crypt.c revision 1.35 1 1.35 jhigh /* $NetBSD: crypt.c,v 1.35 2019/10/05 18:06:16 jhigh Exp $ */
2 1.5 cgd
3 1.1 cgd /*
4 1.5 cgd * Copyright (c) 1989, 1993
5 1.5 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Tom Truscott.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.21 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.7 lukem #include <sys/cdefs.h>
36 1.7 lukem #if !defined(lint)
37 1.5 cgd #if 0
38 1.5 cgd static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 1.7 lukem #else
40 1.35 jhigh __RCSID("$NetBSD: crypt.c,v 1.35 2019/10/05 18:06:16 jhigh Exp $");
41 1.5 cgd #endif
42 1.7 lukem #endif /* not lint */
43 1.1 cgd
44 1.1 cgd #include <limits.h>
45 1.1 cgd #include <pwd.h>
46 1.12 kleink #include <stdlib.h>
47 1.35 jhigh #include <string.h> /* for strcmp */
48 1.6 mikel #include <unistd.h>
49 1.26 hubertf #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
50 1.23 christos #include <stdio.h>
51 1.23 christos #endif
52 1.1 cgd
53 1.22 sjg #include "crypt.h"
54 1.22 sjg
55 1.1 cgd /*
56 1.1 cgd * UNIX password, and DES, encryption.
57 1.1 cgd * By Tom Truscott, trt (at) rti.rti.org,
58 1.1 cgd * from algorithms by Robert W. Baldwin and James Gillogly.
59 1.1 cgd *
60 1.1 cgd * References:
61 1.1 cgd * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
62 1.1 cgd * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
63 1.1 cgd *
64 1.1 cgd * "Password Security: A Case History," R. Morris and Ken Thompson,
65 1.1 cgd * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
66 1.1 cgd *
67 1.1 cgd * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
68 1.1 cgd * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
69 1.1 cgd */
70 1.1 cgd
71 1.1 cgd /* ===== Configuration ==================== */
72 1.1 cgd
73 1.1 cgd /*
74 1.1 cgd * define "MUST_ALIGN" if your compiler cannot load/store
75 1.1 cgd * long integers at arbitrary (e.g. odd) memory locations.
76 1.1 cgd * (Either that or never pass unaligned addresses to des_cipher!)
77 1.1 cgd */
78 1.13 matt #if !defined(__vax__) && !defined(__i386__)
79 1.1 cgd #define MUST_ALIGN
80 1.1 cgd #endif
81 1.1 cgd
82 1.1 cgd #ifdef CHAR_BITS
83 1.1 cgd #if CHAR_BITS != 8
84 1.1 cgd #error C_block structure assumes 8 bit characters
85 1.1 cgd #endif
86 1.1 cgd #endif
87 1.1 cgd
88 1.1 cgd /*
89 1.1 cgd * define "B64" to be the declaration for a 64 bit integer.
90 1.1 cgd * XXX this feature is currently unused, see "endian" comment below.
91 1.1 cgd */
92 1.1 cgd #if defined(cray)
93 1.1 cgd #define B64 long
94 1.1 cgd #endif
95 1.1 cgd #if defined(convex)
96 1.1 cgd #define B64 long long
97 1.1 cgd #endif
98 1.1 cgd
99 1.1 cgd /*
100 1.1 cgd * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
101 1.1 cgd * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
102 1.1 cgd * little effect on crypt().
103 1.1 cgd */
104 1.1 cgd #if defined(notdef)
105 1.1 cgd #define LARGEDATA
106 1.1 cgd #endif
107 1.1 cgd
108 1.6 mikel /* compile with "-DSTATIC=void" when profiling */
109 1.1 cgd #ifndef STATIC
110 1.6 mikel #define STATIC static void
111 1.1 cgd #endif
112 1.1 cgd
113 1.1 cgd /* ==================================== */
114 1.1 cgd
115 1.1 cgd /*
116 1.1 cgd * Cipher-block representation (Bob Baldwin):
117 1.1 cgd *
118 1.1 cgd * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
119 1.1 cgd * representation is to store one bit per byte in an array of bytes. Bit N of
120 1.1 cgd * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
121 1.1 cgd * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
122 1.1 cgd * first byte, 9..16 in the second, and so on. The DES spec apparently has
123 1.1 cgd * bit 1 in the MSB of the first byte, but that is particularly noxious so we
124 1.1 cgd * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
125 1.1 cgd * the MSB of the first byte. Specifically, the 64-bit input data and key are
126 1.1 cgd * converted to LSB format, and the output 64-bit block is converted back into
127 1.1 cgd * MSB format.
128 1.1 cgd *
129 1.1 cgd * DES operates internally on groups of 32 bits which are expanded to 48 bits
130 1.1 cgd * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
131 1.1 cgd * the computation, the expansion is applied only once, the expanded
132 1.1 cgd * representation is maintained during the encryption, and a compression
133 1.1 cgd * permutation is applied only at the end. To speed up the S-box lookups,
134 1.1 cgd * the 48 bits are maintained as eight 6 bit groups, one per byte, which
135 1.1 cgd * directly feed the eight S-boxes. Within each byte, the 6 bits are the
136 1.1 cgd * most significant ones. The low two bits of each byte are zero. (Thus,
137 1.1 cgd * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
138 1.1 cgd * first byte in the eight byte representation, bit 2 of the 48 bit value is
139 1.1 cgd * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
140 1.1 cgd * used, in which the output is the 64 bit result of an S-box lookup which
141 1.1 cgd * has been permuted by P and expanded by E, and is ready for use in the next
142 1.1 cgd * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
143 1.1 cgd * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
144 1.1 cgd * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
145 1.1 cgd * "salt" are also converted to this 8*(6+2) format. The SPE table size is
146 1.1 cgd * 8*64*8 = 4K bytes.
147 1.1 cgd *
148 1.1 cgd * To speed up bit-parallel operations (such as XOR), the 8 byte
149 1.1 cgd * representation is "union"ed with 32 bit values "i0" and "i1", and, on
150 1.1 cgd * machines which support it, a 64 bit value "b64". This data structure,
151 1.1 cgd * "C_block", has two problems. First, alignment restrictions must be
152 1.1 cgd * honored. Second, the byte-order (e.g. little-endian or big-endian) of
153 1.1 cgd * the architecture becomes visible.
