Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.37
      1  1.37     kamil /*	$NetBSD: crypt.c,v 1.37 2020/02/22 10:22:32 kamil Exp $	*/
      2   1.5       cgd 
      3   1.1       cgd /*
      4   1.5       cgd  * Copyright (c) 1989, 1993
      5   1.5       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * This code is derived from software contributed to Berkeley by
      8   1.1       cgd  * Tom Truscott.
      9   1.1       cgd  *
     10   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1       cgd  * modification, are permitted provided that the following conditions
     12   1.1       cgd  * are met:
     13   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18  1.21       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1       cgd  *    may be used to endorse or promote products derived from this software
     20   1.1       cgd  *    without specific prior written permission.
     21   1.1       cgd  *
     22   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1       cgd  * SUCH DAMAGE.
     33   1.1       cgd  */
     34   1.1       cgd 
     35   1.7     lukem #include <sys/cdefs.h>
     36   1.7     lukem #if !defined(lint)
     37   1.5       cgd #if 0
     38   1.5       cgd static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     39   1.7     lukem #else
     40  1.37     kamil __RCSID("$NetBSD: crypt.c,v 1.37 2020/02/22 10:22:32 kamil Exp $");
     41   1.5       cgd #endif
     42   1.7     lukem #endif /* not lint */
     43   1.1       cgd 
     44   1.1       cgd #include <limits.h>
     45   1.1       cgd #include <pwd.h>
     46  1.12    kleink #include <stdlib.h>
     47  1.35     jhigh #include <string.h> /* for strcmp */
     48   1.6     mikel #include <unistd.h>
     49  1.26   hubertf #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
     50  1.23  christos #include <stdio.h>
     51  1.23  christos #endif
     52   1.1       cgd 
     53  1.22       sjg #include "crypt.h"
     54  1.22       sjg 
     55   1.1       cgd /*
     56   1.1       cgd  * UNIX password, and DES, encryption.
     57   1.1       cgd  * By Tom Truscott, trt (at) rti.rti.org,
     58   1.1       cgd  * from algorithms by Robert W. Baldwin and James Gillogly.
     59   1.1       cgd  *
     60   1.1       cgd  * References:
     61   1.1       cgd  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     62   1.1       cgd  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     63   1.1       cgd  *
     64   1.1       cgd  * "Password Security: A Case History," R. Morris and Ken Thompson,
     65   1.1       cgd  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     66   1.1       cgd  *
     67   1.1       cgd  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     68   1.1       cgd  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     69   1.1       cgd  */
     70   1.1       cgd 
     71   1.1       cgd /* =====  Configuration ==================== */
     72   1.1       cgd 
     73   1.1       cgd /*
     74   1.1       cgd  * define "MUST_ALIGN" if your compiler cannot load/store
     75   1.1       cgd  * long integers at arbitrary (e.g. odd) memory locations.
     76   1.1       cgd  * (Either that or never pass unaligned addresses to des_cipher!)
     77   1.1       cgd  */
     78  1.13      matt #if !defined(__vax__) && !defined(__i386__)
     79   1.1       cgd #define	MUST_ALIGN
     80   1.1       cgd #endif
     81   1.1       cgd 
     82   1.1       cgd #ifdef CHAR_BITS
     83   1.1       cgd #if CHAR_BITS != 8
     84   1.1       cgd 	#error C_block structure assumes 8 bit characters
     85   1.1       cgd #endif
     86   1.1       cgd #endif
     87   1.1       cgd 
     88   1.1       cgd /*
     89   1.1       cgd  * define "B64" to be the declaration for a 64 bit integer.
     90   1.1       cgd  * XXX this feature is currently unused, see "endian" comment below.
     91   1.1       cgd  */
     92   1.1       cgd #if defined(cray)
     93   1.1       cgd #define	B64	long
     94   1.1       cgd #endif
     95   1.1       cgd #if defined(convex)
     96   1.1       cgd #define	B64	long long
     97   1.1       cgd #endif
     98   1.1       cgd 
     99   1.1       cgd /*
    100   1.1       cgd  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
    101   1.1       cgd  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
    102   1.1       cgd  * little effect on crypt().
    103   1.1       cgd  */
    104   1.1       cgd #if defined(notdef)
    105   1.1       cgd #define	LARGEDATA
    106   1.1       cgd #endif
    107   1.1       cgd 
    108   1.6     mikel /* compile with "-DSTATIC=void" when profiling */
    109   1.1       cgd #ifndef STATIC
    110   1.6     mikel #define	STATIC	static void
    111   1.1       cgd #endif
    112   1.1       cgd 
    113   1.1       cgd /* ==================================== */
    114   1.1       cgd 
    115   1.1       cgd /*
    116   1.1       cgd  * Cipher-block representation (Bob Baldwin):
    117   1.1       cgd  *
    118   1.1       cgd  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    119   1.1       cgd  * representation is to store one bit per byte in an array of bytes.  Bit N of
    120   1.1       cgd  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    121   1.1       cgd  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    122   1.1       cgd  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    123   1.1       cgd  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    124   1.1       cgd  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    125   1.1       cgd  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    126   1.1       cgd  * converted to LSB format, and the output 64-bit block is converted back into
    127   1.1       cgd  * MSB format.
    128   1.1       cgd  *
    129   1.1       cgd  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    130   1.1       cgd  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    131   1.1       cgd  * the computation, the expansion is applied only once, the expanded
    132   1.1       cgd  * representation is maintained during the encryption, and a compression
    133   1.1       cgd  * permutation is applied only at the end.  To speed up the S-box lookups,
    134   1.1       cgd  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    135   1.1       cgd  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    136   1.1       cgd  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    137   1.1       cgd  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    138   1.1       cgd  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    139   1.1       cgd  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    140   1.1       cgd  * used, in which the output is the 64 bit result of an S-box lookup which
    141   1.1       cgd  * has been permuted by P and expanded by E, and is ready for use in the next
    142   1.1       cgd  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    143   1.1       cgd  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    144   1.1       cgd  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    145   1.1       cgd  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    146   1.1       cgd  * 8*64*8 = 4K bytes.
    147   1.1       cgd  *
    148   1.1       cgd  * To speed up bit-parallel operations (such as XOR), the 8 byte
    149   1.1       cgd  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    150   1.1       cgd  * machines which support it, a 64 bit value "b64".  This data structure,
    151   1.1       cgd  * "C_block", has two problems.  First, alignment restrictions must be
    152   1.1       cgd  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    153   1.1       cgd  * the architecture becomes visible.
