.
203 1.1 cgd * To save space, however, we instead permute each code into the
204 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
205 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
206 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 1.1 cgd * invertible. We get around that problem by using a modified PC2
208 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
209 1.1 cgd * bits of each byte. The low-order bits are cleared when the
210 1.1 cgd * codes are stored into the key schedule.
211 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 1.1 cgd * This is faster than applying PC2ROT[0] twice,
213 1.1 cgd *
214 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
215 1.1 cgd *
216 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
217 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
219 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
220 1.1 cgd * swap bits 13..24 with 36..48.)
221 1.1 cgd *
222 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
223 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
224 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
225 1.1 cgd * 8% performance penalty.
226 1.1 cgd */
227 1.1 cgd
228 1.1 cgd typedef union {
229 1.1 cgd unsigned char b[8];
230 1.1 cgd struct {
231 1.4 cgd int32_t i0;
232 1.4 cgd int32_t i1;
233 1.1 cgd } b32;
234 1.1 cgd #if defined(B64)
235 1.1 cgd B64 b64;
236 1.1 cgd #endif
237 1.1 cgd } C_block;
238 1.1 cgd
239 1.1 cgd /*
240 1.1 cgd * Convert twenty-four-bit long in host-order
241 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
242 1.1 cgd */
243 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
244 1.1 cgd C_block cvt; \
245 1.1 cgd cvt.b[0] = src; src >>= 6; \
246 1.1 cgd cvt.b[1] = src; src >>= 6; \
247 1.1 cgd cvt.b[2] = src; src >>= 6; \
248 1.1 cgd cvt.b[3] = src; \
249 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
250 1.1 cgd }
251 1.1 cgd
252 1.1 cgd /*
253 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
254 1.1 cgd */
255 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
256 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
258 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
260 1.4 cgd #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
261 1.1 cgd
262 1.1 cgd #if defined(LARGEDATA)
263 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
264 1.1 cgd #define LGCHUNKBITS 3
265 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
266 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
267 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
268 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
269 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
270 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
271 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
272 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
273 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
274 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
276 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 1.1 cgd #else
281 1.1 cgd /* "small data" */
282 1.1 cgd #define LGCHUNKBITS 2
283 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
284 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
285 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
287 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 1.8 mikel #endif /* LARGEDATA */
289 1.7 lukem
290 1.27 perry STATIC init_des(void);
291 1.27 perry STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292 1.27 perry const unsigned char [64], int, int);
293 1.8 mikel #ifndef LARGEDATA
294 1.27 perry STATIC permute(const unsigned char *, C_block *, C_block *, int);
295 1.8 mikel #endif
296 1.7 lukem #ifdef DEBUG
297 1.27 perry STATIC prtab(const char *, unsigned char *, int);
298 1.7 lukem #endif
299 1.7 lukem
300 1.7 lukem
301 1.8 mikel #ifndef LARGEDATA
302 1.1 cgd STATIC
303 1.28 perry permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
304 1.1 cgd {
305 1.7 lukem DCL_BLOCK(D,D0,D1);
306 1.7 lukem C_block *tp;
307 1.7 lukem int t;
308 1.1 cgd
309 1.1 cgd ZERO(D,D0,D1);
310 1.1 cgd do {
311 1.1 cgd t = *cp++;
312 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 1.1 cgd } while (--chars_in > 0);
315 1.1 cgd STORE(D,D0,D1,*out);
316 1.1 cgd }
317 1.1 cgd #endif /* LARGEDATA */
318 1.1 cgd
319 1.1 cgd
320 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
321 1.1 cgd
322 1.20 jdolecek static const unsigned char IP[] = { /* initial permutation */
323 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
324 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
325 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
326 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
327 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
328 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
329 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
330 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
331 1.1 cgd };
332 1.1 cgd
333 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
334 1.1 cgd
335 1.20 jdolecek static const unsigned char ExpandTr[] = { /* expansion operation */
336 1.1 cgd 32, 1, 2, 3, 4, 5,
337 1.1 cgd 4, 5, 6, 7, 8, 9,
338 1.1 cgd 8, 9, 10, 11, 12, 13,
339 1.1 cgd 12, 13, 14, 15, 16, 17,
340 1.1 cgd 16, 17, 18, 19, 20, 21,
341 1.1 cgd 20, 21, 22, 23, 24, 25,
342 1.1 cgd 24, 25, 26, 27, 28, 29,
343 1.1 cgd 28, 29, 30, 31, 32, 1,
344 1.1 cgd };
345 1.1 cgd
346 1.20 jdolecek static const unsigned char PC1[] = { /* permuted choice table 1 */
347 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
348 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
349 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
350 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
351 1.1 cgd