154 1.1 cgd *
155 1.1 cgd * The byte-order problem is unfortunate, since on the one hand it is good
156 1.1 cgd * to have a machine-independent C_block representation (bits 1..8 in the
157 1.1 cgd * first byte, etc.), and on the other hand it is good for the LSB of the
158 1.1 cgd * first byte to be the LSB of i0. We cannot have both these things, so we
159 1.1 cgd * currently use the "little-endian" representation and avoid any multi-byte
160 1.1 cgd * operations that depend on byte order. This largely precludes use of the
161 1.1 cgd * 64-bit datatype since the relative order of i0 and i1 are unknown. It
162 1.1 cgd * also inhibits grouping the SPE table to look up 12 bits at a time. (The
163 1.1 cgd * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
164 1.1 cgd * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
165 1.1 cgd * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
166 1.1 cgd * requires a 128 kilobyte table, so perhaps this is not a big loss.
167 1.1 cgd *
168 1.1 cgd * Permutation representation (Jim Gillogly):
169 1.1 cgd *
170 1.1 cgd * A transformation is defined by its effect on each of the 8 bytes of the
171 1.1 cgd * 64-bit input. For each byte we give a 64-bit output that has the bits in
172 1.1 cgd * the input distributed appropriately. The transformation is then the OR
173 1.1 cgd * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
174 1.1 cgd * each transformation. Unless LARGEDATA is defined, however, a more compact
175 1.1 cgd * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
176 1.1 cgd * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
177 1.1 cgd * is slower but tolerable, particularly for password encryption in which
178 1.1 cgd * the SPE transformation is iterated many times. The small tables total 9K
179 1.1 cgd * bytes, the large tables total 72K bytes.
180 1.1 cgd *
181 1.1 cgd * The transformations used are:
182 1.1 cgd * IE3264: MSB->LSB conversion, initial permutation, and expansion.
183 1.1 cgd * This is done by collecting the 32 even-numbered bits and applying
184 1.1 cgd * a 32->64 bit transformation, and then collecting the 32 odd-numbered
185 1.1 cgd * bits and applying the same transformation. Since there are only
186 1.1 cgd * 32 input bits, the IE3264 transformation table is half the size of
187 1.1 cgd * the usual table.
188 1.1 cgd * CF6464: Compression, final permutation, and LSB->MSB conversion.
189 1.1 cgd * This is done by two trivial 48->32 bit compressions to obtain
190 1.1 cgd * a 64-bit block (the bit numbering is given in the "CIFP" table)
191 1.1 cgd * followed by a 64->64 bit "cleanup" transformation. (It would
192 1.1 cgd * be possible to group the bits in the 64-bit block so that 2
193 1.1 cgd * identical 32->32 bit transformations could be used instead,
194 1.1 cgd * saving a factor of 4 in space and possibly 2 in time, but
195 1.1 cgd * byte-ordering and other complications rear their ugly head.
196 1.1 cgd * Similar opportunities/problems arise in the key schedule
197 1.1 cgd * transforms.)
198 1.1 cgd * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
199 1.1 cgd * This admittedly baroque 64->64 bit transformation is used to
200 1.1 cgd * produce the first code (in 8*(6+2) format) of the key schedule.
201 1.1 cgd * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
202 1.1 cgd * It would be possible to define 15 more transformations, each
203 1.1 cgd * with a different rotation, to generate the entire key schedule.
204 1.1 cgd * To save space, however, we instead permute each code into the
205 1.1 cgd * next by using a transformation that "undoes" the PC2 permutation,
206 1.1 cgd * rotates the code, and then applies PC2. Unfortunately, PC2
207 1.1 cgd * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
208 1.1 cgd * invertible. We get around that problem by using a modified PC2
209 1.1 cgd * which retains the 8 otherwise-lost bits in the unused low-order
210 1.1 cgd * bits of each byte. The low-order bits are cleared when the
211 1.1 cgd * codes are stored into the key schedule.
212 1.1 cgd * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
213 1.1 cgd * This is faster than applying PC2ROT[0] twice,
214 1.1 cgd *
215 1.1 cgd * The Bell Labs "salt" (Bob Baldwin):
216 1.1 cgd *
217 1.1 cgd * The salting is a simple permutation applied to the 48-bit result of E.
218 1.1 cgd * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
219 1.1 cgd * i+24 of the result are swapped. The salt is thus a 24 bit number, with
220 1.1 cgd * 16777216 possible values. (The original salt was 12 bits and could not
221 1.1 cgd * swap bits 13..24 with 36..48.)
222 1.1 cgd *
223 1.1 cgd * It is possible, but ugly, to warp the SPE table to account for the salt
224 1.1 cgd * permutation. Fortunately, the conditional bit swapping requires only
225 1.1 cgd * about four machine instructions and can be done on-the-fly with about an
226 1.1 cgd * 8% performance penalty.
227 1.1 cgd */
228 1.1 cgd
229 1.1 cgd typedef union {
230 1.1 cgd unsigned char b[8];
231 1.1 cgd struct {
232 1.4 cgd int32_t i0;
233 1.4 cgd int32_t i1;
234 1.1 cgd } b32;
235 1.1 cgd #if defined(B64)
236 1.1 cgd B64 b64;
237 1.1 cgd #endif
238 1.1 cgd } C_block;
239 1.1 cgd
240 1.1 cgd /*
241 1.1 cgd * Convert twenty-four-bit long in host-order
242 1.1 cgd * to six bits (and 2 low-order zeroes) per char little-endian format.
243 1.1 cgd */
244 1.1 cgd #define TO_SIX_BIT(rslt, src) { \
245 1.1 cgd C_block cvt; \
246 1.1 cgd cvt.b[0] = src; src >>= 6; \
247 1.1 cgd cvt.b[1] = src; src >>= 6; \
248 1.1 cgd cvt.b[2] = src; src >>= 6; \
249 1.1 cgd cvt.b[3] = src; \
250 1.1 cgd rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
251 1.1 cgd }
252 1.1 cgd
253 1.1 cgd /*
254 1.1 cgd * These macros may someday permit efficient use of 64-bit integers.