    154   1.1       cgd  *
    155   1.1       cgd  * The byte-order problem is unfortunate, since on the one hand it is good
    156   1.1       cgd  * to have a machine-independent C_block representation (bits 1..8 in the
    157   1.1       cgd  * first byte, etc.), and on the other hand it is good for the LSB of the
    158   1.1       cgd  * first byte to be the LSB of i0.  We cannot have both these things, so we
    159   1.1       cgd  * currently use the "little-endian" representation and avoid any multi-byte
    160   1.1       cgd  * operations that depend on byte order.  This largely precludes use of the
    161   1.1       cgd  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    162   1.1       cgd  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    163   1.1       cgd  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    164   1.1       cgd  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    165   1.1       cgd  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    166   1.1       cgd  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    167   1.1       cgd  *
    168   1.1       cgd  * Permutation representation (Jim Gillogly):
    169   1.1       cgd  *
    170   1.1       cgd  * A transformation is defined by its effect on each of the 8 bytes of the
    171   1.1       cgd  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    172   1.1       cgd  * the input distributed appropriately.  The transformation is then the OR
    173   1.1       cgd  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    174   1.1       cgd  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    175   1.1       cgd  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    176   1.1       cgd  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    177   1.1       cgd  * is slower but tolerable, particularly for password encryption in which
    178   1.1       cgd  * the SPE transformation is iterated many times.  The small tables total 9K
    179   1.1       cgd  * bytes, the large tables total 72K bytes.
    180   1.1       cgd  *
    181   1.1       cgd  * The transformations used are:
    182   1.1       cgd  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    183   1.1       cgd  *	This is done by collecting the 32 even-numbered bits and applying
    184   1.1       cgd  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    185   1.1       cgd  *	bits and applying the same transformation.  Since there are only
    186   1.1       cgd  *	32 input bits, the IE3264 transformation table is half the size of
    187   1.1       cgd  *	the usual table.
    188   1.1       cgd  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    189   1.1       cgd  *	This is done by two trivial 48->32 bit compressions to obtain
    190   1.1       cgd  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    191   1.1       cgd  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    192   1.1       cgd  *	be possible to group the bits in the 64-bit block so that 2
    193   1.1       cgd  *	identical 32->32 bit transformations could be used instead,
    194   1.1       cgd  *	saving a factor of 4 in space and possibly 2 in time, but
    195   1.1       cgd  *	byte-ordering and other complications rear their ugly head.
    196   1.1       cgd  *	Similar opportunities/problems arise in the key schedule
    197   1.1       cgd  *	transforms.)
    198   1.1       cgd  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    199   1.1       cgd  *	This admittedly baroque 64->64 bit transformation is used to
    200   1.1       cgd  *	produce the first code (in 8*(6+2) format) of the key schedule.
    201   1.1       cgd  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    202   1.1       cgd  *	It would be possible to define 15 more transformations, each
    203   1.1       cgd  *	with a different rotation, to generate the entire key schedule.
    204   1.1       cgd  *	To save space, however, we instead permute each code into the
    205   1.1       cgd  *	next by using a transformation that "undoes" the PC2 permutation,
    206   1.1       cgd  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    207   1.1       cgd  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    208   1.1       cgd  *	invertible.  We get around that problem by using a modified PC2
    209   1.1       cgd  *	which retains the 8 otherwise-lost bits in the unused low-order
    210   1.1       cgd  *	bits of each byte.  The low-order bits are cleared when the
    211   1.1       cgd  *	codes are stored into the key schedule.
    212   1.1       cgd  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    213   1.1       cgd  *	This is faster than applying PC2ROT[0] twice,
    214   1.1       cgd  *
    215   1.1       cgd  * The Bell Labs "salt" (Bob Baldwin):
    216   1.1       cgd  *
    217   1.1       cgd  * The salting is a simple permutation applied to the 48-bit result of E.
    218   1.1       cgd  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    219   1.1       cgd  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    220   1.1       cgd  * 16777216 possible values.  (The original salt was 12 bits and could not
    221   1.1       cgd  * swap bits 13..24 with 36..48.)
    222   1.1       cgd  *
    223   1.1       cgd  * It is possible, but ugly, to warp the SPE table to account for the salt
    224   1.1       cgd  * permutation.  Fortunately, the conditional bit swapping requires only
    225   1.1       cgd  * about four machine instructions and can be done on-the-fly with about an
    226   1.1       cgd  * 8% performance penalty.
    227   1.1       cgd  */
    228   1.1       cgd 
    229   1.1       cgd typedef union {
    230   1.1       cgd 	unsigned char b[8];
    231   1.1       cgd 	struct {
    232   1.4       cgd 		int32_t	i0;
    233   1.4       cgd 		int32_t	i1;
    234   1.1       cgd 	} b32;
    235   1.1       cgd #if defined(B64)
    236   1.1       cgd 	B64	b64;
    237   1.1       cgd #endif
    238   1.1       cgd } C_block;
    239   1.1       cgd 
    240   1.1       cgd /*
    241   1.1       cgd  * Convert twenty-four-bit long in host-order
    242   1.1       cgd  * to six bits (and 2 low-order zeroes) per char little-endian format.
    243   1.1       cgd  */
    244   1.1       cgd #define	TO_SIX_BIT(rslt, src) {				\
    245   1.1       cgd 		C_block cvt;				\
    246   1.1       cgd 		cvt.b[0] = src; src >>= 6;		\
    247   1.1       cgd 		cvt.b[1] = src; src >>= 6;		\
    248   1.1       cgd 		cvt.b[2] = src; src >>= 6;		\
    249   1.1       cgd 		cvt.b[3] = src;				\
    250   1.1       cgd 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    251   1.1       cgd 	}
    252   1.1       cgd 
    253   1.1       cgd /*
    254   1.1       cgd  * These macros may someday permit efficient use of 64-bit integers.
