Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.7
      1  1.7  lukem /*	$NetBSD: crypt.c,v 1.7 1997/10/09 10:28:43 lukem Exp $	*/
      2  1.5    cgd 
      3  1.1    cgd /*
      4  1.5    cgd  * Copyright (c) 1989, 1993
      5  1.5    cgd  *	The Regents of the University of California.  All rights reserved.
      6  1.1    cgd  *
      7  1.1    cgd  * This code is derived from software contributed to Berkeley by
      8  1.1    cgd  * Tom Truscott.
      9  1.1    cgd  *
     10  1.1    cgd  * Redistribution and use in source and binary forms, with or without
     11  1.1    cgd  * modification, are permitted provided that the following conditions
     12  1.1    cgd  * are met:
     13  1.1    cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.1    cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.1    cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1    cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.1    cgd  *    documentation and/or other materials provided with the distribution.
     18  1.1    cgd  * 3. All advertising materials mentioning features or use of this software
     19  1.1    cgd  *    must display the following acknowledgement:
     20  1.1    cgd  *	This product includes software developed by the University of
     21  1.1    cgd  *	California, Berkeley and its contributors.
     22  1.1    cgd  * 4. Neither the name of the University nor the names of its contributors
     23  1.1    cgd  *    may be used to endorse or promote products derived from this software
     24  1.1    cgd  *    without specific prior written permission.
     25  1.1    cgd  *
     26  1.1    cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1    cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1    cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1    cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1    cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1    cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1    cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1    cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1    cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1    cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1    cgd  * SUCH DAMAGE.
     37  1.1    cgd  */
     38  1.1    cgd 
     39  1.7  lukem #include <sys/cdefs.h>
     40  1.7  lukem #if !defined(lint)
     41  1.5    cgd #if 0
     42  1.5    cgd static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     43  1.7  lukem #else
     44  1.7  lukem __RCSID("$NetBSD: crypt.c,v 1.7 1997/10/09 10:28:43 lukem Exp $");
     45  1.5    cgd #endif
     46  1.7  lukem #endif /* not lint */
     47  1.1    cgd 
     48  1.1    cgd #include <limits.h>
     49  1.1    cgd #include <pwd.h>
     50  1.6  mikel #include <unistd.h>
     51  1.1    cgd 
     52  1.1    cgd /*
     53  1.1    cgd  * UNIX password, and DES, encryption.
     54  1.1    cgd  * By Tom Truscott, trt (at) rti.rti.org,
     55  1.1    cgd  * from algorithms by Robert W. Baldwin and James Gillogly.
     56  1.1    cgd  *
     57  1.1    cgd  * References:
     58  1.1    cgd  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     59  1.1    cgd  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     60  1.1    cgd  *
     61  1.1    cgd  * "Password Security: A Case History," R. Morris and Ken Thompson,
     62  1.1    cgd  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     63  1.1    cgd  *
     64  1.1    cgd  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     65  1.1    cgd  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     66  1.1    cgd  */
     67  1.1    cgd 
     68  1.1    cgd /* =====  Configuration ==================== */
     69  1.1    cgd 
     70  1.1    cgd /*
     71  1.1    cgd  * define "MUST_ALIGN" if your compiler cannot load/store
     72  1.1    cgd  * long integers at arbitrary (e.g. odd) memory locations.
     73  1.1    cgd  * (Either that or never pass unaligned addresses to des_cipher!)
     74  1.1    cgd  */
     75  1.1    cgd #if !defined(vax)
     76  1.1    cgd #define	MUST_ALIGN
     77  1.1    cgd #endif
     78  1.1    cgd 
     79  1.1    cgd #ifdef CHAR_BITS
     80  1.1    cgd #if CHAR_BITS != 8
     81  1.1    cgd 	#error C_block structure assumes 8 bit characters
     82  1.1    cgd #endif
     83  1.1    cgd #endif
     84  1.1    cgd 
     85  1.1    cgd /*
     86  1.1    cgd  * define "B64" to be the declaration for a 64 bit integer.
     87  1.1    cgd  * XXX this feature is currently unused, see "endian" comment below.
