Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.6
      1  1.6  mikel /*	$NetBSD: crypt.c,v 1.6 1997/07/02 04:55:41 mikel Exp $	*/
      2  1.5    cgd 
      3  1.1    cgd /*
      4  1.5    cgd  * Copyright (c) 1989, 1993
      5  1.5    cgd  *	The Regents of the University of California.  All rights reserved.
      6  1.1    cgd  *
      7  1.1    cgd  * This code is derived from software contributed to Berkeley by
      8  1.1    cgd  * Tom Truscott.
      9  1.1    cgd  *
     10  1.1    cgd  * Redistribution and use in source and binary forms, with or without
     11  1.1    cgd  * modification, are permitted provided that the following conditions
     12  1.1    cgd  * are met:
     13  1.1    cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.1    cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.1    cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1    cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.1    cgd  *    documentation and/or other materials provided with the distribution.
     18  1.1    cgd  * 3. All advertising materials mentioning features or use of this software
     19  1.1    cgd  *    must display the following acknowledgement:
     20  1.1    cgd  *	This product includes software developed by the University of
     21  1.1    cgd  *	California, Berkeley and its contributors.
     22  1.1    cgd  * 4. Neither the name of the University nor the names of its contributors
     23  1.1    cgd  *    may be used to endorse or promote products derived from this software
     24  1.1    cgd  *    without specific prior written permission.
     25  1.1    cgd  *
     26  1.1    cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1    cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1    cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1    cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1    cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1    cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1    cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1    cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1    cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1    cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1    cgd  * SUCH DAMAGE.
     37  1.1    cgd  */
     38  1.1    cgd 
     39  1.1    cgd #if defined(LIBC_SCCS) && !defined(lint)
     40  1.5    cgd #if 0
     41  1.5    cgd static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     42  1.5    cgd #endif
     43  1.6  mikel static char rcsid[] = "$NetBSD: crypt.c,v 1.6 1997/07/02 04:55:41 mikel Exp $";
     44  1.1    cgd #endif /* LIBC_SCCS and not lint */
     45  1.1    cgd 
     46  1.1    cgd #include <limits.h>
     47  1.1    cgd #include <pwd.h>
     48  1.6  mikel #include <unistd.h>
     49  1.1    cgd 
     50  1.1    cgd /*
     51  1.1    cgd  * UNIX password, and DES, encryption.
     52  1.1    cgd  * By Tom Truscott, trt (at) rti.rti.org,
     53  1.1    cgd  * from algorithms by Robert W. Baldwin and James Gillogly.
     54  1.1    cgd  *
     55  1.1    cgd  * References:
     56  1.1    cgd  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     57  1.1    cgd  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     58  1.1    cgd  *
     59  1.1    cgd  * "Password Security: A Case History," R. Morris and Ken Thompson,
     60  1.1    cgd  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     61  1.1    cgd  *
     62  1.1    cgd  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     63  1.1    cgd  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     64  1.1    cgd  */
     65  1.1    cgd 
     66  1.1    cgd /* =====  Configuration ==================== */
     67  1.1    cgd 
     68  1.1    cgd /*
     69  1.1    cgd  * define "MUST_ALIGN" if your compiler cannot load/store
     70  1.1    cgd  * long integers at arbitrary (e.g. odd) memory locations.
     71  1.1    cgd  * (Either that or never pass unaligned addresses to des_cipher!)
     72  1.1    cgd  */
     73  1.1    cgd #if !defined(vax)
     74  1.1    cgd #define	MUST_ALIGN
     75  1.1    cgd #endif
     76  1.1    cgd 
     77  1.1    cgd #ifdef CHAR_BITS
     78  1.1    cgd #if CHAR_BITS != 8
     79  1.1    cgd 	#error C_block structure assumes 8 bit characters
     80  1.1    cgd #endif
     81  1.1    cgd #endif
     82  1.1    cgd 
     83  1.1    cgd /*
     84  1.1    cgd  * define "B64" to be the declaration for a 64 bit integer.
     85  1.1    cgd  * XXX this feature is currently unused, see "endian" comment below.
     86  1.1    cgd  */
     87  1.1    cgd #if defined(cray)
     88  1.1    cgd #define	B64	long
     89  1.1    cgd #endif
     90  1.1    cgd #if defined(convex)
     91  1.1    cgd #define	B64	long long
     92  1.1    cgd #endif
     93  1.1    cgd 
     94  1.1    cgd /*
     95  1.1    cgd  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
     96  1.1    cgd  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
     97  1.1    cgd  * little effect on crypt().
     98  1.1    cgd  */
     99  1.1    cgd #if defined(notdef)
    100  1.1    cgd #define	LARGEDATA
    101  1.1    cgd #endif
    102  1.1    cgd 
    103  1.6  mikel /* compile with "-DSTATIC=void" when profiling */
    104  1.1    cgd #ifndef STATIC
    105  1.6  mikel #define	STATIC	static void
    106  1.1    cgd #endif
    107  1.1    cgd STATIC init_des(), init_perm(), permute();
    108  1.1    cgd #ifdef DEBUG
    109  1.1    cgd STATIC prtab();
    110  1.1    cgd #endif
    111  1.1    cgd 
    112  1.1    cgd /* ==================================== */
    113  1.1    cgd 
    114  1.1    cgd /*
    115  1.1    cgd  * Cipher-block representation (Bob Baldwin):
    116  1.1    cgd  *
    117  1.1    cgd  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    118  1.1    cgd  * representation is to store one bit per byte in an array of bytes.  Bit N of
    119  1.1    cgd  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    120  1.1    cgd  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    121  1.1    cgd  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    122  1.1    cgd  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    123  1.1    cgd  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    124  1.1    cgd  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    125  1.1    cgd  * converted to LSB format, and the output 64-bit block is converted back into
    126  1.1    cgd  * MSB format.