    255   1.1       cgd  */
    256   1.1       cgd #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    257   1.1       cgd #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    258   1.1       cgd #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    259   1.1       cgd #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    260   1.1       cgd #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    261   1.4       cgd #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    262   1.1       cgd 
    263   1.1       cgd #if defined(LARGEDATA)
    264   1.1       cgd 	/* Waste memory like crazy.  Also, do permutations in line */
    265   1.1       cgd #define	LGCHUNKBITS	3
    266   1.1       cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    267   1.1       cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    268   1.1       cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    269   1.1       cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    270   1.1       cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    271   1.1       cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    272   1.1       cgd 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    273   1.1       cgd 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    274   1.1       cgd 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    275   1.1       cgd 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    276   1.1       cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    277   1.1       cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    278   1.1       cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    279   1.1       cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    280   1.1       cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    281   1.1       cgd #else
    282   1.1       cgd 	/* "small data" */
    283   1.1       cgd #define	LGCHUNKBITS	2
    284   1.1       cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    285   1.1       cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    286   1.1       cgd 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    287   1.1       cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    288   1.1       cgd 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    289   1.8     mikel #endif /* LARGEDATA */
    290   1.7     lukem 
    291  1.27     perry STATIC	init_des(void);
    292  1.27     perry STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
    293  1.27     perry 		       const unsigned char [64], int, int);
    294   1.8     mikel #ifndef LARGEDATA
    295  1.27     perry STATIC	permute(const unsigned char *, C_block *, C_block *, int);
    296   1.8     mikel #endif
    297   1.7     lukem #ifdef DEBUG
    298  1.27     perry STATIC	prtab(const char *, unsigned char *, int);
    299   1.7     lukem #endif
    300   1.7     lukem 
    301   1.7     lukem 
    302   1.8     mikel #ifndef LARGEDATA
    303   1.1       cgd STATIC
    304  1.28     perry permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
    305   1.1       cgd {
    306   1.7     lukem 	DCL_BLOCK(D,D0,D1);
    307   1.7     lukem 	C_block *tp;
    308   1.7     lukem 	int t;
    309   1.1       cgd 
    310   1.1       cgd 	ZERO(D,D0,D1);
    311   1.1       cgd 	do {
    312   1.1       cgd 		t = *cp++;
    313   1.1       cgd 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    314   1.1       cgd 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    315   1.1       cgd 	} while (--chars_in > 0);
    316   1.1       cgd 	STORE(D,D0,D1,*out);
    317   1.1       cgd }
    318   1.1       cgd #endif /* LARGEDATA */
    319   1.1       cgd 
    320   1.1       cgd 
    321   1.1       cgd /* =====  (mostly) Standard DES Tables ==================== */
    322   1.1       cgd 
    323  1.20  jdolecek static const unsigned char IP[] = {	/* initial permutation */
    324   1.1       cgd 	58, 50, 42, 34, 26, 18, 10,  2,
    325   1.1       cgd 	60, 52, 44, 36, 28, 20, 12,  4,
    326   1.1       cgd 	62, 54, 46, 38, 30, 22, 14,  6,
    327   1.1       cgd 	64, 56, 48, 40, 32, 24, 16,  8,
    328   1.1       cgd 	57, 49, 41, 33, 25, 17,  9,  1,
    329   1.1       cgd 	59, 51, 43, 35, 27, 19, 11,  3,
    330   1.1       cgd 	61, 53, 45, 37, 29, 21, 13,  5,
    331   1.1       cgd 	63, 55, 47, 39, 31, 23, 15,  7,
    332   1.1       cgd };
    333   1.1       cgd 
    334   1.1       cgd /* The final permutation is the inverse of IP - no table is necessary */
    335   1.1       cgd 
    336  1.20  jdolecek static const unsigned char ExpandTr[] = {	/* expansion operation */
    337   1.1       cgd 	32,  1,  2,  3,  4,  5,
    338   1.1       cgd 	 4,  5,  6,  7,  8,  9,
    339   1.1       cgd 	 8,  9, 10, 11, 12, 13,
    340   1.1       cgd 	12, 13, 14, 15, 16, 17,
    341   1.1       cgd 	16, 17, 18, 19, 20, 21,
    342   1.1       cgd 	20, 21, 22, 23, 24, 25,
    343   1.1       cgd 	24, 25, 26, 27, 28, 29,
    344   1.1       cgd 	28, 29, 30, 31, 32,  1,
    345   1.1       cgd };
    346   1.1       cgd 
    347  1.20  jdolecek static const unsigned char PC1[] = {	/* permuted choice table 1 */
    348   1.1       cgd 	57, 49, 41, 33, 25, 17,  9,
    349   1.1       cgd 	 1, 58, 50, 42, 34, 26, 18,
    350   1.1       cgd 	10,  2, 59, 51, 43, 35, 27,
    351   1.1       cgd 	19, 11,  3, 60, 52, 44, 36,
    352   1.1       cgd 
    353   1.1       cgd 	63, 55, 47, 39, 31, 23, 15,
    354   1.1       cgd 	 7, 62, 54, 46, 38, 30, 22,
    355   1.1       cgd 	14,  6, 61, 53, 45, 37, 29,
    356   1.1       cgd 	21, 13,  5, 28, 20, 12,  4,
    357   1.1       cgd };
    358   1.1       cgd 
    359  1.20  jdolecek static const unsigned char Rotates[] = {/* PC1 rotation schedule */
    360   1.1       cgd 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    361   1.1       cgd };
    362   1.1       cgd 
    363   1.1       cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    364  1.20  jdolecek static const unsigned char PC2[] = {	/* permuted choice table 2 */
    365   1.1       cgd 	 9, 18,    14, 17, 11, 24,  1,  5,
    366   1.1       cgd 	22, 25,     3, 28, 15,  6, 21, 10,
    367   1.1       cgd 	35, 38,    23, 19, 12,  4, 26,  8,
    368   1.1       cgd 	43, 54,    16,  7, 27, 20, 13,  2,
    369   1.1       cgd 
    370   1.1       cgd 	 0,  0,    41, 52, 31, 37, 47, 55,
    371   1.1       cgd 	 0,  0,    30, 40, 51, 45, 33, 48,
    372   1.1       cgd 	 0,  0,    44, 49, 39, 56, 34, 53,
    373   1.1       cgd 	 0,  0,    46, 42, 50, 36, 29, 32,
    374   1.1       cgd };
    375   1.1       cgd 
    376  1.20  jdolecek static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    377   1.1       cgd 					/* S[1]			*/
    378   1.6     mikel 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    379   1.6     mikel 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    380   1.6     mikel 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    381   1.6     mikel 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    382   1.1       cgd 					/* S[2]			*/
    383   1.6     mikel 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    384   1.6     mikel 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    385   1.6     mikel 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    386   1.6     mikel 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    387   1.1       cgd 					/* S[3]			*/
    388   1.6     mikel 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    389   1.6     mikel 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    390   1.6     mikel 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    391   1.6     mikel 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    392   1.1       cgd 					/* S[4]			*/