352 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
353 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
354 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
355 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
356 1.1 cgd };
357 1.1 cgd
358 1.20 jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
359 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360 1.1 cgd };
361 1.1 cgd
362 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 1.20 jdolecek static const unsigned char PC2[] = { /* permuted choice table 2 */
364 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
365 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
366 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
367 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
368 1.1 cgd
369 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
370 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
371 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
372 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
373 1.1 cgd };
374 1.1 cgd
375 1.20 jdolecek static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
376 1.1 cgd /* S[1] */
377 1.6 mikel { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
378 1.6 mikel 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
379 1.6 mikel 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
380 1.6 mikel 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
381 1.1 cgd /* S[2] */
382 1.6 mikel { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
383 1.6 mikel 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
384 1.6 mikel 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
385 1.6 mikel 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
386 1.1 cgd /* S[3] */
387 1.6 mikel { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
388 1.6 mikel 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
389 1.6 mikel 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
390 1.6 mikel 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
391 1.1 cgd /* S[4] */
392 1.6 mikel { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
393 1.6 mikel 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
394 1.6 mikel 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
395 1.6 mikel 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
396 1.1 cgd /* S[5] */
397 1.6 mikel { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
398 1.6 mikel 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
399 1.6 mikel 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
400 1.6 mikel 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
401 1.1 cgd /* S[6] */
402 1.6 mikel { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
403 1.6 mikel 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
404 1.6 mikel 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
405 1.6 mikel 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
406 1.1 cgd /* S[7] */
407 1.6 mikel { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
408 1.6 mikel 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
409 1.6 mikel 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
410 1.6 mikel 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
411 1.1 cgd /* S[8] */
412 1.6 mikel { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
413 1.6 mikel 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
414 1.6 mikel 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
415 1.6 mikel 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
416 1.1 cgd };
417 1.1 cgd
418 1.20 jdolecek static const unsigned char P32Tr[] = { /* 32-bit permutation function */
419 1.1 cgd 16, 7, 20, 21,
420 1.1 cgd 29, 12, 28, 17,
421 1.1 cgd 1, 15, 23, 26,
422 1.1 cgd 5, 18, 31, 10,
423 1.1 cgd 2, 8, 24, 14,
424 1.1 cgd 32, 27, 3, 9,
425 1.1 cgd 19, 13, 30, 6,
426 1.1 cgd 22, 11, 4, 25,
427 1.1 cgd };
428 1.1 cgd
429 1.20 jdolecek static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
430 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
431 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
432 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
433 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
434 1.1 cgd
435 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
436 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
437 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
438 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
439 1.1 cgd };
440 1.1 cgd
441 1.20 jdolecek static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
442 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443 1.1 cgd
444 1.1 cgd
445 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
446 1.1 cgd
447 1.1 cgd
448 1.1 cgd /* Initial key schedule permutation */
449 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
450 1.1 cgd
451 1.1 cgd /* Subsequent key schedule rotation permutations */
452 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
453 1.1 cgd
454 1.1 cgd /* Initial permutation/expansion table */
455 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
456 1.1 cgd
457 1.1 cgd /* Table that combines the S, P, and E operations. */
458 1.4 cgd static int32_t SPE[2][8][64];
459 1.1 cgd
460 1.1 cgd /* compressed/interleaved => final permutation table */
461 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
462 1.1 cgd
463 1.1 cgd
464 1.1 cgd /* ==================================== */
465 1.1 cgd
466 1.1 cgd
467 1.1 cgd static C_block constdatablock; /* encryption constant */
468 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
469 1.1 cgd
470 1.30 christos /*
471 1.30 christos * We match the behavior of UFC-crypt on systems where "char" is signed by
472 1.30 christos * default (the majority), regardless of char's signedness on our system.