    127  1.1    cgd  *
    128  1.1    cgd  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    129  1.1    cgd  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    130  1.1    cgd  * the computation, the expansion is applied only once, the expanded
    131  1.1    cgd  * representation is maintained during the encryption, and a compression
    132  1.1    cgd  * permutation is applied only at the end.  To speed up the S-box lookups,
    133  1.1    cgd  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    134  1.1    cgd  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    135  1.1    cgd  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    136  1.1    cgd  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    137  1.1    cgd  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    138  1.1    cgd  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    139  1.1    cgd  * used, in which the output is the 64 bit result of an S-box lookup which
    140  1.1    cgd  * has been permuted by P and expanded by E, and is ready for use in the next
    141  1.1    cgd  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    142  1.1    cgd  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    143  1.1    cgd  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    144  1.1    cgd  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    145  1.1    cgd  * 8*64*8 = 4K bytes.
    146  1.1    cgd  *
    147  1.1    cgd  * To speed up bit-parallel operations (such as XOR), the 8 byte
    148  1.1    cgd  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    149  1.1    cgd  * machines which support it, a 64 bit value "b64".  This data structure,
    150  1.1    cgd  * "C_block", has two problems.  First, alignment restrictions must be
    151  1.1    cgd  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    152  1.1    cgd  * the architecture becomes visible.
    153  1.1    cgd  *
    154  1.1    cgd  * The byte-order problem is unfortunate, since on the one hand it is good
    155  1.1    cgd  * to have a machine-independent C_block representation (bits 1..8 in the
    156  1.1    cgd  * first byte, etc.), and on the other hand it is good for the LSB of the
    157  1.1    cgd  * first byte to be the LSB of i0.  We cannot have both these things, so we
    158  1.1    cgd  * currently use the "little-endian" representation and avoid any multi-byte
    159  1.1    cgd  * operations that depend on byte order.  This largely precludes use of the
    160  1.1    cgd  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    161  1.1    cgd  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    162  1.1    cgd  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    163  1.1    cgd  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    164  1.1    cgd  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    165  1.1    cgd  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    166  1.1    cgd  *
    167  1.1    cgd  * Permutation representation (Jim Gillogly):
    168  1.1    cgd  *
    169  1.1    cgd  * A transformation is defined by its effect on each of the 8 bytes of the
    170  1.1    cgd  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    171  1.1    cgd  * the input distributed appropriately.  The transformation is then the OR
    172  1.1    cgd  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    173  1.1    cgd  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    174  1.1    cgd  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    175  1.1    cgd  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    176  1.1    cgd  * is slower but tolerable, particularly for password encryption in which
    177  1.1    cgd  * the SPE transformation is iterated many times.  The small tables total 9K
    178  1.1    cgd  * bytes, the large tables total 72K bytes.
    179  1.1    cgd  *
    180  1.1    cgd  * The transformations used are:
    181  1.1    cgd  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    182  1.1    cgd  *	This is done by collecting the 32 even-numbered bits and applying
    183  1.1    cgd  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    184  1.1    cgd  *	bits and applying the same transformation.  Since there are only
    185  1.1    cgd  *	32 input bits, the IE3264 transformation table is half the size of
    186  1.1    cgd  *	the usual table.
    187  1.1    cgd  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    188  1.1    cgd  *	This is done by two trivial 48->32 bit compressions to obtain
    189  1.1    cgd  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    190  1.1    cgd  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    191  1.1    cgd  *	be possible to group the bits in the 64-bit block so that 2
    192  1.1    cgd  *	identical 32->32 bit transformations could be used instead,
    193  1.1    cgd  *	saving a factor of 4 in space and possibly 2 in time, but
    194  1.1    cgd  *	byte-ordering and other complications rear their ugly head.
    195  1.1    cgd  *	Similar opportunities/problems arise in the key schedule
    196  1.1    cgd  *	transforms.)
    197  1.1    cgd  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    198  1.1    cgd  *	This admittedly baroque 64->64 bit transformation is used to
    199  1.1    cgd  *	produce the first code (in 8*(6+2) format) of the key schedule.
    200  1.1    cgd  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    201  1.1    cgd  *	It would be possible to define 15 more transformations, each
    202  1.1    cgd  *	with a different rotation, to generate the entire key schedule.
    203  1.1    cgd  *	To save space, however, we instead permute each code into the
    204  1.1    cgd  *	next by using a transformation that "undoes" the PC2 permutation,
    205  1.1    cgd  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    206  1.1    cgd  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    207  1.1    cgd  *	invertible.  We get around that problem by using a modified PC2
    208  1.1    cgd  *	which retains the 8 otherwise-lost bits in the unused low-order
    209  1.1    cgd  *	bits of each byte.  The low-order bits are cleared when the
    210  1.1    cgd  *	codes are stored into the key schedule.
    211  1.1    cgd  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    212  1.1    cgd  *	This is faster than applying PC2ROT[0] twice,
    213  1.1    cgd  *
    214  1.1    cgd  * The Bell Labs "salt" (Bob Baldwin):
    215  1.1    cgd  *
    216  1.1    cgd  * The salting is a simple permutation applied to the 48-bit result of E.
    217  1.1    cgd  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    218  1.1    cgd  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    219  1.1    cgd  * 16777216 possible values.  (The original salt was 12 bits and could not
    220  1.1    cgd  * swap bits 13..24 with 36..48.)
    221  1.1    cgd  *
    222  1.1    cgd  * It is possible, but ugly, to warp the SPE table to account for the salt
    223  1.1    cgd  * permutation.  Fortunately, the conditional bit swapping requires only
    224  1.1    cgd  * about four machine instructions and can be done on-the-fly with about an
    225  1.1    cgd  * 8% performance penalty.
    226  1.1    cgd  */
    227  1.1    cgd 
    228  1.1    cgd typedef union {
    229  1.1    cgd 	unsigned char b[8];
    230  1.1    cgd 	struct {
    231  1.4    cgd 		int32_t	i0;
    232  1.4    cgd 		int32_t	i1;
    233  1.1    cgd 	} b32;
    234  1.1    cgd #if defined(B64)
    235  1.1    cgd 	B64	b64;
    236  1.1    cgd #endif
    237  1.1    cgd } C_block;
    238  1.1    cgd 
    239  1.1    cgd /*
    240  1.1    cgd  * Convert twenty-four-bit long in host-order
    241  1.1    cgd  * to six bits (and 2 low-order zeroes) per char little-endian format.