    393   1.6     mikel 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    394   1.6     mikel 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    395   1.6     mikel 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    396   1.6     mikel 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    397   1.1       cgd 					/* S[5]			*/
    398   1.6     mikel 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    399   1.6     mikel 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    400   1.6     mikel 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    401   1.6     mikel 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    402   1.1       cgd 					/* S[6]			*/
    403   1.6     mikel 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    404   1.6     mikel 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    405   1.6     mikel 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    406   1.6     mikel 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    407   1.1       cgd 					/* S[7]			*/
    408   1.6     mikel 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    409   1.6     mikel 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    410   1.6     mikel 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    411   1.6     mikel 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    412   1.1       cgd 					/* S[8]			*/
    413   1.6     mikel 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    414   1.6     mikel 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    415   1.6     mikel 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    416   1.6     mikel 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    417   1.1       cgd };
    418   1.1       cgd 
    419  1.20  jdolecek static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
    420   1.1       cgd 	16,  7, 20, 21,
    421   1.1       cgd 	29, 12, 28, 17,
    422   1.1       cgd 	 1, 15, 23, 26,
    423   1.1       cgd 	 5, 18, 31, 10,
    424   1.1       cgd 	 2,  8, 24, 14,
    425   1.1       cgd 	32, 27,  3,  9,
    426   1.1       cgd 	19, 13, 30,  6,
    427   1.1       cgd 	22, 11,  4, 25,
    428   1.1       cgd };
    429   1.1       cgd 
    430  1.20  jdolecek static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
    431   1.1       cgd 	 1,  2,  3,  4,   17, 18, 19, 20,
    432   1.1       cgd 	 5,  6,  7,  8,   21, 22, 23, 24,
    433   1.1       cgd 	 9, 10, 11, 12,   25, 26, 27, 28,
    434   1.1       cgd 	13, 14, 15, 16,   29, 30, 31, 32,
    435   1.1       cgd 
    436   1.1       cgd 	33, 34, 35, 36,   49, 50, 51, 52,
    437   1.1       cgd 	37, 38, 39, 40,   53, 54, 55, 56,
    438   1.1       cgd 	41, 42, 43, 44,   57, 58, 59, 60,
    439   1.1       cgd 	45, 46, 47, 48,   61, 62, 63, 64,
    440   1.1       cgd };
    441   1.1       cgd 
    442  1.20  jdolecek static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    443   1.1       cgd 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    444   1.1       cgd 
    445   1.1       cgd 
    446   1.1       cgd /* =====  Tables that are initialized at run time  ==================== */
    447   1.1       cgd 
    448   1.1       cgd 
    449   1.1       cgd /* Initial key schedule permutation */
    450   1.1       cgd static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    451   1.1       cgd 
    452   1.1       cgd /* Subsequent key schedule rotation permutations */
    453   1.1       cgd static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    454   1.1       cgd 
    455   1.1       cgd /* Initial permutation/expansion table */
    456   1.1       cgd static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    457   1.1       cgd 
    458   1.1       cgd /* Table that combines the S, P, and E operations.  */
    459   1.4       cgd static int32_t SPE[2][8][64];
    460   1.1       cgd 
    461   1.1       cgd /* compressed/interleaved => final permutation table */
    462   1.1       cgd static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    463   1.1       cgd 
    464   1.1       cgd 
    465   1.1       cgd /* ==================================== */
    466   1.1       cgd 
    467   1.1       cgd 
    468   1.1       cgd static C_block	constdatablock;			/* encryption constant */
    469   1.1       cgd static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    470   1.1       cgd 
    471  1.30  christos /*
    472  1.30  christos  * We match the behavior of UFC-crypt on systems where "char" is signed by
    473  1.30  christos  * default (the majority), regardless of char's signedness on our system.
    474  1.30  christos  */
    475  1.30  christos static inline int
    476  1.30  christos ascii_to_bin(char ch)
    477  1.30  christos {
    478  1.30  christos 	signed char sch = ch;
    479  1.30  christos 	int retval;
    480  1.30  christos 
    481  1.30  christos 	if (sch >= 'a')
    482  1.30  christos 		retval = sch - ('a' - 38);
    483  1.30  christos 	else if (sch >= 'A')
    484  1.30  christos 		retval = sch - ('A' - 12);
    485  1.30  christos 	else
    486  1.30  christos 		retval = sch - '.';
    487  1.30  christos 
    488  1.30  christos 	return retval & 0x3f;
    489  1.30  christos }
    490  1.32  christos 
    491  1.30  christos /*
    492  1.30  christos  * When we choose to "support" invalid salts, nevertheless disallow those
    493  1.30  christos  * containing characters that would violate the passwd file format.
    494  1.30  christos  */
    495  1.30  christos static inline int
    496  1.30  christos ascii_is_unsafe(char ch)
    497  1.30  christos {
    498  1.30  christos 	return !ch || ch == '\n' || ch == ':';
    499  1.30  christos }
    500  1.17  christos 
    501   1.1       cgd /*
    502  1.35     jhigh  * We extract the scheme from setting str to allow for
    503  1.35     jhigh  * full scheme name comparison
    504  1.35     jhigh  * Updated to reflect alc suggestion(s)
    505  1.35     jhigh  *
    506  1.35     jhigh  * retuns boolean 0 on failure, 1 on success,
    507  1.35     jhigh  */
    508  1.35     jhigh static int
    509  1.35     jhigh nondes_scheme_substr(const char * setting,char * scheme, unsigned int len)
    510  1.35     jhigh {
    511  1.35     jhigh 	const char * start;
    512  1.35     jhigh 	const char * sep;
    513  1.35     jhigh 
    514  1.35     jhigh 	/* initialize head pointer */
    515  1.35     jhigh 	start = setting;
    516  1.35     jhigh 
    517  1.35     jhigh 	/* clear out scheme buffer regardless of result */
    518  1.35     jhigh 	memset(scheme, 0, len);
    519  1.35     jhigh 
    520  1.35     jhigh 	/* make sure we are working on non-des scheme string */
    521  1.35     jhigh 	if (*start != _PASSWORD_NONDES) {
    522  1.35     jhigh 		return 0;
    523  1.35     jhigh 	}
    524  1.35     jhigh 
    525  1.35     jhigh 	/* increment passed initial _PASSWORD_NONDES */
    526  1.35     jhigh 	start++;
    527  1.35     jhigh 
    528  1.35     jhigh 	if ((sep = memchr(start, _PASSWORD_NONDES,len-1)) == NULL) {
    529  1.35     jhigh 		return 0;
    530  1.35     jhigh 	}
    531  1.35     jhigh 
    532  1.35     jhigh 	/* if empty string, we are done */
    533  1.35     jhigh 	if (sep == start) {
    534  1.35     jhigh 		return 1;
    535  1.35     jhigh 	}
    536  1.35     jhigh 
    537  1.35     jhigh 	/* copy scheme substr to buffer */
    538  1.35     jhigh 	memcpy(scheme, start, (size_t)(sep - start));
    539  1.35     jhigh 
    540  1.35     jhigh 	return 1;
    541  1.35     jhigh }
    542  1.35     jhigh 
    543  1.35     jhigh /*
    544   1.1       cgd  * Return a pointer to static data consisting of the "setting"
    545   1.1       cgd  * followed by an encryption produced by the "key" and "setting".