255 1.1 cgd */
256 1.1 cgd #define ZERO(d,d0,d1) d0 = 0, d1 = 0
257 1.1 cgd #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
258 1.1 cgd #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
259 1.1 cgd #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
260 1.1 cgd #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
261 1.4 cgd #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
262 1.1 cgd
263 1.1 cgd #if defined(LARGEDATA)
264 1.1 cgd /* Waste memory like crazy. Also, do permutations in line */
265 1.1 cgd #define LGCHUNKBITS 3
266 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
267 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
268 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
269 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
270 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
271 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
272 1.1 cgd OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
273 1.1 cgd OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
274 1.1 cgd OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
275 1.1 cgd OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
276 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
277 1.1 cgd LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
278 1.1 cgd OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
279 1.1 cgd OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
280 1.1 cgd OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
281 1.1 cgd #else
282 1.1 cgd /* "small data" */
283 1.1 cgd #define LGCHUNKBITS 2
284 1.1 cgd #define CHUNKBITS (1<<LGCHUNKBITS)
285 1.1 cgd #define PERM6464(d,d0,d1,cpp,p) \
286 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
287 1.1 cgd #define PERM3264(d,d0,d1,cpp,p) \
288 1.1 cgd { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
289 1.8 mikel #endif /* LARGEDATA */
290 1.7 lukem
291 1.27 perry STATIC init_des(void);
292 1.27 perry STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
293 1.27 perry const unsigned char [64], int, int);
294 1.8 mikel #ifndef LARGEDATA
295 1.27 perry STATIC permute(const unsigned char *, C_block *, C_block *, int);
296 1.8 mikel #endif
297 1.7 lukem #ifdef DEBUG
298 1.27 perry STATIC prtab(const char *, unsigned char *, int);
299 1.7 lukem #endif
300 1.7 lukem
301 1.7 lukem
302 1.8 mikel #ifndef LARGEDATA
303 1.1 cgd STATIC
304 1.28 perry permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
305 1.1 cgd {
306 1.7 lukem DCL_BLOCK(D,D0,D1);
307 1.7 lukem C_block *tp;
308 1.7 lukem int t;
309 1.1 cgd
310 1.1 cgd ZERO(D,D0,D1);
311 1.1 cgd do {
312 1.1 cgd t = *cp++;
313 1.1 cgd tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 1.1 cgd tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
315 1.1 cgd } while (--chars_in > 0);
316 1.1 cgd STORE(D,D0,D1,*out);
317 1.1 cgd }
318 1.1 cgd #endif /* LARGEDATA */
319 1.1 cgd
320 1.1 cgd
321 1.1 cgd /* ===== (mostly) Standard DES Tables ==================== */
322 1.1 cgd
323 1.20 jdolecek static const unsigned char IP[] = { /* initial permutation */
324 1.1 cgd 58, 50, 42, 34, 26, 18, 10, 2,
325 1.1 cgd 60, 52, 44, 36, 28, 20, 12, 4,
326 1.1 cgd 62, 54, 46, 38, 30, 22, 14, 6,
327 1.1 cgd 64, 56, 48, 40, 32, 24, 16, 8,
328 1.1 cgd 57, 49, 41, 33, 25, 17, 9, 1,
329 1.1 cgd 59, 51, 43, 35, 27, 19, 11, 3,
330 1.1 cgd 61, 53, 45, 37, 29, 21, 13, 5,
331 1.1 cgd 63, 55, 47, 39, 31, 23, 15, 7,
332 1.1 cgd };
333 1.1 cgd
334 1.1 cgd /* The final permutation is the inverse of IP - no table is necessary */
335 1.1 cgd
336 1.20 jdolecek static const unsigned char ExpandTr[] = { /* expansion operation */
337 1.1 cgd 32, 1, 2, 3, 4, 5,
338 1.1 cgd 4, 5, 6, 7, 8, 9,
339 1.1 cgd 8, 9, 10, 11, 12, 13,
340 1.1 cgd 12, 13, 14, 15, 16, 17,
341 1.1 cgd 16, 17, 18, 19, 20, 21,
342 1.1 cgd 20, 21, 22, 23, 24, 25,
343 1.1 cgd 24, 25, 26, 27, 28, 29,
344 1.1 cgd 28, 29, 30, 31, 32, 1,
345 1.1 cgd };
346 1.1 cgd
347 1.20 jdolecek static const unsigned char PC1[] = { /* permuted choice table 1 */
348 1.1 cgd 57, 49, 41, 33, 25, 17, 9,
349 1.1 cgd 1, 58, 50, 42, 34, 26, 18,
350 1.1 cgd 10, 2, 59, 51, 43, 35, 27,
351 1.1 cgd 19, 11, 3, 60, 52, 44, 36,
352 1.1 cgd
353 1.1 cgd 63, 55, 47, 39, 31, 23, 15,
354 1.1 cgd 7, 62, 54, 46, 38, 30, 22,
355 1.1 cgd 14, 6, 61, 53, 45, 37, 29,
356 1.1 cgd 21, 13, 5, 28, 20, 12, 4,
357 1.1 cgd };
358 1.1 cgd
359 1.20 jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
360 1.1 cgd 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
361 1.1 cgd };
362 1.1 cgd
363 1.1 cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
364 1.20 jdolecek static const unsigned char PC2[] = { /* permuted choice table 2 */
365 1.1 cgd 9, 18, 14, 17, 11, 24, 1, 5,
366 1.1 cgd 22, 25, 3, 28, 15, 6, 21, 10,
367 1.1 cgd 35, 38, 23, 19, 12, 4, 26, 8,
368 1.1 cgd 43, 54, 16, 7, 27, 20, 13, 2,
369 1.1 cgd
370 1.1 cgd 0, 0, 41, 52, 31, 37, 47, 55,
371 1.1 cgd 0, 0, 30, 40, 51, 45, 33, 48,
372 1.1 cgd 0, 0, 44, 49, 39, 56, 34, 53,
373 1.1 cgd 0, 0, 46, 42, 50, 36, 29, 32,
374 1.1 cgd };
375 1.1 cgd
376 1.20 jdolecek static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
377 1.1 cgd /* S[1] */
378 1.6 mikel { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
379 1.6 mikel 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
380 1.6 mikel 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
381 1.6 mikel 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
382 1.1 cgd /* S[2] */
383 1.6 mikel { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
384 1.6 mikel 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
385 1.6 mikel 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
386 1.6 mikel 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
387 1.1 cgd /* S[3] */
388 1.6 mikel { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
389 1.6 mikel 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
390 1.6 mikel 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
391 1.6 mikel 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
392 1.1 cgd /* S[4] */
393 1.6 mikel { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
394 1.6 mikel 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