    242  1.1    cgd  */
    243  1.1    cgd #define	TO_SIX_BIT(rslt, src) {				\
    244  1.1    cgd 		C_block cvt;				\
    245  1.1    cgd 		cvt.b[0] = src; src >>= 6;		\
    246  1.1    cgd 		cvt.b[1] = src; src >>= 6;		\
    247  1.1    cgd 		cvt.b[2] = src; src >>= 6;		\
    248  1.1    cgd 		cvt.b[3] = src;				\
    249  1.1    cgd 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    250  1.1    cgd 	}
    251  1.1    cgd 
    252  1.1    cgd /*
    253  1.1    cgd  * These macros may someday permit efficient use of 64-bit integers.
    254  1.1    cgd  */
    255  1.1    cgd #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    256  1.1    cgd #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    257  1.1    cgd #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    258  1.1    cgd #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    259  1.1    cgd #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    260  1.4    cgd #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    261  1.1    cgd 
    262  1.1    cgd #if defined(LARGEDATA)
    263  1.1    cgd 	/* Waste memory like crazy.  Also, do permutations in line */
    264  1.1    cgd #define	LGCHUNKBITS	3
    265  1.1    cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    266  1.1    cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    267  1.1    cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    268  1.1    cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    269  1.1    cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    270  1.1    cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    271  1.1    cgd 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    272  1.1    cgd 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    273  1.1    cgd 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    274  1.1    cgd 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    275  1.1    cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    276  1.1    cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    277  1.1    cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    278  1.1    cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    279  1.1    cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    280  1.1    cgd #else
    281  1.1    cgd 	/* "small data" */
    282  1.1    cgd #define	LGCHUNKBITS	2
    283  1.1    cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    284  1.1    cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    285  1.1    cgd 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    286  1.1    cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    287  1.1    cgd 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    288  1.1    cgd 
    289  1.1    cgd STATIC
    290  1.1    cgd permute(cp, out, p, chars_in)
    291  1.1    cgd 	unsigned char *cp;
    292  1.1    cgd 	C_block *out;
    293  1.1    cgd 	register C_block *p;
    294  1.1    cgd 	int chars_in;
    295  1.1    cgd {
    296  1.1    cgd 	register DCL_BLOCK(D,D0,D1);
    297  1.1    cgd 	register C_block *tp;
    298  1.1    cgd 	register int t;
    299  1.1    cgd 
    300  1.1    cgd 	ZERO(D,D0,D1);
    301  1.1    cgd 	do {
    302  1.1    cgd 		t = *cp++;
    303  1.1    cgd 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    304  1.1    cgd 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    305  1.1    cgd 	} while (--chars_in > 0);
    306  1.1    cgd 	STORE(D,D0,D1,*out);
    307  1.1    cgd }
    308  1.1    cgd #endif /* LARGEDATA */
    309  1.1    cgd 
    310  1.1    cgd 
    311  1.1    cgd /* =====  (mostly) Standard DES Tables ==================== */
    312  1.1    cgd 
    313  1.1    cgd static unsigned char IP[] = {		/* initial permutation */
    314  1.1    cgd 	58, 50, 42, 34, 26, 18, 10,  2,
    315  1.1    cgd 	60, 52, 44, 36, 28, 20, 12,  4,
    316  1.1    cgd 	62, 54, 46, 38, 30, 22, 14,  6,
    317  1.1    cgd 	64, 56, 48, 40, 32, 24, 16,  8,
    318  1.1    cgd 	57, 49, 41, 33, 25, 17,  9,  1,
    319  1.1    cgd 	59, 51, 43, 35, 27, 19, 11,  3,
    320  1.1    cgd 	61, 53, 45, 37, 29, 21, 13,  5,
    321  1.1    cgd 	63, 55, 47, 39, 31, 23, 15,  7,
    322  1.1    cgd };
    323  1.1    cgd 
    324  1.1    cgd /* The final permutation is the inverse of IP - no table is necessary */
    325  1.1    cgd 
    326  1.1    cgd static unsigned char ExpandTr[] = {	/* expansion operation */
    327  1.1    cgd 	32,  1,  2,  3,  4,  5,
    328  1.1    cgd 	 4,  5,  6,  7,  8,  9,
    329  1.1    cgd 	 8,  9, 10, 11, 12, 13,
    330  1.1    cgd 	12, 13, 14, 15, 16, 17,
    331  1.1    cgd 	16, 17, 18, 19, 20, 21,
    332  1.1    cgd 	20, 21, 22, 23, 24, 25,
    333  1.1    cgd 	24, 25, 26, 27, 28, 29,
    334  1.1    cgd 	28, 29, 30, 31, 32,  1,
    335  1.1    cgd };
    336  1.1    cgd 
    337  1.1    cgd static unsigned char PC1[] = {		/* permuted choice table 1 */
    338  1.1    cgd 	57, 49, 41, 33, 25, 17,  9,
    339  1.1    cgd 	 1, 58, 50, 42, 34, 26, 18,
    340  1.1    cgd 	10,  2, 59, 51, 43, 35, 27,
    341  1.1    cgd 	19, 11,  3, 60, 52, 44, 36,
    342  1.1    cgd 
    343  1.1    cgd 	63, 55, 47, 39, 31, 23, 15,
    344  1.1    cgd 	 7, 62, 54, 46, 38, 30, 22,
    345  1.1    cgd 	14,  6, 61, 53, 45, 37, 29,
    346  1.1    cgd 	21, 13,  5, 28, 20, 12,  4,
    347  1.1    cgd };
    348  1.1    cgd 
    349  1.1    cgd static unsigned char Rotates[] = {	/* PC1 rotation schedule */
    350  1.1    cgd 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    351  1.1    cgd };
    352  1.1    cgd 
    353  1.1    cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    354  1.1    cgd static unsigned char PC2[] = {		/* permuted choice table 2 */
    355  1.1    cgd 	 9, 18,    14, 17, 11, 24,  1,  5,
    356  1.1    cgd 	22, 25,     3, 28, 15,  6, 21, 10,
    357  1.1    cgd 	35, 38,    23, 19, 12,  4, 26,  8,
    358  1.1    cgd 	43, 54,    16,  7, 27, 20, 13,  2,
    359  1.1    cgd 
    360  1.1    cgd 	 0,  0,    41, 52, 31, 37, 47, 55,
    361  1.1    cgd 	 0,  0,    30, 40, 51, 45, 33, 48,
    362  1.1    cgd 	 0,  0,    44, 49, 39, 56, 34, 53,
    363  1.1    cgd 	 0,  0,    46, 42, 50, 36, 29, 32,
    364  1.1    cgd };
    365  1.1    cgd 
    366  1.1    cgd static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    367  1.1    cgd 					/* S[1]			*/