    546   1.1       cgd  */
    547  1.33  christos static char *
    548  1.32  christos __crypt(const char *key, const char *setting)
    549   1.1       cgd {
    550   1.7     lukem 	char *encp;
    551  1.35     jhigh 	char scheme[12];
    552   1.7     lukem 	int32_t i;
    553   1.7     lukem 	int t;
    554  1.35     jhigh 	int r;
    555   1.4       cgd 	int32_t salt;
    556   1.1       cgd 	int num_iter, salt_size;
    557   1.1       cgd 	C_block keyblock, rsltblock;
    558  1.16        ad 
    559  1.16        ad 	/* Non-DES encryption schemes hook in here. */
    560  1.16        ad 	if (setting[0] == _PASSWORD_NONDES) {
    561  1.35     jhigh 		r = nondes_scheme_substr(
    562  1.35     jhigh 			setting, scheme, sizeof(scheme));
    563  1.35     jhigh 
    564  1.35     jhigh 		/* return NULL if we are unable to extract substring */
    565  1.35     jhigh 		if (!r) {
    566  1.35     jhigh 			return NULL;
    567  1.35     jhigh 		}
    568  1.35     jhigh 
    569  1.35     jhigh 		/* $2a$ found in bcrypt.c:encode_salt  */
    570  1.35     jhigh 		if (strcmp(scheme, "2a") == 0) {
    571  1.16        ad 			return (__bcrypt(key, setting));
    572  1.35     jhigh 		} else if (strcmp(scheme, "sha1") == 0) {
    573  1.35     jhigh 		     /* $sha1$ found in crypt.h:SHA1_MAGIC */
    574  1.22       sjg 			return (__crypt_sha1(key, setting));
    575  1.35     jhigh 		} else if (strcmp(scheme, "1") == 0) {
    576  1.35     jhigh 		     /* $1$ found in pw_gensalt.c:__gensalt_md5 */
    577  1.16        ad 			return (__md5crypt(key, setting));
    578  1.36     jhigh #ifdef HAVE_ARGON2
    579  1.36     jhigh 		/* explicit argon2 variant */
    580  1.36     jhigh 		} else if (strcmp(scheme, "argon2id") == 0) {
    581  1.36     jhigh 		     /* $argon2id$ found in pw_gensalt.c:__gensalt_argon2 */
    582  1.36     jhigh 			return (__crypt_argon2(key, setting));
    583  1.36     jhigh 		} else if (strcmp(scheme, "argon2i") == 0) {
    584  1.36     jhigh 		     /* $argon2i$ found in pw_gensalt.c:__gensalt_argon2 */
    585  1.36     jhigh 			return (__crypt_argon2(key, setting));
    586  1.36     jhigh 		} else if (strcmp(scheme, "argon2d") == 0) {
    587  1.36     jhigh 		     /* $argon2d$ found in pw_gensalt.c:__gensalt_argon2 */
    588  1.36     jhigh 			return (__crypt_argon2(key, setting));
    589  1.36     jhigh #endif /* HAVE_ARGON2 */
    590  1.35     jhigh 		} else {
    591  1.35     jhigh 		     /* invalid scheme, including empty string */
    592  1.35     jhigh 			return NULL;
    593  1.16        ad 		}
    594  1.16        ad 	}
    595  1.35     jhigh 	/* End non-DES handling */
    596   1.1       cgd 
    597   1.1       cgd 	for (i = 0; i < 8; i++) {
    598   1.1       cgd 		if ((t = 2*(unsigned char)(*key)) != 0)
    599   1.1       cgd 			key++;
    600   1.1       cgd 		keyblock.b[i] = t;
    601   1.1       cgd 	}
    602  1.30  christos 	if (des_setkey((char *)keyblock.b))
    603   1.1       cgd 		return (NULL);
    604   1.1       cgd 
    605   1.1       cgd 	encp = &cryptresult[0];
    606   1.1       cgd 	switch (*setting) {
    607   1.1       cgd 	case _PASSWORD_EFMT1:
    608   1.1       cgd 		/*
    609   1.1       cgd 		 * Involve the rest of the password 8 characters at a time.
    610   1.1       cgd 		 */
    611   1.1       cgd 		while (*key) {
    612  1.18       wiz 			if (des_cipher((char *)(void *)&keyblock,
    613  1.18       wiz 			    (char *)(void *)&keyblock, 0L, 1))
    614   1.1       cgd 				return (NULL);
    615   1.1       cgd 			for (i = 0; i < 8; i++) {
    616   1.1       cgd 				if ((t = 2*(unsigned char)(*key)) != 0)
    617   1.1       cgd 					key++;
    618   1.1       cgd 				keyblock.b[i] ^= t;
    619   1.1       cgd 			}
    620   1.1       cgd 			if (des_setkey((char *)keyblock.b))
    621   1.1       cgd 				return (NULL);
    622   1.1       cgd 		}
    623   1.1       cgd 
    624   1.1       cgd 		*encp++ = *setting++;
    625   1.1       cgd 
    626   1.1       cgd 		/* get iteration count */
    627   1.1       cgd 		num_iter = 0;
    628   1.1       cgd 		for (i = 4; --i >= 0; ) {
    629  1.30  christos 			int value = ascii_to_bin(setting[i]);
    630  1.30  christos 			if (itoa64[value] != setting[i])
    631  1.30  christos 				return NULL;
    632  1.30  christos 			encp[i] = setting[i];
    633  1.30  christos 			num_iter = (num_iter << 6) | value;
    634   1.1       cgd 		}
    635  1.30  christos 		if (num_iter == 0)
    636  1.30  christos 			return NULL;
    637   1.1       cgd 		setting += 4;
    638   1.1       cgd 		encp += 4;
    639   1.1       cgd 		salt_size = 4;
    640   1.1       cgd 		break;
    641   1.1       cgd 	default:
    642   1.1       cgd 		num_iter = 25;
    643   1.1       cgd 		salt_size = 2;
    644  1.30  christos 		if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
    645  1.30  christos 			return NULL;
    646   1.1       cgd 	}
    647   1.1       cgd 
    648   1.1       cgd 	salt = 0;
    649   1.1       cgd 	for (i = salt_size; --i >= 0; ) {
    650  1.30  christos 		int value = ascii_to_bin(setting[i]);
    651  1.31  christos 		if (salt_size > 2 && itoa64[value] != setting[i])
    652  1.30  christos 			return NULL;
    653  1.30  christos 		encp[i] = setting[i];
    654  1.30  christos 		salt = (salt << 6) | value;
    655   1.1       cgd 	}
    656   1.1       cgd 	encp += salt_size;
    657  1.18       wiz 	if (des_cipher((char *)(void *)&constdatablock,
    658  1.18       wiz 	    (char *)(void *)&rsltblock, salt, num_iter))
    659   1.1       cgd 		return (NULL);
    660   1.1       cgd 
    661   1.1       cgd 	/*
    662   1.1       cgd 	 * Encode the 64 cipher bits as 11 ascii characters.
    663   1.1       cgd 	 */
    664   1.4       cgd 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    665   1.4       cgd 	    rsltblock.b[2];
    666   1.1       cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    667   1.1       cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    668   1.1       cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    669   1.1       cgd 	encp[0] = itoa64[i];		encp += 4;
    670   1.4       cgd 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    671   1.4       cgd 	    rsltblock.b[5];
    672   1.1       cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    673   1.1       cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    674   1.1       cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    675   1.1       cgd 	encp[0] = itoa64[i];		encp += 4;
    676   1.4       cgd 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    677   1.1       cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    678   1.1       cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    679   1.1       cgd 	encp[0] = itoa64[i];
    680   1.1       cgd 
    681   1.1       cgd 	encp[3] = 0;
    682   1.1       cgd 
    683   1.1       cgd 	return (cryptresult);
    684   1.1       cgd }
    685   1.1       cgd 
    686  1.32  christos char *
    687  1.32  christos crypt(const char *key, const char *salt)
    688  1.32  christos {
    689  1.32  christos 	char *res = __crypt(key, salt);
    690  1.36     jhigh 
    691  1.32  christos 	if (res)
    692  1.32  christos 		return res;
    693  1.32  christos 	/* How do I handle errors ? Return "*0" or "*1" */
    694  1.32  christos 	return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
    695  1.32  christos }
    696   1.1       cgd 
    697   1.1       cgd /*
    698   1.1       cgd  * The Key Schedule, filled in by des_setkey() or setkey().