395 1.6 mikel 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
396 1.6 mikel 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
397 1.1 cgd /* S[5] */
398 1.6 mikel { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
399 1.6 mikel 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
400 1.6 mikel 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
401 1.6 mikel 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
402 1.1 cgd /* S[6] */
403 1.6 mikel { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
404 1.6 mikel 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
405 1.6 mikel 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
406 1.6 mikel 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
407 1.1 cgd /* S[7] */
408 1.6 mikel { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
409 1.6 mikel 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
410 1.6 mikel 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
411 1.6 mikel 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
412 1.1 cgd /* S[8] */
413 1.6 mikel { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
414 1.6 mikel 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
415 1.6 mikel 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
416 1.6 mikel 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
417 1.1 cgd };
418 1.1 cgd
419 1.20 jdolecek static const unsigned char P32Tr[] = { /* 32-bit permutation function */
420 1.1 cgd 16, 7, 20, 21,
421 1.1 cgd 29, 12, 28, 17,
422 1.1 cgd 1, 15, 23, 26,
423 1.1 cgd 5, 18, 31, 10,
424 1.1 cgd 2, 8, 24, 14,
425 1.1 cgd 32, 27, 3, 9,
426 1.1 cgd 19, 13, 30, 6,
427 1.1 cgd 22, 11, 4, 25,
428 1.1 cgd };
429 1.1 cgd
430 1.20 jdolecek static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
431 1.1 cgd 1, 2, 3, 4, 17, 18, 19, 20,
432 1.1 cgd 5, 6, 7, 8, 21, 22, 23, 24,
433 1.1 cgd 9, 10, 11, 12, 25, 26, 27, 28,
434 1.1 cgd 13, 14, 15, 16, 29, 30, 31, 32,
435 1.1 cgd
436 1.1 cgd 33, 34, 35, 36, 49, 50, 51, 52,
437 1.1 cgd 37, 38, 39, 40, 53, 54, 55, 56,
438 1.1 cgd 41, 42, 43, 44, 57, 58, 59, 60,
439 1.1 cgd 45, 46, 47, 48, 61, 62, 63, 64,
440 1.1 cgd };
441 1.1 cgd
442 1.20 jdolecek static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
443 1.1 cgd "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
444 1.1 cgd
445 1.1 cgd
446 1.1 cgd /* ===== Tables that are initialized at run time ==================== */
447 1.1 cgd
448 1.1 cgd
449 1.1 cgd /* Initial key schedule permutation */
450 1.1 cgd static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
451 1.1 cgd
452 1.1 cgd /* Subsequent key schedule rotation permutations */
453 1.1 cgd static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
454 1.1 cgd
455 1.1 cgd /* Initial permutation/expansion table */
456 1.1 cgd static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
457 1.1 cgd
458 1.1 cgd /* Table that combines the S, P, and E operations. */
459 1.4 cgd static int32_t SPE[2][8][64];
460 1.1 cgd
461 1.1 cgd /* compressed/interleaved => final permutation table */
462 1.1 cgd static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
463 1.1 cgd
464 1.1 cgd
465 1.1 cgd /* ==================================== */
466 1.1 cgd
467 1.1 cgd
468 1.1 cgd static C_block constdatablock; /* encryption constant */
469 1.1 cgd static char cryptresult[1+4+4+11+1]; /* encrypted result */
470 1.1 cgd
471 1.30 christos /*
472 1.30 christos * We match the behavior of UFC-crypt on systems where "char" is signed by
473 1.30 christos * default (the majority), regardless of char's signedness on our system.
474 1.30 christos */
475 1.30 christos static inline int
476 1.30 christos ascii_to_bin(char ch)
477 1.30 christos {
478 1.30 christos signed char sch = ch;
479 1.30 christos int retval;
480 1.30 christos
481 1.30 christos if (sch >= 'a')
482 1.30 christos retval = sch - ('a' - 38);
483 1.30 christos else if (sch >= 'A')
484 1.30 christos retval = sch - ('A' - 12);
485 1.30 christos else
486 1.30 christos retval = sch - '.';
487 1.30 christos
488 1.30 christos return retval & 0x3f;
489 1.30 christos }
490 1.32 christos
491 1.30 christos /*
492 1.30 christos * When we choose to "support" invalid salts, nevertheless disallow those
493 1.30 christos * containing characters that would violate the passwd file format.
494 1.30 christos */
495 1.30 christos static inline int
496 1.30 christos ascii_is_unsafe(char ch)
497 1.30 christos {
498 1.30 christos return !ch || ch == '\n' || ch == ':';
499 1.30 christos }
500 1.17 christos
501 1.1 cgd /*
502 1.35 jhigh * We extract the scheme from setting str to allow for
503 1.35 jhigh * full scheme name comparison
504 1.35 jhigh * Updated to reflect alc suggestion(s)
505 1.35 jhigh *
506 1.35 jhigh * retuns boolean 0 on failure, 1 on success,
507 1.35 jhigh */
508 1.35 jhigh static int
509 1.35 jhigh nondes_scheme_substr(const char * setting,char * scheme, unsigned int len)
510 1.35 jhigh {
511 1.35 jhigh const char * start;
512 1.35 jhigh const char * sep;
513 1.35 jhigh
514 1.35 jhigh /* initialize head pointer */
515 1.35 jhigh start = setting;
516 1.35 jhigh
517 1.35 jhigh /* clear out scheme buffer regardless of result */
518 1.35 jhigh memset(scheme, 0, len);
519 1.35 jhigh
520 1.35 jhigh /* make sure we are working on non-des scheme string */
521 1.35 jhigh if (*start != _PASSWORD_NONDES) {
522 1.35 jhigh return 0;
523 1.35 jhigh }
524 1.35 jhigh
525 1.35 jhigh /* increment passed initial _PASSWORD_NONDES */
526 1.35 jhigh start++;
527 1.35 jhigh
528 1.35 jhigh if ((sep = memchr(start, _PASSWORD_NONDES,len-1)) == NULL) {
529 1.35 jhigh return 0;
530 1.35 jhigh }
531 1.35 jhigh
532 1.35 jhigh /* if empty string, we are done */
533 1.35 jhigh if (sep == start) {
534 1.35 jhigh return 1;
535 1.35 jhigh }
536 1.35 jhigh
537 1.35 jhigh /* copy scheme substr to buffer */
538 1.35 jhigh memcpy(scheme, start, (size_t)(sep - start));
539 1.35 jhigh
540 1.35 jhigh return 1;
541 1.35 jhigh }
542 1.35 jhigh
543 1.35 jhigh /*
544 1.1 cgd * Return a pointer to static data consisting of the "setting"
545 1.1 cgd * followed by an encryption produced by the "key" and "setting".