    368  1.6  mikel 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    369  1.6  mikel 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    370  1.6  mikel 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    371  1.6  mikel 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    372  1.1    cgd 					/* S[2]			*/
    373  1.6  mikel 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    374  1.6  mikel 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    375  1.6  mikel 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    376  1.6  mikel 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    377  1.1    cgd 					/* S[3]			*/
    378  1.6  mikel 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    379  1.6  mikel 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    380  1.6  mikel 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    381  1.6  mikel 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    382  1.1    cgd 					/* S[4]			*/
    383  1.6  mikel 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    384  1.6  mikel 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    385  1.6  mikel 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    386  1.6  mikel 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    387  1.1    cgd 					/* S[5]			*/
    388  1.6  mikel 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    389  1.6  mikel 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    390  1.6  mikel 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    391  1.6  mikel 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    392  1.1    cgd 					/* S[6]			*/
    393  1.6  mikel 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    394  1.6  mikel 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    395  1.6  mikel 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    396  1.6  mikel 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    397  1.1    cgd 					/* S[7]			*/
    398  1.6  mikel 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    399  1.6  mikel 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    400  1.6  mikel 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    401  1.6  mikel 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    402  1.1    cgd 					/* S[8]			*/
    403  1.6  mikel 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    404  1.6  mikel 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    405  1.6  mikel 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    406  1.6  mikel 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    407  1.1    cgd };
    408  1.1    cgd 
    409  1.1    cgd static unsigned char P32Tr[] = {	/* 32-bit permutation function */
    410  1.1    cgd 	16,  7, 20, 21,
    411  1.1    cgd 	29, 12, 28, 17,
    412  1.1    cgd 	 1, 15, 23, 26,
    413  1.1    cgd 	 5, 18, 31, 10,
    414  1.1    cgd 	 2,  8, 24, 14,
    415  1.1    cgd 	32, 27,  3,  9,
    416  1.1    cgd 	19, 13, 30,  6,
    417  1.1    cgd 	22, 11,  4, 25,
    418  1.1    cgd };
    419  1.1    cgd 
    420  1.1    cgd static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
    421  1.1    cgd 	 1,  2,  3,  4,   17, 18, 19, 20,
    422  1.1    cgd 	 5,  6,  7,  8,   21, 22, 23, 24,
    423  1.1    cgd 	 9, 10, 11, 12,   25, 26, 27, 28,
    424  1.1    cgd 	13, 14, 15, 16,   29, 30, 31, 32,
    425  1.1    cgd 
    426  1.1    cgd 	33, 34, 35, 36,   49, 50, 51, 52,
    427  1.1    cgd 	37, 38, 39, 40,   53, 54, 55, 56,
    428  1.1    cgd 	41, 42, 43, 44,   57, 58, 59, 60,
    429  1.1    cgd 	45, 46, 47, 48,   61, 62, 63, 64,
    430  1.1    cgd };
    431  1.1    cgd 
    432  1.1    cgd static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    433  1.1    cgd 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    434  1.1    cgd 
    435  1.1    cgd 
    436  1.1    cgd /* =====  Tables that are initialized at run time  ==================== */
    437  1.1    cgd 
    438  1.1    cgd 
    439  1.1    cgd static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    440  1.1    cgd 
    441  1.1    cgd /* Initial key schedule permutation */
    442  1.1    cgd static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    443  1.1    cgd 
    444  1.1    cgd /* Subsequent key schedule rotation permutations */
    445  1.1    cgd static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    446  1.1    cgd 
    447  1.1    cgd /* Initial permutation/expansion table */
    448  1.1    cgd static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    449  1.1    cgd 
    450  1.1    cgd /* Table that combines the S, P, and E operations.  */
    451  1.4    cgd static int32_t SPE[2][8][64];
    452  1.1    cgd 
    453  1.1    cgd /* compressed/interleaved => final permutation table */
    454  1.1    cgd static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    455  1.1    cgd 
    456  1.1    cgd 
    457  1.1    cgd /* ==================================== */
    458  1.1    cgd 
    459  1.1    cgd 
    460  1.1    cgd static C_block	constdatablock;			/* encryption constant */
    461  1.1    cgd static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    462  1.1    cgd 
    463  1.1    cgd /*
    464  1.1    cgd  * Return a pointer to static data consisting of the "setting"
    465  1.1    cgd  * followed by an encryption produced by the "key" and "setting".
    466  1.1    cgd  */
    467  1.1    cgd char *
    468  1.1    cgd crypt(key, setting)
    469  1.1    cgd 	register const char *key;
    470  1.1    cgd 	register const char *setting;
    471  1.1    cgd {
    472  1.1    cgd 	register char *encp;
    473  1.4    cgd 	register int32_t i;
    474  1.1    cgd 	register int t;
    475  1.4    cgd 	int32_t salt;
    476  1.1    cgd 	int num_iter, salt_size;
    477  1.1    cgd 	C_block keyblock, rsltblock;
    478  1.1    cgd 
    479  1.1    cgd 	for (i = 0; i < 8; i++) {
    480  1.1    cgd 		if ((t = 2*(unsigned char)(*key)) != 0)
    481  1.1    cgd 			key++;
    482  1.1    cgd 		keyblock.b[i] = t;
    483  1.1    cgd 	}
    484  1.1    cgd 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    485  1.1    cgd 		return (NULL);
    486  1.1    cgd 
    487  1.1    cgd 	encp = &cryptresult[0];
    488  1.1    cgd 	switch (*setting) {
    489  1.1    cgd 	case _PASSWORD_EFMT1:
    490  1.1    cgd 		/*
    491  1.1    cgd 		 * Involve the rest of the password 8 characters at a time.