    699   1.1       cgd  */
    700   1.1       cgd #define	KS_SIZE	16
    701   1.1       cgd static C_block	KS[KS_SIZE];
    702   1.1       cgd 
    703   1.1       cgd /*
    704   1.1       cgd  * Set up the key schedule from the key.
    705   1.1       cgd  */
    706   1.6     mikel int
    707  1.28     perry des_setkey(const char *key)
    708   1.1       cgd {
    709   1.7     lukem 	DCL_BLOCK(K, K0, K1);
    710  1.24  drochner 	C_block *help, *ptabp;
    711   1.7     lukem 	int i;
    712   1.1       cgd 	static int des_ready = 0;
    713   1.1       cgd 
    714   1.1       cgd 	if (!des_ready) {
    715   1.1       cgd 		init_des();
    716   1.1       cgd 		des_ready = 1;
    717   1.1       cgd 	}
    718   1.1       cgd 
    719  1.24  drochner 	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
    720  1.24  drochner 	help = &KS[0];
    721  1.24  drochner 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
    722   1.1       cgd 	for (i = 1; i < 16; i++) {
    723  1.24  drochner 		help++;
    724  1.24  drochner 		STORE(K,K0,K1,*help);
    725   1.1       cgd 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    726  1.24  drochner 		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
    727  1.24  drochner 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
    728   1.1       cgd 	}
    729   1.1       cgd 	return (0);
    730   1.1       cgd }
    731   1.1       cgd 
    732   1.1       cgd /*
    733   1.1       cgd  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    734  1.14     soren  * iterations of DES, using the given 24-bit salt and the pre-computed key
    735   1.1       cgd  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    736   1.1       cgd  *
    737   1.1       cgd  * NOTE: the performance of this routine is critically dependent on your
    738   1.1       cgd  * compiler and machine architecture.
    739   1.1       cgd  */
    740   1.6     mikel int
    741  1.28     perry des_cipher(const char *in, char *out, long salt, int num_iter)
    742   1.1       cgd {
    743   1.1       cgd 	/* variables that we want in registers, most important first */
    744   1.1       cgd #if defined(pdp11)
    745  1.10     perry 	int j;
    746   1.1       cgd #endif
    747  1.10     perry 	int32_t L0, L1, R0, R1, k;
    748  1.10     perry 	C_block *kp;
    749  1.10     perry 	int ks_inc, loop_count;
    750   1.1       cgd 	C_block B;
    751   1.1       cgd 
    752   1.1       cgd 	L0 = salt;
    753   1.1       cgd 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    754   1.1       cgd 
    755  1.13      matt #if defined(__vax__) || defined(pdp11)
    756   1.1       cgd 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    757   1.1       cgd #define	SALT (~salt)
    758   1.1       cgd #else
    759   1.1       cgd #define	SALT salt
    760   1.1       cgd #endif
    761   1.1       cgd 
    762   1.1       cgd #if defined(MUST_ALIGN)
    763   1.1       cgd 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    764   1.1       cgd 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    765   1.1       cgd 	LOAD(L,L0,L1,B);
    766   1.1       cgd #else
    767  1.24  drochner 	LOAD(L,L0,L1,*(const C_block *)in);
    768   1.1       cgd #endif
    769   1.1       cgd 	LOADREG(R,R0,R1,L,L0,L1);
    770   1.1       cgd 	L0 &= 0x55555555L;
    771   1.1       cgd 	L1 &= 0x55555555L;
    772   1.1       cgd 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    773   1.1       cgd 	R0 &= 0xaaaaaaaaL;
    774   1.1       cgd 	R1 = (R1 >> 1) & 0x55555555L;
    775   1.1       cgd 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    776   1.1       cgd 	STORE(L,L0,L1,B);
    777   1.1       cgd 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    778   1.1       cgd 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    779   1.1       cgd 
    780   1.1       cgd 	if (num_iter >= 0)
    781   1.1       cgd 	{		/* encryption */
    782   1.1       cgd 		kp = &KS[0];
    783   1.1       cgd 		ks_inc  = sizeof(*kp);
    784   1.1       cgd 	}
    785   1.1       cgd 	else
    786   1.1       cgd 	{		/* decryption */
    787  1.15   thorpej 		num_iter = -num_iter;
    788  1.15   thorpej 		kp = &KS[KS_SIZE-1];
    789  1.15   thorpej 		ks_inc  = -(long)sizeof(*kp);
    790   1.1       cgd 	}
    791   1.1       cgd 
    792   1.1       cgd 	while (--num_iter >= 0) {
    793   1.1       cgd 		loop_count = 8;
    794   1.1       cgd 		do {
    795   1.1       cgd 
    796   1.4       cgd #define	SPTAB(t, i) \
    797   1.5       cgd 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    798   1.1       cgd #if defined(gould)
    799   1.1       cgd 			/* use this if B.b[i] is evaluated just once ... */
    800   1.1       cgd #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    801   1.1       cgd #else
    802   1.1       cgd #if defined(pdp11)
    803   1.1       cgd 			/* use this if your "long" int indexing is slow */
    804   1.1       cgd #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    805   1.1       cgd #else
    806  1.11     mikel 			/* use this if "k" is allocated to a register ... */
    807   1.1       cgd #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    808   1.1       cgd #endif
    809   1.1       cgd #endif
    810   1.1       cgd 
    811   1.1       cgd #define	CRUNCH(p0, p1, q0, q1)	\
    812   1.1       cgd 			k = (q0 ^ q1) & SALT;	\
    813   1.1       cgd 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    814   1.1       cgd 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    815   1.1       cgd 			kp = (C_block *)((char *)kp+ks_inc);	\
    816   1.1       cgd 							\
    817   1.1       cgd 			DOXOR(p0, p1, 0);		\
    818   1.1       cgd 			DOXOR(p0, p1, 1);		\
    819   1.1       cgd 			DOXOR(p0, p1, 2);		\
    820   1.1       cgd 			DOXOR(p0, p1, 3);		\
    821   1.1       cgd 			DOXOR(p0, p1, 4);		\
    822   1.1       cgd 			DOXOR(p0, p1, 5);		\
    823   1.1       cgd 			DOXOR(p0, p1, 6);		\
    824   1.1       cgd 			DOXOR(p0, p1, 7);
    825   1.1       cgd 
    826   1.1       cgd 			CRUNCH(L0, L1, R0, R1);
    827   1.1       cgd 			CRUNCH(R0, R1, L0, L1);
    828   1.1       cgd 		} while (--loop_count != 0);
    829   1.1       cgd 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    830   1.1       cgd 
    831   1.1       cgd 
    832   1.1       cgd 		/* swap L and R */
    833   1.1       cgd 		L0 ^= R0;  L1 ^= R1;
    834   1.1       cgd 		R0 ^= L0;  R1 ^= L1;
    835   1.1       cgd 		L0 ^= R0;  L1 ^= R1;
    836   1.1       cgd 	}
    837   1.1       cgd 
    838   1.1       cgd 	/* store the encrypted (or decrypted) result */
    839  1.37     kamil 	L0 = (((uint32_t)L0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)L1 << 1) & 0xf0f0f0f0L);
    840  1.37     kamil 	L1 = (((uint32_t)R0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)R1 << 1) & 0xf0f0f0f0L);
    841   1.1       cgd 	STORE(L,L0,L1,B);
    842   1.1       cgd 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    843   1.1       cgd #if defined(MUST_ALIGN)
    844   1.1       cgd 	STORE(L,L0,L1,B);
    845   1.1       cgd 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    846   1.1       cgd 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    847   1.1       cgd #else
    848   1.1       cgd 	STORE(L,L0,L1,*(C_block *)out);
    849   1.1       cgd #endif
    850   1.1       cgd 	return (0);
    851   1.1       cgd }
    852   1.1       cgd 
    853   1.1       cgd 
    854   1.1       cgd /*
    855   1.1       cgd  * Initialize various tables.  This need only be done once.  It could even be
    856   1.1       cgd  * done at compile time, if the compiler were capable of that sort of thing.