546 1.1 cgd */
547 1.33 christos static char *
548 1.32 christos __crypt(const char *key, const char *setting)
549 1.1 cgd {
550 1.7 lukem char *encp;
551 1.35 jhigh char scheme[12];
552 1.7 lukem int32_t i;
553 1.7 lukem int t;
554 1.35 jhigh int r;
555 1.4 cgd int32_t salt;
556 1.1 cgd int num_iter, salt_size;
557 1.1 cgd C_block keyblock, rsltblock;
558 1.16 ad
559 1.16 ad /* Non-DES encryption schemes hook in here. */
560 1.16 ad if (setting[0] == _PASSWORD_NONDES) {
561 1.35 jhigh r = nondes_scheme_substr(
562 1.35 jhigh setting, scheme, sizeof(scheme));
563 1.35 jhigh
564 1.35 jhigh /* return NULL if we are unable to extract substring */
565 1.35 jhigh if (!r) {
566 1.35 jhigh return NULL;
567 1.35 jhigh }
568 1.35 jhigh
569 1.35 jhigh /* $2a$ found in bcrypt.c:encode_salt */
570 1.35 jhigh if (strcmp(scheme, "2a") == 0) {
571 1.16 ad return (__bcrypt(key, setting));
572 1.35 jhigh } else if (strcmp(scheme, "sha1") == 0) {
573 1.35 jhigh /* $sha1$ found in crypt.h:SHA1_MAGIC */
574 1.22 sjg return (__crypt_sha1(key, setting));
575 1.35 jhigh } else if (strcmp(scheme, "1") == 0) {
576 1.35 jhigh /* $1$ found in pw_gensalt.c:__gensalt_md5 */
577 1.16 ad return (__md5crypt(key, setting));
578 1.35 jhigh } else {
579 1.35 jhigh /* invalid scheme, including empty string */
580 1.35 jhigh return NULL;
581 1.16 ad }
582 1.16 ad }
583 1.35 jhigh /* End non-DES handling */
584 1.1 cgd
585 1.1 cgd for (i = 0; i < 8; i++) {
586 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
587 1.1 cgd key++;
588 1.1 cgd keyblock.b[i] = t;
589 1.1 cgd }
590 1.30 christos if (des_setkey((char *)keyblock.b))
591 1.1 cgd return (NULL);
592 1.1 cgd
593 1.1 cgd encp = &cryptresult[0];
594 1.1 cgd switch (*setting) {
595 1.1 cgd case _PASSWORD_EFMT1:
596 1.1 cgd /*
597 1.1 cgd * Involve the rest of the password 8 characters at a time.
598 1.1 cgd */
599 1.1 cgd while (*key) {
600 1.18 wiz if (des_cipher((char *)(void *)&keyblock,
601 1.18 wiz (char *)(void *)&keyblock, 0L, 1))
602 1.1 cgd return (NULL);
603 1.1 cgd for (i = 0; i < 8; i++) {
604 1.1 cgd if ((t = 2*(unsigned char)(*key)) != 0)
605 1.1 cgd key++;
606 1.1 cgd keyblock.b[i] ^= t;
607 1.1 cgd }
608 1.1 cgd if (des_setkey((char *)keyblock.b))
609 1.1 cgd return (NULL);
610 1.1 cgd }
611 1.1 cgd
612 1.1 cgd *encp++ = *setting++;
613 1.1 cgd
614 1.1 cgd /* get iteration count */
615 1.1 cgd num_iter = 0;
616 1.1 cgd for (i = 4; --i >= 0; ) {
617 1.30 christos int value = ascii_to_bin(setting[i]);
618 1.30 christos if (itoa64[value] != setting[i])
619 1.30 christos return NULL;
620 1.30 christos encp[i] = setting[i];
621 1.30 christos num_iter = (num_iter << 6) | value;
622 1.1 cgd }
623 1.30 christos if (num_iter == 0)
624 1.30 christos return NULL;
625 1.1 cgd setting += 4;
626 1.1 cgd encp += 4;
627 1.1 cgd salt_size = 4;
628 1.1 cgd break;
629 1.1 cgd default:
630 1.1 cgd num_iter = 25;
631 1.1 cgd salt_size = 2;
632 1.30 christos if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
633 1.30 christos return NULL;
634 1.1 cgd }
635 1.1 cgd
636 1.1 cgd salt = 0;
637 1.1 cgd for (i = salt_size; --i >= 0; ) {
638 1.30 christos int value = ascii_to_bin(setting[i]);
639 1.31 christos if (salt_size > 2 && itoa64[value] != setting[i])
640 1.30 christos return NULL;
641 1.30 christos encp[i] = setting[i];
642 1.30 christos salt = (salt << 6) | value;
643 1.1 cgd }
644 1.1 cgd encp += salt_size;
645 1.18 wiz if (des_cipher((char *)(void *)&constdatablock,
646 1.18 wiz (char *)(void *)&rsltblock, salt, num_iter))
647 1.1 cgd return (NULL);
648 1.1 cgd
649 1.1 cgd /*
650 1.1 cgd * Encode the 64 cipher bits as 11 ascii characters.
651 1.1 cgd */
652 1.4 cgd i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
653 1.4 cgd rsltblock.b[2];
654 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
655 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
656 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
657 1.1 cgd encp[0] = itoa64[i]; encp += 4;
658 1.4 cgd i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
659 1.4 cgd rsltblock.b[5];
660 1.1 cgd encp[3] = itoa64[i&0x3f]; i >>= 6;
661 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
662 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
663 1.1 cgd encp[0] = itoa64[i]; encp += 4;
664 1.4 cgd i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
665 1.1 cgd encp[2] = itoa64[i&0x3f]; i >>= 6;
666 1.1 cgd encp[1] = itoa64[i&0x3f]; i >>= 6;
667 1.1 cgd encp[0] = itoa64[i];
668 1.1 cgd
669 1.1 cgd encp[3] = 0;
670 1.1 cgd
671 1.1 cgd return (cryptresult);
672 1.1 cgd }
673 1.1 cgd
674 1.32 christos char *
675 1.32 christos crypt(const char *key, const char *salt)
676 1.32 christos {
677 1.32 christos char *res = __crypt(key, salt);
678 1.32 christos if (res)
679 1.32 christos return res;
680 1.32 christos /* How do I handle errors ? Return "*0" or "*1" */
681 1.32 christos return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
682 1.32 christos }
683 1.1 cgd
684 1.1 cgd /*
685 1.1 cgd * The Key Schedule, filled in by des_setkey() or setkey().