473 1.30 christos */
474 1.30 christos static inline int
475 1.30 christos ascii_to_bin(char ch)
476 1.30 christos {
477 1.30 christos signed char sch = ch;
478 1.30 christos int retval;
479 1.30 christos
480 1.30 christos if (sch >= 'a')
481 1.30 christos retval = sch - ('a' - 38);
482 1.30 christos else if (sch >= 'A')
483 1.30 christos retval = sch - ('A' - 12);
484 1.30 christos else
485 1.30 christos retval = sch - '.';
486 1.30 christos
487 1.30 christos return retval & 0x3f;
488 1.30 christos }
489 1.32 christos
490 1.30 christos /*
491 1.30 christos * When we choose to "support" invalid salts, nevertheless disallow those
492 1.30 christos * containing characters that would violate the passwd file format.
493 1.30 christos */
494 1.30 christos static inline int
495 1.30 christos ascii_is_unsafe(char ch)
496 1.30 christos {
497 1.30 christos return !ch || ch == '\n' || ch == ':';
498 1.30 christos }
499 1.17 christos
500 1.1 cgd /*
501 1.1 cgd * Return a pointer to static data consisting of the "setting"
502 1.1 cgd * followed by an encryption produced by the "key" and "setting".
503 1.1 cgd */
504 1.33 christos static char *
505 1.32 christos __crypt(const char *key, const char *setting)
506 1.1 cgd {
507 1.7 lukem char *encp;
508 1.7 lukem int32_t i;
509 1.7 lukem int t;
510 1.4 cgd int32_t salt;
511 1.1 cgd int num_iter, salt_size;
512 1.1 cgd C_block keyblock, rsltblock;
513 1.16 ad
514 1.16 ad /* Non-DES encryption schemes hook in here. */
515 1.16 ad if (setting[0] == _PASSWORD_NONDES) {
516 1.16 ad switch (setting[1]) {
517 1.16 ad case '2':
518 1.16 ad return (__bcrypt(key, setting));
519 1.22 sjg case 's':
520 1.22 sjg return (__crypt_sha1(key, setting));
521 1.16 ad case '1':
522 1.16 ad default:
523 1.16 ad return (__md5crypt(key, setting));
524 1.16 ad }
525 1.16 ad }
526 1.1 cgd
527 1.1 cgd for (i = 0; i < 8; i++) {
528 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
529 1.1 cgd key++;
530 1.1 cgd keyblock.b[i] = t;
531 1.1 cgd }
532 1.30 christos if (des_setkey((char *)keyblock.b))
533 1.1 cgd return (NULL);
534 1.1 cgd
535 1.1 cgd encp = &cryptresult[0];
536 1.1 cgd switch (*setting) {
537 1.1 cgd case _PASSWORD_EFMT1:
538 1.1 cgd /*
539 1.1 cgd * Involve the rest of the password 8 characters at a time.
540 1.1 cgd */
541 1.1 cgd while (*key) {
542 1.18 wiz if (des_cipher((char *)(void *)&keyblock,
543 1.18 wiz (char *)(void *)&keyblock, 0L, 1))
544 1.1 cgd return (NULL);
545 1.1 cgd for (i = 0; i < 8; i++) {
546 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
547 1.1 cgd key++;
548 1.1 cgd keyblock.b[i] ^= t;
549 1.1 cgd }
550 1.1 cgd if (des_setkey((char *)keyblock.b))
551 1.1 cgd return (NULL);
552 1.1 cgd }
553 1.1 cgd
554 1.1 cgd *encp++ = *setting++;
555 1.1 cgd
556 1.1 cgd /* get iteration count */
557 1.1 cgd num_iter = 0;
558 1.1 cgd for (i = 4; --i >= 0; ) {
559 1.30 christos int value = ascii_to_bin(setting[i]);
560 1.30 christos if (itoa64[value] != setting[i])
561 1.30 christos return NULL;
562 1.30 christos encp[i] = setting[i];
563 1.30 christos num_iter = (num_iter << 6) | value;
564 1.1 cgd }
565 1.30 christos if (num_iter == 0)
566 1.30 christos return NULL;
567 1.1 cgd setting += 4;
568 1.1 cgd encp += 4;
569 1.1 cgd salt_size = 4;
570 1.1 cgd break;
571 1.1 cgd default:
572 1.1 cgd num_iter = 25;
573 1.1 cgd salt_size = 2;
574 1.30 christos if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