    492  1.1    cgd 		 */
    493  1.1    cgd 		while (*key) {
    494  1.1    cgd 			if (des_cipher((char *)&keyblock,
    495  1.1    cgd 			    (char *)&keyblock, 0L, 1))
    496  1.1    cgd 				return (NULL);
    497  1.1    cgd 			for (i = 0; i < 8; i++) {
    498  1.1    cgd 				if ((t = 2*(unsigned char)(*key)) != 0)
    499  1.1    cgd 					key++;
    500  1.1    cgd 				keyblock.b[i] ^= t;
    501  1.1    cgd 			}
    502  1.1    cgd 			if (des_setkey((char *)keyblock.b))
    503  1.1    cgd 				return (NULL);
    504  1.1    cgd 		}
    505  1.1    cgd 
    506  1.1    cgd 		*encp++ = *setting++;
    507  1.1    cgd 
    508  1.1    cgd 		/* get iteration count */
    509  1.1    cgd 		num_iter = 0;
    510  1.1    cgd 		for (i = 4; --i >= 0; ) {
    511  1.1    cgd 			if ((t = (unsigned char)setting[i]) == '\0')
    512  1.1    cgd 				t = '.';
    513  1.1    cgd 			encp[i] = t;
    514  1.1    cgd 			num_iter = (num_iter<<6) | a64toi[t];
    515  1.1    cgd 		}
    516  1.1    cgd 		setting += 4;
    517  1.1    cgd 		encp += 4;
    518  1.1    cgd 		salt_size = 4;
    519  1.1    cgd 		break;
    520  1.1    cgd 	default:
    521  1.1    cgd 		num_iter = 25;
    522  1.1    cgd 		salt_size = 2;
    523  1.1    cgd 	}
    524  1.1    cgd 
    525  1.1    cgd 	salt = 0;
    526  1.1    cgd 	for (i = salt_size; --i >= 0; ) {
    527  1.1    cgd 		if ((t = (unsigned char)setting[i]) == '\0')
    528  1.1    cgd 			t = '.';
    529  1.1    cgd 		encp[i] = t;
    530  1.1    cgd 		salt = (salt<<6) | a64toi[t];
    531  1.1    cgd 	}
    532  1.1    cgd 	encp += salt_size;
    533  1.1    cgd 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
    534  1.1    cgd 	    salt, num_iter))
    535  1.1    cgd 		return (NULL);
    536  1.1    cgd 
    537  1.1    cgd 	/*
    538  1.1    cgd 	 * Encode the 64 cipher bits as 11 ascii characters.
    539  1.1    cgd 	 */
    540  1.4    cgd 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    541  1.4    cgd 	    rsltblock.b[2];
    542  1.1    cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    543  1.1    cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    544  1.1    cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    545  1.1    cgd 	encp[0] = itoa64[i];		encp += 4;
    546  1.4    cgd 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    547  1.4    cgd 	    rsltblock.b[5];
    548  1.1    cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    549  1.1    cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    550  1.1    cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    551  1.1    cgd 	encp[0] = itoa64[i];		encp += 4;
    552  1.4    cgd 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    553  1.1    cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    554  1.1    cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    555  1.1    cgd 	encp[0] = itoa64[i];
    556  1.1    cgd 
    557  1.1    cgd 	encp[3] = 0;
    558  1.1    cgd 
    559  1.1    cgd 	return (cryptresult);
    560  1.1    cgd }
    561  1.1    cgd 
    562  1.1    cgd 
    563  1.1    cgd /*
    564  1.1    cgd  * The Key Schedule, filled in by des_setkey() or setkey().
    565  1.1    cgd  */
    566  1.1    cgd #define	KS_SIZE	16
    567  1.1    cgd static C_block	KS[KS_SIZE];
    568  1.1    cgd 
    569  1.1    cgd /*
    570  1.1    cgd  * Set up the key schedule from the key.
    571  1.1    cgd  */
    572  1.6  mikel int
    573  1.1    cgd des_setkey(key)
    574  1.1    cgd 	register const char *key;
    575  1.1    cgd {
    576  1.1    cgd 	register DCL_BLOCK(K, K0, K1);
    577  1.1    cgd 	register C_block *ptabp;
    578  1.1    cgd 	register int i;
    579  1.1    cgd 	static int des_ready = 0;
    580  1.1    cgd 
    581  1.1    cgd 	if (!des_ready) {
    582  1.1    cgd 		init_des();
    583  1.1    cgd 		des_ready = 1;
    584  1.1    cgd 	}
    585  1.1    cgd 
    586  1.1    cgd 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
    587  1.1    cgd 	key = (char *)&KS[0];
    588  1.1    cgd 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    589  1.1    cgd 	for (i = 1; i < 16; i++) {
    590  1.1    cgd 		key += sizeof(C_block);
    591  1.1    cgd 		STORE(K,K0,K1,*(C_block *)key);
    592  1.1    cgd 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    593  1.1    cgd 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
    594  1.1    cgd 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    595  1.1    cgd 	}
    596  1.1    cgd 	return (0);
    597  1.1    cgd }
    598  1.1    cgd 
    599  1.1    cgd /*
    600  1.1    cgd  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    601  1.1    cgd  * iterations of DES, using the the given 24-bit salt and the pre-computed key
    602  1.1    cgd  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    603  1.1    cgd  *
    604  1.1    cgd  * NOTE: the performance of this routine is critically dependent on your
    605  1.1    cgd  * compiler and machine architecture.