686 1.1 cgd */
687 1.1 cgd #define KS_SIZE 16
688 1.1 cgd static C_block KS[KS_SIZE];
689 1.1 cgd
690 1.1 cgd /*
691 1.1 cgd * Set up the key schedule from the key.
692 1.1 cgd */
693 1.6 mikel int
694 1.28 perry des_setkey(const char *key)
695 1.1 cgd {
696 1.7 lukem DCL_BLOCK(K, K0, K1);
697 1.24 drochner C_block *help, *ptabp;
698 1.7 lukem int i;
699 1.1 cgd static int des_ready = 0;
700 1.1 cgd
701 1.1 cgd if (!des_ready) {
702 1.1 cgd init_des();
703 1.1 cgd des_ready = 1;
704 1.1 cgd }
705 1.1 cgd
706 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
707 1.24 drochner help = &KS[0];
708 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
709 1.1 cgd for (i = 1; i < 16; i++) {
710 1.24 drochner help++;
711 1.24 drochner STORE(K,K0,K1,*help);
712 1.1 cgd ptabp = (C_block *)PC2ROT[Rotates[i]-1];
713 1.24 drochner PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
714 1.24 drochner STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
715 1.1 cgd }
716 1.1 cgd return (0);
717 1.1 cgd }
718 1.1 cgd
719 1.1 cgd /*
720 1.1 cgd * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
721 1.14 soren * iterations of DES, using the given 24-bit salt and the pre-computed key
722 1.1 cgd * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
723 1.1 cgd *
724 1.1 cgd * NOTE: the performance of this routine is critically dependent on your
725 1.1 cgd * compiler and machine architecture.
726 1.1 cgd */
727 1.6 mikel int
728 1.28 perry des_cipher(const char *in, char *out, long salt, int num_iter)
729 1.1 cgd {
730 1.1 cgd /* variables that we want in registers, most important first */
731 1.1 cgd #if defined(pdp11)
732 1.10 perry int j;
733 1.1 cgd #endif
734 1.10 perry int32_t L0, L1, R0, R1, k;
735 1.10 perry C_block *kp;
736 1.10 perry int ks_inc, loop_count;
737 1.1 cgd C_block B;
738 1.1 cgd
739 1.1 cgd L0 = salt;
740 1.1 cgd TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
741 1.1 cgd
742 1.13 matt #if defined(__vax__) || defined(pdp11)
743 1.1 cgd salt = ~salt; /* "x &~ y" is faster than "x & y". */
744 1.1 cgd #define SALT (~salt)
745 1.1 cgd #else
746 1.1 cgd #define SALT salt
747 1.1 cgd #endif
748 1.1 cgd
749 1.1 cgd #if defined(MUST_ALIGN)
750 1.1 cgd B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
751 1.1 cgd B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
752 1.1 cgd LOAD(L,L0,L1,B);
753 1.1 cgd #else
754 1.24 drochner LOAD(L,L0,L1,*(const C_block *)in);
755 1.1 cgd #endif
756 1.1 cgd LOADREG(R,R0,R1,L,L0,L1);
757 1.1 cgd L0 &= 0x55555555L;
758 1.1 cgd L1 &= 0x55555555L;
759 1.1 cgd L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
760 1.1 cgd R0 &= 0xaaaaaaaaL;
761 1.1 cgd R1 = (R1 >> 1) & 0x55555555L;
762 1.1 cgd L1 = R0 | R1; /* L1 is the odd-numbered input bits */
763 1.1 cgd STORE(L,L0,L1,B);
764 1.1 cgd PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
765 1.1 cgd PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
766 1.1 cgd
767 1.1 cgd if (num_iter >= 0)
768 1.1 cgd { /* encryption */
769 1.1 cgd kp = &KS[0];
770 1.1 cgd ks_inc = sizeof(*kp);
771 1.1 cgd }
772 1.1 cgd else
773 1.1 cgd { /* decryption */
774 1.15 thorpej num_iter = -num_iter;
775 1.15 thorpej kp = &KS[KS_SIZE-1];
776 1.15 thorpej ks_inc = -(long)sizeof(*kp);
777 1.1 cgd }
778 1.1 cgd
779 1.1 cgd while (--num_iter >= 0) {
780 1.1 cgd loop_count = 8;
781 1.1 cgd do {
782 1.1 cgd
783 1.4 cgd #define SPTAB(t, i) \
784 1.5 cgd (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
785 1.1 cgd #if defined(gould)
786 1.1 cgd /* use this if B.b[i] is evaluated just once ... */
787 1.1 cgd #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
788 1.1 cgd #else
789 1.1 cgd #if defined(pdp11)
790 1.1 cgd /* use this if your "long" int indexing is slow */
791 1.1 cgd #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
792 1.1 cgd #else
793 1.11 mikel /* use this if "k" is allocated to a register ... */
794 1.1 cgd #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
795 1.1 cgd #endif
796 1.1 cgd #endif
797 1.1 cgd
798 1.1 cgd #define CRUNCH(p0, p1, q0, q1) \
799 1.1 cgd k = (q0 ^ q1) & SALT; \
800 1.1 cgd B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
801 1.1 cgd B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
802 1.1 cgd kp = (C_block *)((char *)kp+ks_inc); \
803 1.1 cgd \
804 1.1 cgd DOXOR(p0, p1, 0); \
805 1.1 cgd DOXOR(p0, p1, 1); \
806 1.1 cgd DOXOR(p0, p1, 2); \
807 1.1 cgd DOXOR(p0, p1, 3); \
808 1.1 cgd DOXOR(p0, p1, 4); \
809 1.1 cgd DOXOR(p0, p1, 5); \
810 1.1 cgd DOXOR(p0, p1, 6); \
811 1.1 cgd DOXOR(p0, p1, 7);
812 1.1 cgd
813 1.1 cgd CRUNCH(L0, L1, R0, R1);
814 1.1 cgd CRUNCH(R0, R1, L0, L1);
815 1.1 cgd } while (--loop_count != 0);
816 1.1 cgd kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
817 1.1 cgd
818 1.1 cgd
819 1.1 cgd /* swap L and R */
820 1.1 cgd L0 ^= R0; L1 ^= R1;
821 1.1 cgd R0 ^= L0; R1 ^= L1;
822 1.1 cgd L0 ^= R0; L1 ^= R1;
823 1.1 cgd }
824 1.1 cgd
825 1.1 cgd /* store the encrypted (or decrypted) result */
826 1.1 cgd L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
827 1.1 cgd L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
828 1.1 cgd STORE(L,L0,L1,B);
829 1.1 cgd PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
830 1.1 cgd #if defined(MUST_ALIGN)
831 1.1 cgd STORE(L,L0,L1,B);
832 1.1 cgd out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
833 1.1 cgd out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
834 1.1 cgd #else
835 1.1 cgd STORE(L,L0,L1,*(C_block *)out);
836 1.1 cgd #endif
837 1.1 cgd return (0);
838 1.1 cgd }
839 1.1 cgd
840 1.1 cgd
841 1.1 cgd /*
842 1.1 cgd * Initialize various tables. This need only be done once. It could even be
843 1.1 cgd * done at compile time, if the compiler were capable of that sort of thing.