575 1.30 christos return NULL;
576 1.1 cgd }
577 1.1 cgd
578 1.1 cgd salt = 0;
579 1.1 cgd for (i = salt_size; --i >= 0; ) {
580 1.30 christos int value = ascii_to_bin(setting[i]);
581 1.31 christos if (salt_size > 2 && itoa64[value] != setting[i])
582 1.30 christos return NULL;
583 1.30 christos encp[i] = setting[i];
584 1.30 christos salt = (salt << 6) | value;
585 1.1 cgd }
586 1.1 cgd encp += salt_size;
587 1.18 wiz if (des_cipher((char *)(void *)&constdatablock,
588 1.18 wiz (char *)(void *)&rsltblock, salt, num_iter))
589 1.1 cgd return (NULL);
590 1.1 cgd
591 1.1 cgd /*
592 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
593 1.1 cgd */
594 1.4 cgd i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
595 1.4 cgd rsltblock.b[2];
596 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
597 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
598 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
599 1.1 cgd encp[0] = itoa64[i]; encp += 4;
600 1.4 cgd i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
601 1.4 cgd rsltblock.b[5];
602 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
603 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
604 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
605 1.1 cgd encp[0] = itoa64[i]; encp += 4;
606 1.4 cgd i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
607 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
608 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
609 1.1 cgd encp[0] = itoa64[i];
610 1.1 cgd
611 1.1 cgd encp[3] = 0;
612 1.1 cgd
613 1.1 cgd return (cryptresult);
614 1.1 cgd }
615 1.1 cgd
616 1.32 christos char *
617 1.32 christos crypt(const char *key, const char *salt)
618 1.32 christos {
619 1.32 christos char *res = __crypt(key, salt);
620 1.32 christos if (res)
621 1.32 christos return res;
622 1.32 christos /* How do I handle errors ? Return "*0" or "*1" */
623 1.32 christos return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
624 1.32 christos }
625 1.1 cgd
626 1.1 cgd /*
627 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
628 1.1 cgd */
629 1.1 cgd #define KS_SIZE 16
630 1.1 cgd static C_block KS[KS_SIZE];
631 1.1 cgd
632 1.1 cgd /*
633 1.1 cgd * Set up the key schedule from the key.
634 1.1 cgd */
635 1.6 mikel int
636 1.28 perry des_setkey(const char *key)
637 1.1 cgd {
638 1.7 lukem DCL_BLOCK(K, K0, K1);
639 1.24 drochner C_block *help, *ptabp;
640 1.7 lukem int i;
641 1.1 cgd static int des_ready = 0;
642 1.1 cgd
643 1.1 cgd if (!des_ready) {
644 1.1 cgd init_des();
645 1.1 cgd des_ready = 1;
646 1.1 cgd }
647 1.1 cgd
648 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
649 1.24 drochner help = &KS[0];
650 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
651 1.1 cgd for (i = 1; i < 16; i++) {
652 1.24 drochner help++;
653 1.24 drochner STORE(K,K0,K1,*help);
654 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
655 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
656 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
657 1.1 cgd }
658 1.1 cgd return (0);
659 1.1 cgd }
660 1.1 cgd
661 1.1 cgd /*
662 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
663 1.14 soren * iterations of DES, using the given 24-bit salt and the pre-computed key
664 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
665 1.1 cgd *
666 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
667 1.1 cgd * compiler and machine architecture.