    606  1.1    cgd  */
    607  1.6  mikel int
    608  1.1    cgd des_cipher(in, out, salt, num_iter)
    609  1.1    cgd 	const char *in;
    610  1.1    cgd 	char *out;
    611  1.1    cgd 	long salt;
    612  1.1    cgd 	int num_iter;
    613  1.1    cgd {
    614  1.1    cgd 	/* variables that we want in registers, most important first */
    615  1.1    cgd #if defined(pdp11)
    616  1.1    cgd 	register int j;
    617  1.1    cgd #endif
    618  1.4    cgd 	register int32_t L0, L1, R0, R1, k;
    619  1.1    cgd 	register C_block *kp;
    620  1.1    cgd 	register int ks_inc, loop_count;
    621  1.1    cgd 	C_block B;
    622  1.1    cgd 
    623  1.1    cgd 	L0 = salt;
    624  1.1    cgd 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    625  1.1    cgd 
    626  1.1    cgd #if defined(vax) || defined(pdp11)
    627  1.1    cgd 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    628  1.1    cgd #define	SALT (~salt)
    629  1.1    cgd #else
    630  1.1    cgd #define	SALT salt
    631  1.1    cgd #endif
    632  1.1    cgd 
    633  1.1    cgd #if defined(MUST_ALIGN)
    634  1.1    cgd 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    635  1.1    cgd 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    636  1.1    cgd 	LOAD(L,L0,L1,B);
    637  1.1    cgd #else
    638  1.1    cgd 	LOAD(L,L0,L1,*(C_block *)in);
    639  1.1    cgd #endif
    640  1.1    cgd 	LOADREG(R,R0,R1,L,L0,L1);
    641  1.1    cgd 	L0 &= 0x55555555L;
    642  1.1    cgd 	L1 &= 0x55555555L;
    643  1.1    cgd 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    644  1.1    cgd 	R0 &= 0xaaaaaaaaL;
    645  1.1    cgd 	R1 = (R1 >> 1) & 0x55555555L;
    646  1.1    cgd 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    647  1.1    cgd 	STORE(L,L0,L1,B);
    648  1.1    cgd 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    649  1.1    cgd 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    650  1.1    cgd 
    651  1.1    cgd 	if (num_iter >= 0)
    652  1.1    cgd 	{		/* encryption */
    653  1.1    cgd 		kp = &KS[0];
    654  1.1    cgd 		ks_inc  = sizeof(*kp);
    655  1.1    cgd 	}
    656  1.1    cgd 	else
    657  1.1    cgd 	{		/* decryption */
    658  1.5    cgd 		return (1); /* always fail */
    659  1.1    cgd 	}
    660  1.1    cgd 
    661  1.1    cgd 	while (--num_iter >= 0) {
    662  1.1    cgd 		loop_count = 8;
    663  1.1    cgd 		do {
    664  1.1    cgd 
    665  1.4    cgd #define	SPTAB(t, i) \
    666  1.5    cgd 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    667  1.1    cgd #if defined(gould)
    668  1.1    cgd 			/* use this if B.b[i] is evaluated just once ... */
    669  1.1    cgd #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    670  1.1    cgd #else
    671  1.1    cgd #if defined(pdp11)
    672  1.1    cgd 			/* use this if your "long" int indexing is slow */
    673  1.1    cgd #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    674  1.1    cgd #else
    675  1.1    cgd 			/* use this if "k" is allocated to a register ... */
    676  1.1    cgd #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    677  1.1    cgd #endif
    678  1.1    cgd #endif
    679  1.1    cgd 
    680  1.1    cgd #define	CRUNCH(p0, p1, q0, q1)	\
    681  1.1    cgd 			k = (q0 ^ q1) & SALT;	\
    682  1.1    cgd 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    683  1.1    cgd 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    684  1.1    cgd 			kp = (C_block *)((char *)kp+ks_inc);	\
    685  1.1    cgd 							\
    686  1.1    cgd 			DOXOR(p0, p1, 0);		\
    687  1.1    cgd 			DOXOR(p0, p1, 1);		\
    688  1.1    cgd 			DOXOR(p0, p1, 2);		\
    689  1.1    cgd 			DOXOR(p0, p1, 3);		\
    690  1.1    cgd 			DOXOR(p0, p1, 4);		\
    691  1.1    cgd 			DOXOR(p0, p1, 5);		\
    692  1.1    cgd 			DOXOR(p0, p1, 6);		\
    693  1.1    cgd 			DOXOR(p0, p1, 7);
    694  1.1    cgd 
    695  1.1    cgd 			CRUNCH(L0, L1, R0, R1);
    696  1.1    cgd 			CRUNCH(R0, R1, L0, L1);
    697  1.1    cgd 		} while (--loop_count != 0);
    698  1.1    cgd 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    699  1.1    cgd 
    700  1.1    cgd 
    701  1.1    cgd 		/* swap L and R */
    702  1.1    cgd 		L0 ^= R0;  L1 ^= R1;
    703  1.1    cgd 		R0 ^= L0;  R1 ^= L1;
    704  1.1    cgd 		L0 ^= R0;  L1 ^= R1;
    705  1.1    cgd 	}
    706  1.1    cgd 
    707  1.1    cgd 	/* store the encrypted (or decrypted) result */
    708  1.1    cgd 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    709  1.1    cgd 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    710  1.1    cgd 	STORE(L,L0,L1,B);
    711  1.1    cgd 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    712  1.1    cgd #if defined(MUST_ALIGN)
    713  1.1    cgd 	STORE(L,L0,L1,B);
    714  1.1    cgd 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    715  1.1    cgd 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    716  1.1    cgd #else
    717  1.1    cgd 	STORE(L,L0,L1,*(C_block *)out);
    718  1.1    cgd #endif
    719  1.1    cgd 	return (0);
    720  1.1    cgd }
    721  1.1    cgd 
    722  1.1    cgd 
    723  1.1    cgd /*
    724  1.1    cgd  * Initialize various tables.  This need only be done once.  It could even be
    725  1.1    cgd  * done at compile time, if the compiler were capable of that sort of thing.