844 1.1 cgd */
845 1.1 cgd STATIC
846 1.28 perry init_des(void)
847 1.1 cgd {
848 1.7 lukem int i, j;
849 1.7 lukem int32_t k;
850 1.7 lukem int tableno;
851 1.1 cgd static unsigned char perm[64], tmp32[32]; /* "static" for speed */
852 1.1 cgd
853 1.1 cgd /*
854 1.1 cgd * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
855 1.1 cgd */
856 1.1 cgd for (i = 0; i < 64; i++)
857 1.1 cgd perm[i] = 0;
858 1.1 cgd for (i = 0; i < 64; i++) {
859 1.1 cgd if ((k = PC2[i]) == 0)
860 1.1 cgd continue;
861 1.1 cgd k += Rotates[0]-1;
862 1.1 cgd if ((k%28) < Rotates[0]) k -= 28;
863 1.1 cgd k = PC1[k];
864 1.1 cgd if (k > 0) {
865 1.1 cgd k--;
866 1.1 cgd k = (k|07) - (k&07);
867 1.1 cgd k++;
868 1.1 cgd }
869 1.1 cgd perm[i] = k;
870 1.1 cgd }
871 1.1 cgd #ifdef DEBUG
872 1.1 cgd prtab("pc1tab", perm, 8);
873 1.1 cgd #endif
874 1.1 cgd init_perm(PC1ROT, perm, 8, 8);
875 1.1 cgd
876 1.1 cgd /*
877 1.1 cgd * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
878 1.1 cgd */
879 1.1 cgd for (j = 0; j < 2; j++) {
880 1.1 cgd unsigned char pc2inv[64];
881 1.1 cgd for (i = 0; i < 64; i++)
882 1.1 cgd perm[i] = pc2inv[i] = 0;
883 1.1 cgd for (i = 0; i < 64; i++) {
884 1.1 cgd if ((k = PC2[i]) == 0)
885 1.1 cgd continue;
886 1.1 cgd pc2inv[k-1] = i+1;
887 1.1 cgd }
888 1.1 cgd for (i = 0; i < 64; i++) {
889 1.1 cgd if ((k = PC2[i]) == 0)
890 1.1 cgd continue;
891 1.1 cgd k += j;
892 1.1 cgd if ((k%28) <= j) k -= 28;
893 1.1 cgd perm[i] = pc2inv[k];
894 1.1 cgd }
895 1.1 cgd #ifdef DEBUG
896 1.1 cgd prtab("pc2tab", perm, 8);
897 1.1 cgd #endif
898 1.1 cgd init_perm(PC2ROT[j], perm, 8, 8);
899 1.1 cgd }
900 1.1 cgd
901 1.1 cgd /*
902 1.1 cgd * Bit reverse, then initial permutation, then expansion.
903 1.1 cgd */
904 1.1 cgd for (i = 0; i < 8; i++) {
905 1.1 cgd for (j = 0; j < 8; j++) {
906 1.1 cgd k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
907 1.1 cgd if (k > 32)
908 1.1 cgd k -= 32;
909 1.1 cgd else if (k > 0)
910 1.1 cgd k--;
911 1.1 cgd if (k > 0) {
912 1.1 cgd k--;
913 1.1 cgd k = (k|07) - (k&07);
914 1.1 cgd k++;
915 1.1 cgd }
916 1.1 cgd perm[i*8+j] = k;
917 1.1 cgd }
918 1.1 cgd }
919 1.1 cgd #ifdef DEBUG
920 1.1 cgd prtab("ietab", perm, 8);
921 1.1 cgd #endif
922 1.1 cgd init_perm(IE3264, perm, 4, 8);
923 1.1 cgd
924 1.1 cgd /*
925 1.1 cgd * Compression, then final permutation, then bit reverse.