668 1.1 cgd */
669 1.6 mikel int
670 1.28 perry des_cipher(const char *in, char *out, long salt, int num_iter)
671 1.1 cgd {
672 1.1 cgd /* variables that we want in registers, most important first */
673 1.1 cgd #if defined(pdp11)
674 1.10 perry int j;
675 1.1 cgd #endif
676 1.10 perry int32_t L0, L1, R0, R1, k;
677 1.10 perry C_block *kp;
678 1.10 perry int ks_inc, loop_count;
679 1.1 cgd C_block B;
680 1.1 cgd
681 1.1 cgd L0 = salt;
682 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
683 1.1 cgd
684 1.13 matt #if defined(__vax__) || defined(pdp11)
685 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
686 1.1 cgd #define SALT (~salt)
687 1.1 cgd #else
688 1.1 cgd #define SALT salt
689 1.1 cgd #endif
690 1.1 cgd
691 1.1 cgd #if defined(MUST_ALIGN)
692 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
693 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
694 1.1 cgd LOAD(L,L0,L1,B);
695 1.1 cgd #else
696 1.24 drochner LOAD(L,L0,L1,*(const C_block *)in);
697 1.1 cgd #endif
698 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
699 1.1 cgd L0 &= 0x55555555L;
700 1.1 cgd L1 &= 0x55555555L;
701 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
702 1.1 cgd R0 &= 0xaaaaaaaaL;
703 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
704 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
705 1.1 cgd STORE(L,L0,L1,B);
706 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
707 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
708 1.1 cgd
709 1.1 cgd if (num_iter >= 0)
710 1.1 cgd { /* encryption */
711 1.1 cgd kp = &KS[0];
712 1.1 cgd ks_inc = sizeof(*kp);
713 1.1 cgd }
714 1.1 cgd else
715 1.1 cgd { /* decryption */
716 1.15 thorpej num_iter = -num_iter;
717 1.15 thorpej kp = &KS[KS_SIZE-1];
718 1.15 thorpej ks_inc = -(long)sizeof(*kp);
719 1.1 cgd }
720 1.1 cgd
721 1.1 cgd while (--num_iter >= 0) {
722 1.1 cgd loop_count = 8;
723 1.1 cgd do {
724 1.1 cgd
725 1.4 cgd #define SPTAB(t, i) \
726 1.5 cgd (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
727 1.1 cgd #if defined(gould)
728 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
729 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
730 1.1 cgd #else
731 1.1 cgd #if defined(pdp11)
732 1.1 cgd /* use this if your "long" int indexing is slow */
733 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
734 1.1 cgd #else
735 1.11 mikel /* use this if "k" is allocated to a register ... */
736 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
737 1.1 cgd #endif
738 1.1 cgd #endif
739 1.1 cgd
740 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
741 1.1 cgd k = (q0 ^ q1) & SALT; \
742 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
743 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
744 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
745 1.1 cgd \
746 1.1 cgd DOXOR(p0, p1, 0); \
747 1.1 cgd DOXOR(p0, p1, 1); \
748 1.1 cgd DOXOR(p0, p1, 2); \
749 1.1 cgd DOXOR(p0, p1, 3); \
750 1.1 cgd DOXOR(p0, p1, 4); \
751 1.1 cgd DOXOR(p0, p1, 5); \
752 1.1 cgd DOXOR(p0, p1, 6); \
753 1.1 cgd DOXOR(p0, p1, 7);
754 1.1 cgd
755 1.1 cgd CRUNCH(L0, L1, R0, R1);
756 1.1 cgd CRUNCH(R0, R1, L0, L1);
757 1.1 cgd } while (--loop_count != 0);
758 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
759 1.1 cgd
760 1.1 cgd
761 1.1 cgd /* swap L and R */
762 1.1 cgd L0 ^= R0; L1 ^= R1;
763 1.1 cgd R0 ^= L0; R1 ^= L1;
764 1.1 cgd L0 ^= R0; L1 ^= R1;
765 1.1 cgd }
766 1.1 cgd
767 1.1 cgd /* store the encrypted (or decrypted) result */
768 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
769 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
770 1.1 cgd STORE(L,L0,L1,B);
771 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
772 1.1 cgd #if defined(MUST_ALIGN)
773 1.1 cgd STORE(L,L0,L1,B);
774 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
775 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
776 1.1 cgd #else
777 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
778 1.1 cgd #endif
779 1.1 cgd return (0);
780 1.1 cgd }
781 1.1 cgd
782 1.1 cgd
783 1.1 cgd /*
784 1.1 cgd * Initialize various tables. This need only be done once. It could even be