    726  1.1    cgd  */
    727  1.1    cgd STATIC
    728  1.1    cgd init_des()
    729  1.1    cgd {
    730  1.1    cgd 	register int i, j;
    731  1.4    cgd 	register int32_t k;
    732  1.1    cgd 	register int tableno;
    733  1.1    cgd 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    734  1.1    cgd 
    735  1.1    cgd 	/*
    736  1.1    cgd 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    737  1.1    cgd 	 */
    738  1.1    cgd 	for (i = 0; i < 64; i++)
    739  1.1    cgd 		a64toi[itoa64[i]] = i;
    740  1.1    cgd 
    741  1.1    cgd 	/*
    742  1.1    cgd 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    743  1.1    cgd 	 */
    744  1.1    cgd 	for (i = 0; i < 64; i++)
    745  1.1    cgd 		perm[i] = 0;
    746  1.1    cgd 	for (i = 0; i < 64; i++) {
    747  1.1    cgd 		if ((k = PC2[i]) == 0)
    748  1.1    cgd 			continue;
    749  1.1    cgd 		k += Rotates[0]-1;
    750  1.1    cgd 		if ((k%28) < Rotates[0]) k -= 28;
    751  1.1    cgd 		k = PC1[k];
    752  1.1    cgd 		if (k > 0) {
    753  1.1    cgd 			k--;
    754  1.1    cgd 			k = (k|07) - (k&07);
    755  1.1    cgd 			k++;
    756  1.1    cgd 		}
    757  1.1    cgd 		perm[i] = k;
    758  1.1    cgd 	}
    759  1.1    cgd #ifdef DEBUG
    760  1.1    cgd 	prtab("pc1tab", perm, 8);
    761  1.1    cgd #endif
    762  1.1    cgd 	init_perm(PC1ROT, perm, 8, 8);
    763  1.1    cgd 
    764  1.1    cgd 	/*
    765  1.1    cgd 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    766  1.1    cgd 	 */
    767  1.1    cgd 	for (j = 0; j < 2; j++) {
    768  1.1    cgd 		unsigned char pc2inv[64];
    769  1.1    cgd 		for (i = 0; i < 64; i++)
    770  1.1    cgd 			perm[i] = pc2inv[i] = 0;
    771  1.1    cgd 		for (i = 0; i < 64; i++) {
    772  1.1    cgd 			if ((k = PC2[i]) == 0)
    773  1.1    cgd 				continue;
    774  1.1    cgd 			pc2inv[k-1] = i+1;
    775  1.1    cgd 		}
    776  1.1    cgd 		for (i = 0; i < 64; i++) {
    777  1.1    cgd 			if ((k = PC2[i]) == 0)
    778  1.1    cgd 				continue;
    779  1.1    cgd 			k += j;
    780  1.1    cgd 			if ((k%28) <= j) k -= 28;
    781  1.1    cgd 			perm[i] = pc2inv[k];
    782  1.1    cgd 		}
    783  1.1    cgd #ifdef DEBUG
    784  1.1    cgd 		prtab("pc2tab", perm, 8);
    785  1.1    cgd #endif
    786  1.1    cgd 		init_perm(PC2ROT[j], perm, 8, 8);
    787  1.1    cgd 	}
    788  1.1    cgd 
    789  1.1    cgd 	/*
    790  1.1    cgd 	 * Bit reverse, then initial permutation, then expansion.
    791  1.1    cgd 	 */
    792  1.1    cgd 	for (i = 0; i < 8; i++) {
    793  1.1    cgd 		for (j = 0; j < 8; j++) {
    794  1.1    cgd 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    795  1.1    cgd 			if (k > 32)
    796  1.1    cgd 				k -= 32;
    797  1.1    cgd 			else if (k > 0)
    798  1.1    cgd 				k--;
    799  1.1    cgd 			if (k > 0) {
    800  1.1    cgd 				k--;
    801  1.1    cgd 				k = (k|07) - (k&07);
    802  1.1    cgd 				k++;
    803  1.1    cgd 			}
    804  1.1    cgd 			perm[i*8+j] = k;
    805  1.1    cgd 		}
    806  1.1    cgd 	}
    807  1.1    cgd #ifdef DEBUG
    808  1.1    cgd 	prtab("ietab", perm, 8);
    809  1.1    cgd #endif
    810  1.1    cgd 	init_perm(IE3264, perm, 4, 8);
    811  1.1    cgd 
    812  1.1    cgd 	/*
    813  1.1    cgd 	 * Compression, then final permutation, then bit reverse.
    814  1.1    cgd 	 */
    815  1.1    cgd 	for (i = 0; i < 64; i++) {
    816  1.1    cgd 		k = IP[CIFP[i]-1];
    817  1.1    cgd 		if (k > 0) {
    818  1.1    cgd 			k--;
    819  1.1    cgd 			k = (k|07) - (k&07);
    820  1.1    cgd 			k++;
    821  1.1    cgd 		}
    822  1.1    cgd 		perm[k-1] = i+1;
    823  1.1    cgd 	}
    824  1.1    cgd #ifdef DEBUG
    825  1.1    cgd 	prtab("cftab", perm, 8);
    826  1.1    cgd #endif
    827  1.1    cgd 	init_perm(CF6464, perm, 8, 8);
    828  1.1    cgd 
    829  1.1    cgd 	/*
    830  1.1    cgd 	 * SPE table
    831  1.1    cgd 	 */
    832  1.1    cgd 	for (i = 0; i < 48; i++)
    833  1.1    cgd 		perm[i] = P32Tr[ExpandTr[i]-1];
    834  1.1    cgd 	for (tableno = 0; tableno < 8; tableno++) {
    835  1.1    cgd 		for (j = 0; j < 64; j++)  {
    836  1.1    cgd 			k = (((j >> 0) &01) << 5)|
    837  1.1    cgd 			    (((j >> 1) &01) << 3)|
    838  1.1    cgd 			    (((j >> 2) &01) << 2)|
    839  1.1    cgd 			    (((j >> 3) &01) << 1)|
    840  1.1    cgd 			    (((j >> 4) &01) << 0)|
    841  1.1    cgd 			    (((j >> 5) &01) << 4);
    842  1.1    cgd 			k = S[tableno][k];
    843  1.1    cgd 			k = (((k >> 3)&01) << 0)|
    844  1.1    cgd 			    (((k >> 2)&01) << 1)|
    845  1.1    cgd 			    (((k >> 1)&01) << 2)|
    846  1.1    cgd 			    (((k >> 0)&01) << 3);
    847  1.1    cgd 			for (i = 0; i < 32; i++)
    848  1.1    cgd 				tmp32[i] = 0;
    849  1.1    cgd 			for (i = 0; i < 4; i++)
    850  1.1    cgd 				tmp32[4 * tableno + i] = (k >> i) & 01;
    851  1.1    cgd 			k = 0;
    852  1.1    cgd 			for (i = 24; --i >= 0; )
    853  1.1    cgd 				k = (k<<1) | tmp32[perm[i]-1];
    854  1.1    cgd 			TO_SIX_BIT(SPE[0][tableno][j], k);
    855  1.1    cgd 			k = 0;
    856  1.1    cgd 			for (i = 24; --i >= 0; )
    857  1.1    cgd 				k = (k<<1) | tmp32[perm[i+24]-1];
    858  1.1    cgd 			TO_SIX_BIT(SPE[1][tableno][j], k);
    859  1.1    cgd 		}
    860  1.1    cgd 	}
    861  1.1    cgd }
    862  1.1    cgd 
    863  1.1    cgd /*
    864  1.1    cgd  * Initialize "perm" to represent transformation "p", which rearranges
    865  1.1    cgd  * (perhaps with expansion and/or contraction) one packed array of bits
    866  1.1    cgd  * (of size "chars_in" characters) into another array (of size "chars_out"
    867  1.1    cgd  * characters).