926 1.1 cgd */
927 1.1 cgd for (i = 0; i < 64; i++) {
928 1.1 cgd k = IP[CIFP[i]-1];
929 1.1 cgd if (k > 0) {
930 1.1 cgd k--;
931 1.1 cgd k = (k|07) - (k&07);
932 1.1 cgd k++;
933 1.1 cgd }
934 1.1 cgd perm[k-1] = i+1;
935 1.1 cgd }
936 1.1 cgd #ifdef DEBUG
937 1.1 cgd prtab("cftab", perm, 8);
938 1.1 cgd #endif
939 1.1 cgd init_perm(CF6464, perm, 8, 8);
940 1.1 cgd
941 1.1 cgd /*
942 1.1 cgd * SPE table
943 1.1 cgd */
944 1.1 cgd for (i = 0; i < 48; i++)
945 1.1 cgd perm[i] = P32Tr[ExpandTr[i]-1];
946 1.1 cgd for (tableno = 0; tableno < 8; tableno++) {
947 1.1 cgd for (j = 0; j < 64; j++) {
948 1.1 cgd k = (((j >> 0) &01) << 5)|
949 1.1 cgd (((j >> 1) &01) << 3)|
950 1.1 cgd (((j >> 2) &01) << 2)|
951 1.1 cgd (((j >> 3) &01) << 1)|
952 1.1 cgd (((j >> 4) &01) << 0)|
953 1.1 cgd (((j >> 5) &01) << 4);
954 1.1 cgd k = S[tableno][k];
955 1.1 cgd k = (((k >> 3)&01) << 0)|
956 1.1 cgd (((k >> 2)&01) << 1)|
957 1.1 cgd (((k >> 1)&01) << 2)|
958 1.1 cgd (((k >> 0)&01) << 3);
959 1.1 cgd for (i = 0; i < 32; i++)
960 1.1 cgd tmp32[i] = 0;
961 1.1 cgd for (i = 0; i < 4; i++)
962 1.1 cgd tmp32[4 * tableno + i] = (k >> i) & 01;
963 1.1 cgd k = 0;
964 1.1 cgd for (i = 24; --i >= 0; )
965 1.1 cgd k = (k<<1) | tmp32[perm[i]-1];
966 1.1 cgd TO_SIX_BIT(SPE[0][tableno][j], k);
967 1.1 cgd k = 0;
968 1.1 cgd for (i = 24; --i >= 0; )
969 1.1 cgd k = (k<<1) | tmp32[perm[i+24]-1];
970 1.1 cgd TO_SIX_BIT(SPE[1][tableno][j], k);
971 1.1 cgd }
972 1.1 cgd }
973 1.1 cgd }
974 1.1 cgd
975 1.1 cgd /*
976 1.1 cgd * Initialize "perm" to represent transformation "p", which rearranges
977 1.1 cgd * (perhaps with expansion and/or contraction) one packed array of bits
978 1.1 cgd * (of size "chars_in" characters) into another array (of size "chars_out"
979 1.1 cgd * characters).
980 1.1 cgd *
981 1.1 cgd * "perm" must be all-zeroes on entry to this routine.
982 1.1 cgd */
983 1.1 cgd STATIC
984 1.28 perry init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
985 1.28 perry int chars_in, int chars_out)
986 1.1 cgd {
987 1.7 lukem int i, j, k, l;
988 1.1 cgd
989 1.1 cgd for (k = 0; k < chars_out*8; k++) { /* each output bit position */
990 1.1 cgd l = p[k] - 1; /* where this bit comes from */
991 1.1 cgd if (l < 0)
992 1.1 cgd continue; /* output bit is always 0 */
993 1.1 cgd i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
994 1.1 cgd l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
995 1.1 cgd for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
996 1.1 cgd if ((j & l) != 0)
997 1.1 cgd perm[i][j].b[k>>3] |= 1<<(k&07);
998 1.1 cgd }
999 1.1 cgd }
1000 1.1 cgd }
1001 1.1 cgd
1002 1.1 cgd /*
1003 1.1 cgd * "setkey" routine (for backwards compatibility)
1004 1.1 cgd */
1005 1.6 mikel int
1006 1.28 perry setkey(const char *key)
1007 1.1 cgd {
1008 1.7 lukem int i, j, k;
1009 1.1 cgd C_block keyblock;
1010 1.1 cgd
1011 1.1 cgd for (i = 0; i < 8; i++) {
1012 1.1 cgd k = 0;
1013 1.1 cgd for (j = 0; j < 8; j++) {
1014 1.1 cgd k <<= 1;
1015 1.1 cgd k |= (unsigned char)*key++;
1016 1.1 cgd }
1017 1.1 cgd keyblock.b[i] = k;
1018 1.1 cgd }
1019 1.1 cgd return (des_setkey((char *)keyblock.b));
1020 1.1 cgd }
1021 1.1 cgd
1022 1.1 cgd /*
1023 1.1 cgd * "encrypt" routine (for backwards compatibility)
1024 1.1 cgd */
1025 1.6 mikel int
1026 1.28 perry encrypt(char *block, int flag)
1027 1.1 cgd {
1028 1.7 lukem int i, j, k;
1029 1.1 cgd C_block cblock;
1030 1.1 cgd
1031 1.1 cgd for (i = 0; i < 8; i++) {
1032 1.1 cgd k = 0;
1033 1.1 cgd for (j = 0; j < 8; j++) {
1034 1.1 cgd k <<= 1;
1035 1.1 cgd k |= (unsigned char)*block++;
1036 1.1 cgd }
1037 1.1 cgd cblock.b[i] = k;
1038 1.1 cgd }
1039 1.1 cgd if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
1040 1.1 cgd return (1);
1041 1.1 cgd for (i = 7; i >= 0; i--) {
1042 1.1 cgd k = cblock.b[i];
1043 1.1 cgd for (j = 7; j >= 0; j--) {
1044 1.1 cgd *--block = k&01;
1045 1.1 cgd k >>= 1;
1046 1.1 cgd }
1047 1.1 cgd }
1048 1.1 cgd return (0);
1049 1.1 cgd }
1050 1.1 cgd
1051 1.1 cgd #ifdef DEBUG
1052 1.1 cgd STATIC
1053 1.28 perry prtab(const char *s, unsigned char *t, int num_rows)
1054 1.1 cgd {
1055 1.7 lukem int i, j;
1056 1.1 cgd
1057 1.1 cgd (void)printf("%s:\n", s);
1058 1.1 cgd for (i = 0; i < num_rows; i++) {
1059 1.1 cgd for (j = 0; j < 8; j++) {
1060 1.1 cgd (void)printf("%3d", t[i*8+j]);
1061 1.1 cgd }
1062 1.1 cgd (void)printf("\n");
1063 1.1 cgd }
1064 1.1 cgd (void)printf("\n");
1065 1.1 cgd }
1066 1.1 cgd #endif
1067 1.22 sjg
1068 1.22 sjg #if defined(MAIN) || defined(UNIT_TEST)
1069 1.22 sjg #include <err.h>
1070 1.22 sjg
1071 1.22 sjg int
1072 1.28 perry main(int argc, char *argv[])
1073 1.22 sjg {
1074 1.34 christos if (argc < 2) {
1075 1.34 christos fprintf(stderr, "Usage: %s password [salt]\n", getprogname());
1076 1.34 christos return EXIT_FAILURE;
1077 1.34 christos }
1078 1.22 sjg
1079 1.34 christos printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1080 1.34 christos return EXIT_SUCCESS;
1081 1.22 sjg }
1082 1.22 sjg #endif
1083