785 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
786 1.1 cgd */
787 1.1 cgd STATIC
788 1.28 perry init_des(void)
789 1.1 cgd {
790 1.7 lukem int i, j;
791 1.7 lukem int32_t k;
792 1.7 lukem int tableno;
793 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
794 1.1 cgd
795 1.1 cgd /*
796 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
797 1.1 cgd */
798 1.1 cgd for (i = 0; i < 64; i++)
799 1.1 cgd perm[i] = 0;
800 1.1 cgd for (i = 0; i < 64; i++) {
801 1.1 cgd if ((k = PC2[i]) == 0)
802 1.1 cgd continue;
803 1.1 cgd k += Rotates[0]-1;
804 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
805 1.1 cgd k = PC1[k];
806 1.1 cgd if (k > 0) {
807 1.1 cgd k--;
808 1.1 cgd k = (k|07) - (k&07);
809 1.1 cgd k++;
810 1.1 cgd }
811 1.1 cgd perm[i] = k;
812 1.1 cgd }
813 1.1 cgd #ifdef DEBUG
814 1.1 cgd prtab("pc1tab", perm, 8);
815 1.1 cgd #endif
816 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
817 1.1 cgd
818 1.1 cgd /*
819 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
820 1.1 cgd */
821 1.1 cgd for (j = 0; j < 2; j++) {
822 1.1 cgd unsigned char pc2inv[64];
823 1.1 cgd for (i = 0; i < 64; i++)
824 1.1 cgd perm[i] = pc2inv[i] = 0;
825 1.1 cgd for (i = 0; i < 64; i++) {
826 1.1 cgd if ((k = PC2[i]) == 0)
827 1.1 cgd continue;
828 1.1 cgd pc2inv[k-1] = i+1;
829 1.1 cgd }
830 1.1 cgd for (i = 0; i < 64; i++) {
831 1.1 cgd if ((k = PC2[i]) == 0)
832 1.1 cgd continue;
833 1.1 cgd k += j;
834 1.1 cgd if ((k%28) <= j) k -= 28;
835 1.1 cgd perm[i] = pc2inv[k];
836 1.1 cgd }
837 1.1 cgd #ifdef DEBUG
838 1.1 cgd prtab("pc2tab", perm, 8);
839 1.1 cgd #endif
840 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
841 1.1 cgd }
842 1.1 cgd
843 1.1 cgd /*
844 1.1 cgd * Bit reverse, then initial permutation, then expansion.
845 1.1 cgd */
846 1.1 cgd for (i = 0; i < 8; i++) {
847 1.1 cgd for (j = 0; j < 8; j++) {
848 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
849 1.1 cgd if (k > 32)
850 1.1 cgd k -= 32;
851 1.1 cgd else if (k > 0)
852 1.1 cgd k--;
853 1.1 cgd if (k > 0) {
854 1.1 cgd k--;
855 1.1 cgd k = (k|07) - (k&07);
856 1.1 cgd k++;
857 1.1 cgd }
858 1.1 cgd perm[i*8+j] = k;
859 1.1 cgd }
860 1.1 cgd }
861 1.1 cgd #ifdef DEBUG
862 1.1 cgd prtab("ietab", perm, 8);
863 1.1 cgd #endif
864 1.1 cgd init_perm(IE3264, perm, 4, 8);
865 1.1 cgd
866 1.1 cgd /*
867 1.1 cgd * Compression, then final permutation, then bit reverse.
868 1.1 cgd */
869 1.1 cgd for (i = 0; i < 64; i++) {
870 1.1 cgd k = IP[CIFP[i]-1];
871 1.1 cgd if (k > 0) {
872 1.1 cgd k--;
873 1.1 cgd k = (k|07) - (k&07);
874 1.1 cgd k++;
875 1.1 cgd }
876 1.1 cgd perm[k-1] = i+1;
877 1.1 cgd }
878 1.1 cgd #ifdef DEBUG
879 1.1 cgd prtab("cftab", perm, 8);
880 1.1 cgd #endif
881 1.1 cgd init_perm(CF6464, perm, 8, 8);
882 1.1 cgd
883 1.1 cgd /*
884 1.1 cgd * SPE table
885 1.1 cgd */
886 1.1 cgd for (i = 0; i < 48; i++)
887 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
888 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
889 1.1 cgd for (j = 0; j < 64; j++) {
890 1.1 cgd k = (((j >> 0) &01) << 5)|
891 1.1 cgd (((j >> 1) &01) << 3)|
892 1.1 cgd (((j >> 2) &01) << 2)|
893 1.1 cgd (((j >> 3) &01) << 1)|
894 1.1 cgd (((j >> 4) &01) << 0)|
895 1.1 cgd (((j >> 5) &01) << 4);
896 1.1 cgd k = S[tableno][k];
897 1.1 cgd k = (((k >> 3)&01) << 0)|
898 1.1 cgd (((k >> 2)&01) << 1)|
899 1.1 cgd (((k >> 1)&01) << 2)|
900 1.1 cgd (((k >> 0)&01) << 3);
901 1.1 cgd for (i = 0; i < 32; i++)
902 1.1 cgd tmp32[i] = 0;
903 1.1 cgd for (i = 0; i < 4; i++)
904 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
905 1.1 cgd k = 0;
906 1.1 cgd for (i = 24; --i >= 0; )
907 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
908 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
909 1.1 cgd k = 0;
910 1.1 cgd for (i = 24; --i >= 0; )
911 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
912 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
913 1.1 cgd }
914 1.1 cgd }
915 1.1 cgd }
916 1.1 cgd
917 1.1 cgd /*
918 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
919 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
920 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
921 1.1 cgd * characters).