    857   1.1       cgd  */
    858   1.1       cgd STATIC
    859  1.28     perry init_des(void)
    860   1.1       cgd {
    861   1.7     lukem 	int i, j;
    862   1.7     lukem 	int32_t k;
    863   1.7     lukem 	int tableno;
    864   1.1       cgd 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    865   1.1       cgd 
    866   1.1       cgd 	/*
    867   1.1       cgd 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    868   1.1       cgd 	 */
    869   1.1       cgd 	for (i = 0; i < 64; i++)
    870   1.1       cgd 		perm[i] = 0;
    871   1.1       cgd 	for (i = 0; i < 64; i++) {
    872   1.1       cgd 		if ((k = PC2[i]) == 0)
    873   1.1       cgd 			continue;
    874   1.1       cgd 		k += Rotates[0]-1;
    875   1.1       cgd 		if ((k%28) < Rotates[0]) k -= 28;
    876   1.1       cgd 		k = PC1[k];
    877   1.1       cgd 		if (k > 0) {
    878   1.1       cgd 			k--;
    879   1.1       cgd 			k = (k|07) - (k&07);
    880   1.1       cgd 			k++;
    881   1.1       cgd 		}
    882   1.1       cgd 		perm[i] = k;
    883   1.1       cgd 	}
    884   1.1       cgd #ifdef DEBUG
    885   1.1       cgd 	prtab("pc1tab", perm, 8);
    886   1.1       cgd #endif
    887   1.1       cgd 	init_perm(PC1ROT, perm, 8, 8);
    888   1.1       cgd 
    889   1.1       cgd 	/*
    890   1.1       cgd 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    891   1.1       cgd 	 */
    892   1.1       cgd 	for (j = 0; j < 2; j++) {
    893   1.1       cgd 		unsigned char pc2inv[64];
    894   1.1       cgd 		for (i = 0; i < 64; i++)
    895   1.1       cgd 			perm[i] = pc2inv[i] = 0;
    896   1.1       cgd 		for (i = 0; i < 64; i++) {
    897   1.1       cgd 			if ((k = PC2[i]) == 0)
    898   1.1       cgd 				continue;
    899   1.1       cgd 			pc2inv[k-1] = i+1;
    900   1.1       cgd 		}
    901   1.1       cgd 		for (i = 0; i < 64; i++) {
    902   1.1       cgd 			if ((k = PC2[i]) == 0)
    903   1.1       cgd 				continue;
    904   1.1       cgd 			k += j;
    905   1.1       cgd 			if ((k%28) <= j) k -= 28;
    906   1.1       cgd 			perm[i] = pc2inv[k];
    907   1.1       cgd 		}
    908   1.1       cgd #ifdef DEBUG
    909   1.1       cgd 		prtab("pc2tab", perm, 8);
    910   1.1       cgd #endif
    911   1.1       cgd 		init_perm(PC2ROT[j], perm, 8, 8);
    912   1.1       cgd 	}
    913   1.1       cgd 
    914   1.1       cgd 	/*
    915   1.1       cgd 	 * Bit reverse, then initial permutation, then expansion.
    916   1.1       cgd 	 */
    917   1.1       cgd 	for (i = 0; i < 8; i++) {
    918   1.1       cgd 		for (j = 0; j < 8; j++) {
    919   1.1       cgd 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    920   1.1       cgd 			if (k > 32)
    921   1.1       cgd 				k -= 32;
    922   1.1       cgd 			else if (k > 0)
    923   1.1       cgd 				k--;
    924   1.1       cgd 			if (k > 0) {
    925   1.1       cgd 				k--;
    926   1.1       cgd 				k = (k|07) - (k&07);
    927   1.1       cgd 				k++;
    928   1.1       cgd 			}
    929   1.1       cgd 			perm[i*8+j] = k;
    930   1.1       cgd 		}
    931   1.1       cgd 	}
    932   1.1       cgd #ifdef DEBUG
    933   1.1       cgd 	prtab("ietab", perm, 8);
    934   1.1       cgd #endif
    935   1.1       cgd 	init_perm(IE3264, perm, 4, 8);
    936   1.1       cgd 
    937   1.1       cgd 	/*
    938   1.1       cgd 	 * Compression, then final permutation, then bit reverse.