    868  1.1    cgd  *
    869  1.1    cgd  * "perm" must be all-zeroes on entry to this routine.
    870  1.1    cgd  */
    871  1.1    cgd STATIC
    872  1.1    cgd init_perm(perm, p, chars_in, chars_out)
    873  1.1    cgd 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
    874  1.1    cgd 	unsigned char p[64];
    875  1.1    cgd 	int chars_in, chars_out;
    876  1.1    cgd {
    877  1.1    cgd 	register int i, j, k, l;
    878  1.1    cgd 
    879  1.1    cgd 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    880  1.1    cgd 		l = p[k] - 1;		/* where this bit comes from */
    881  1.1    cgd 		if (l < 0)
    882  1.1    cgd 			continue;	/* output bit is always 0 */
    883  1.1    cgd 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    884  1.1    cgd 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    885  1.1    cgd 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    886  1.1    cgd 			if ((j & l) != 0)
    887  1.1    cgd 				perm[i][j].b[k>>3] |= 1<<(k&07);
    888  1.1    cgd 		}
    889  1.1    cgd 	}
    890  1.1    cgd }
    891  1.1    cgd 
    892  1.1    cgd /*
    893  1.1    cgd  * "setkey" routine (for backwards compatibility)
    894  1.1    cgd  */
    895  1.6  mikel int
    896  1.1    cgd setkey(key)
    897  1.1    cgd 	register const char *key;
    898  1.1    cgd {
    899  1.1    cgd 	register int i, j, k;
    900  1.1    cgd 	C_block keyblock;
    901  1.1    cgd 
    902  1.1    cgd 	for (i = 0; i < 8; i++) {
    903  1.1    cgd 		k = 0;
    904  1.1    cgd 		for (j = 0; j < 8; j++) {
    905  1.1    cgd 			k <<= 1;
    906  1.1    cgd 			k |= (unsigned char)*key++;
    907  1.1    cgd 		}
    908  1.1    cgd 		keyblock.b[i] = k;
    909  1.1    cgd 	}
    910  1.1    cgd 	return (des_setkey((char *)keyblock.b));
    911  1.1    cgd }
    912  1.1    cgd 
    913  1.1    cgd /*
    914  1.1    cgd  * "encrypt" routine (for backwards compatibility)
    915  1.1    cgd  */
    916  1.6  mikel int
    917  1.1    cgd encrypt(block, flag)
    918  1.1    cgd 	register char *block;
    919  1.1    cgd 	int flag;
    920  1.1    cgd {
    921  1.1    cgd 	register int i, j, k;
    922  1.1    cgd 	C_block cblock;
    923  1.1    cgd 
    924  1.1    cgd 	for (i = 0; i < 8; i++) {
    925  1.1    cgd 		k = 0;
    926  1.1    cgd 		for (j = 0; j < 8; j++) {
    927  1.1    cgd 			k <<= 1;
    928  1.1    cgd 			k |= (unsigned char)*block++;
    929  1.1    cgd 		}
    930  1.1    cgd 		cblock.b[i] = k;
    931  1.1    cgd 	}
    932  1.1    cgd 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    933  1.1    cgd 		return (1);
    934  1.1    cgd 	for (i = 7; i >= 0; i--) {
    935  1.1    cgd 		k = cblock.b[i];
    936  1.1    cgd 		for (j = 7; j >= 0; j--) {
    937  1.1    cgd 			*--block = k&01;
    938  1.1    cgd 			k >>= 1;
    939  1.1    cgd 		}
    940  1.1    cgd 	}
    941  1.1    cgd 	return (0);
    942  1.1    cgd }
    943  1.1    cgd 
    944  1.1    cgd #ifdef DEBUG
    945  1.1    cgd STATIC
    946  1.1    cgd prtab(s, t, num_rows)
    947  1.1    cgd 	char *s;
    948  1.1    cgd 	unsigned char *t;
    949  1.1    cgd 	int num_rows;
    950  1.1    cgd {
    951  1.1    cgd 	register int i, j;
    952  1.1    cgd 
    953  1.1    cgd 	(void)printf("%s:\n", s);
    954  1.1    cgd 	for (i = 0; i < num_rows; i++) {
    955  1.1    cgd 		for (j = 0; j < 8; j++) {
    956  1.1    cgd 			 (void)printf("%3d", t[i*8+j]);
    957  1.1    cgd 		}
    958  1.1    cgd 		(void)printf("\n");
    959  1.1    cgd 	}
    960  1.1    cgd 	(void)printf("\n");
    961  1.1    cgd }
    962  1.1    cgd #endif
    963