922 1.1 cgd *
923 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
924 1.1 cgd */
925 1.1 cgd STATIC
926 1.28 perry init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
927 1.28 perry int chars_in, int chars_out)
928 1.1 cgd {
929 1.7 lukem int i, j, k, l;
930 1.1 cgd
931 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
932 1.1 cgd l = p[k] - 1; /* where this bit comes from */
933 1.1 cgd if (l < 0)
934 1.1 cgd continue; /* output bit is always 0 */
935 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
936 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
937 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
938 1.1 cgd if ((j & l) != 0)
939 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
940 1.1 cgd }
941 1.1 cgd }
942 1.1 cgd }
943 1.1 cgd
944 1.1 cgd /*
945 1.1 cgd * "setkey" routine (for backwards compatibility)
946 1.1 cgd */
947 1.6 mikel int
948 1.28 perry setkey(const char *key)
949 1.1 cgd {
950 1.7 lukem int i, j, k;
951 1.1 cgd C_block keyblock;
952 1.1 cgd
953 1.1 cgd for (i = 0; i < 8; i++) {
954 1.1 cgd k = 0;
955 1.1 cgd for (j = 0; j < 8; j++) {
956 1.1 cgd k <<= 1;
957 1.1 cgd k |= (unsigned char)*key++;
958 1.1 cgd }
959 1.1 cgd keyblock.b[i] = k;
960 1.1 cgd }
961 1.1 cgd return (des_setkey((char *)keyblock.b));
962 1.1 cgd }
963 1.1 cgd
964 1.1 cgd /*
965 1.1 cgd * "encrypt" routine (for backwards compatibility)
966 1.1 cgd */
967 1.6 mikel int
968 1.28 perry encrypt(char *block, int flag)
969 1.1 cgd {
970 1.7 lukem int i, j, k;
971 1.1 cgd C_block cblock;
972 1.1 cgd
973 1.1 cgd for (i = 0; i < 8; i++) {
974 1.1 cgd k = 0;
975 1.1 cgd for (j = 0; j < 8; j++) {
976 1.1 cgd k <<= 1;
977 1.1 cgd k |= (unsigned char)*block++;
978 1.1 cgd }
979 1.1 cgd cblock.b[i] = k;
980 1.1 cgd }
981 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
982 1.1 cgd return (1);
983 1.1 cgd for (i = 7; i >= 0; i--) {
984 1.1 cgd k = cblock.b[i];
985 1.1 cgd for (j = 7; j >= 0; j--) {
986 1.1 cgd *--block = k&01;
987 1.1 cgd k >>= 1;
988 1.1 cgd }
989 1.1 cgd }
990 1.1 cgd return (0);
991 1.1 cgd }
992 1.1 cgd
993 1.1 cgd #ifdef DEBUG
994 1.1 cgd STATIC
995 1.28 perry prtab(const char *s, unsigned char *t, int num_rows)
996 1.1 cgd {
997 1.7 lukem int i, j;
998 1.1 cgd
999 1.1 cgd (void)printf("%s:\n", s);
1000 1.1 cgd for (i = 0; i < num_rows; i++) {
1001 1.1 cgd for (j = 0; j < 8; j++) {
1002 1.1 cgd (void)printf("%3d", t[i*8+j]);
1003 1.1 cgd }
1004 1.1 cgd (void)printf("\n");
1005 1.1 cgd }
1006 1.1 cgd (void)printf("\n");
1007 1.1 cgd }
1008 1.1 cgd #endif
1009 1.22 sjg
1010 1.22 sjg #if defined(MAIN) || defined(UNIT_TEST)
1011 1.22 sjg #include <err.h>
1012 1.22 sjg
1013 1.22 sjg int
1014 1.28 perry main(int argc, char *argv[])
1015 1.22 sjg {
1016 1.22 sjg if (argc < 2)
1017 1.22 sjg errx(1, "Usage: %s password [salt]\n", argv[0]);
1018 1.22 sjg
1019 1.22 sjg printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1020 1.22 sjg exit(0);
1021 1.22 sjg }
1022 1.22 sjg #endif
1023