    939   1.1       cgd 	 */
    940   1.1       cgd 	for (i = 0; i < 64; i++) {
    941   1.1       cgd 		k = IP[CIFP[i]-1];
    942   1.1       cgd 		if (k > 0) {
    943   1.1       cgd 			k--;
    944   1.1       cgd 			k = (k|07) - (k&07);
    945   1.1       cgd 			k++;
    946   1.1       cgd 		}
    947   1.1       cgd 		perm[k-1] = i+1;
    948   1.1       cgd 	}
    949   1.1       cgd #ifdef DEBUG
    950   1.1       cgd 	prtab("cftab", perm, 8);
    951   1.1       cgd #endif
    952   1.1       cgd 	init_perm(CF6464, perm, 8, 8);
    953   1.1       cgd 
    954   1.1       cgd 	/*
    955   1.1       cgd 	 * SPE table
    956   1.1       cgd 	 */
    957   1.1       cgd 	for (i = 0; i < 48; i++)
    958   1.1       cgd 		perm[i] = P32Tr[ExpandTr[i]-1];
    959   1.1       cgd 	for (tableno = 0; tableno < 8; tableno++) {
    960   1.1       cgd 		for (j = 0; j < 64; j++)  {
    961   1.1       cgd 			k = (((j >> 0) &01) << 5)|
    962   1.1       cgd 			    (((j >> 1) &01) << 3)|
    963   1.1       cgd 			    (((j >> 2) &01) << 2)|
    964   1.1       cgd 			    (((j >> 3) &01) << 1)|
    965   1.1       cgd 			    (((j >> 4) &01) << 0)|
    966   1.1       cgd 			    (((j >> 5) &01) << 4);
    967   1.1       cgd 			k = S[tableno][k];
    968   1.1       cgd 			k = (((k >> 3)&01) << 0)|
    969   1.1       cgd 			    (((k >> 2)&01) << 1)|
    970   1.1       cgd 			    (((k >> 1)&01) << 2)|
    971   1.1       cgd 			    (((k >> 0)&01) << 3);
    972   1.1       cgd 			for (i = 0; i < 32; i++)
    973   1.1       cgd 				tmp32[i] = 0;
    974   1.1       cgd 			for (i = 0; i < 4; i++)
    975   1.1       cgd 				tmp32[4 * tableno + i] = (k >> i) & 01;
    976   1.1       cgd 			k = 0;
    977   1.1       cgd 			for (i = 24; --i >= 0; )
    978   1.1       cgd 				k = (k<<1) | tmp32[perm[i]-1];
    979   1.1       cgd 			TO_SIX_BIT(SPE[0][tableno][j], k);
    980   1.1       cgd 			k = 0;
    981   1.1       cgd 			for (i = 24; --i >= 0; )
    982   1.1       cgd 				k = (k<<1) | tmp32[perm[i+24]-1];
    983   1.1       cgd 			TO_SIX_BIT(SPE[1][tableno][j], k);
    984   1.1       cgd 		}
    985   1.1       cgd 	}
    986   1.1       cgd }
    987   1.1       cgd 
    988   1.1       cgd /*
    989   1.1       cgd  * Initialize "perm" to represent transformation "p", which rearranges
    990   1.1       cgd  * (perhaps with expansion and/or contraction) one packed array of bits
    991   1.1       cgd  * (of size "chars_in" characters) into another array (of size "chars_out"
    992   1.1       cgd  * characters).
    993   1.1       cgd  *
    994   1.1       cgd  * "perm" must be all-zeroes on entry to this routine.
    995   1.1       cgd  */
    996   1.1       cgd STATIC
    997  1.28     perry init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
    998  1.28     perry     int chars_in, int chars_out)
    999   1.1       cgd {
   1000   1.7     lukem 	int i, j, k, l;
   1001   1.1       cgd 
   1002   1.1       cgd 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
   1003   1.1       cgd 		l = p[k] - 1;		/* where this bit comes from */
   1004   1.1       cgd 		if (l < 0)
   1005   1.1       cgd 			continue;	/* output bit is always 0 */
   1006   1.1       cgd 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
   1007   1.1       cgd 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
   1008   1.1       cgd 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
   1009   1.1       cgd 			if ((j & l) != 0)
   1010   1.1       cgd 				perm[i][j].b[k>>3] |= 1<<(k&07);
   1011   1.1       cgd 		}
   1012   1.1       cgd 	}
   1013   1.1       cgd }
   1014   1.1       cgd 
   1015   1.1       cgd /*
   1016   1.1       cgd  * "setkey" routine (for backwards compatibility)
   1017   1.1       cgd  */
   1018   1.6     mikel int
   1019  1.28     perry setkey(const char *key)
   1020   1.1       cgd {
   1021   1.7     lukem 	int i, j, k;
   1022   1.1       cgd 	C_block keyblock;
   1023   1.1       cgd 
   1024   1.1       cgd 	for (i = 0; i < 8; i++) {
   1025   1.1       cgd 		k = 0;
   1026   1.1       cgd 		for (j = 0; j < 8; j++) {
   1027   1.1       cgd 			k <<= 1;
   1028   1.1       cgd 			k |= (unsigned char)*key++;
   1029   1.1       cgd 		}
   1030   1.1       cgd 		keyblock.b[i] = k;
   1031   1.1       cgd 	}
   1032   1.1       cgd 	return (des_setkey((char *)keyblock.b));
   1033   1.1       cgd }
   1034   1.1       cgd 
   1035   1.1       cgd /*
   1036   1.1       cgd  * "encrypt" routine (for backwards compatibility)
   1037   1.1       cgd  */
   1038   1.6     mikel int
   1039  1.28     perry encrypt(char *block, int flag)
   1040   1.1       cgd {
   1041   1.7     lukem 	int i, j, k;
   1042   1.1       cgd 	C_block cblock;
   1043   1.1       cgd 
   1044   1.1       cgd 	for (i = 0; i < 8; i++) {
   1045   1.1       cgd 		k = 0;
   1046   1.1       cgd 		for (j = 0; j < 8; j++) {
   1047   1.1       cgd 			k <<= 1;
   1048   1.1       cgd 			k |= (unsigned char)*block++;
   1049   1.1       cgd 		}
   1050   1.1       cgd 		cblock.b[i] = k;
   1051   1.1       cgd 	}
   1052   1.1       cgd 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
   1053   1.1       cgd 		return (1);
   1054   1.1       cgd 	for (i = 7; i >= 0; i--) {
   1055   1.1       cgd 		k = cblock.b[i];
   1056   1.1       cgd 		for (j = 7; j >= 0; j--) {
   1057   1.1       cgd 			*--block = k&01;
   1058   1.1       cgd 			k >>= 1;
   1059   1.1       cgd 		}
   1060   1.1       cgd 	}
   1061   1.1       cgd 	return (0);
   1062   1.1       cgd }
   1063   1.1       cgd 
   1064   1.1       cgd #ifdef DEBUG
   1065   1.1       cgd STATIC
   1066  1.28     perry prtab(const char *s, unsigned char *t, int num_rows)
   1067   1.1       cgd {
   1068   1.7     lukem 	int i, j;
   1069   1.1       cgd 
   1070   1.1       cgd 	(void)printf("%s:\n", s);
   1071   1.1       cgd 	for (i = 0; i < num_rows; i++) {
   1072   1.1       cgd 		for (j = 0; j < 8; j++) {
   1073   1.1       cgd 			 (void)printf("%3d", t[i*8+j]);
   1074   1.1       cgd 		}
   1075   1.1       cgd 		(void)printf("\n");
   1076   1.1       cgd 	}
   1077   1.1       cgd 	(void)printf("\n");
   1078   1.1       cgd }
   1079   1.1       cgd #endif
   1080  1.22       sjg 
   1081  1.22       sjg #if defined(MAIN) || defined(UNIT_TEST)
   1082  1.22       sjg #include <err.h>
   1083  1.22       sjg 
   1084  1.22       sjg int
   1085  1.28     perry main(int argc, char *argv[])
   1086  1.22       sjg {
   1087  1.34  christos 	if (argc < 2) {
   1088  1.34  christos 		fprintf(stderr, "Usage: %s password [salt]\n", getprogname());
   1089  1.34  christos 		return EXIT_FAILURE;
   1090  1.34  christos 	}
   1091  1.22       sjg 
   1092  1.34  christos 	printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
   1093  1.34  christos 	return EXIT_SUCCESS;
   1094  1.22       sjg }
   1095  1.22       sjg #endif
   1096