     88  1.1    cgd  */
     89  1.1    cgd #if defined(cray)
     90  1.1    cgd #define	B64	long
     91  1.1    cgd #endif
     92  1.1    cgd #if defined(convex)
     93  1.1    cgd #define	B64	long long
     94  1.1    cgd #endif
     95  1.1    cgd 
     96  1.1    cgd /*
     97  1.1    cgd  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
     98  1.1    cgd  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
     99  1.1    cgd  * little effect on crypt().
    100  1.1    cgd  */
    101  1.1    cgd #if defined(notdef)
    102  1.1    cgd #define	LARGEDATA
    103  1.1    cgd #endif
    104  1.1    cgd 
    105  1.6  mikel /* compile with "-DSTATIC=void" when profiling */
    106  1.1    cgd #ifndef STATIC
    107  1.6  mikel #define	STATIC	static void
    108  1.1    cgd #endif
    109  1.1    cgd 
    110  1.1    cgd /* ==================================== */
    111  1.1    cgd 
    112  1.1    cgd /*
    113  1.1    cgd  * Cipher-block representation (Bob Baldwin):
    114  1.1    cgd  *
    115  1.1    cgd  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    116  1.1    cgd  * representation is to store one bit per byte in an array of bytes.  Bit N of
    117  1.1    cgd  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    118  1.1    cgd  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    119  1.1    cgd  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    120  1.1    cgd  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    121  1.1    cgd  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    122  1.1    cgd  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    123  1.1    cgd  * converted to LSB format, and the output 64-bit block is converted back into
    124  1.1    cgd  * MSB format.
    125  1.1    cgd  *
    126  1.1    cgd  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    127  1.1    cgd  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    128  1.1    cgd  * the computation, the expansion is applied only once, the expanded
    129  1.1    cgd  * representation is maintained during the encryption, and a compression
    130  1.1    cgd  * permutation is applied only at the end.  To speed up the S-box lookups,
    131  1.1    cgd  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    132  1.1    cgd  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    133  1.1    cgd  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    134  1.1    cgd  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    135  1.1    cgd  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    136  1.1    cgd  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    137  1.1    cgd  * used, in which the output is the 64 bit result of an S-box lookup which
    138  1.1    cgd  * has been permuted by P and expanded by E, and is ready for use in the next
    139  1.1    cgd  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    140  1.1    cgd  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    141  1.1    cgd  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    142  1.1    cgd  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    143  1.1    cgd  * 8*64*8 = 4K bytes.
    144  1.1    cgd  *
    145  1.1    cgd  * To speed up bit-parallel operations (such as XOR), the 8 byte
    146  1.1    cgd  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    147  1.1    cgd  * machines which support it, a 64 bit value "b64".  This data structure,
    148  1.1    cgd  * "C_block", has two problems.  First, alignment restrictions must be
    149  1.1    cgd  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    150  1.1    cgd  * the architecture becomes visible.
    151  1.1    cgd  *
    152  1.1    cgd  * The byte-order problem is unfortunate, since on the one hand it is good
    153  1.1    cgd  * to have a machine-independent C_block representation (bits 1..8 in the
    154  1.1    cgd  * first byte, etc.), and on the other hand it is good for the LSB of the
    155  1.1    cgd  * first byte to be the LSB of i0.  We cannot have both these things, so we
    156  1.1    cgd  * currently use the "little-endian" representation and avoid any multi-byte
    157  1.1    cgd  * operations that depend on byte order.  This largely precludes use of the
    158  1.1    cgd  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    159  1.1    cgd  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    160  1.1    cgd  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    161  1.1    cgd  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    162  1.1    cgd  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    163  1.1    cgd  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    164  1.1    cgd  *
    165  1.1    cgd  * Permutation representation (Jim Gillogly):
    166  1.1    cgd  *
    167  1.1    cgd  * A transformation is defined by its effect on each of the 8 bytes of the
    168  1.1    cgd  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    169  1.1    cgd  * the input distributed appropriately.  The transformation is then the OR
    170  1.1    cgd  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    171  1.1    cgd  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    172  1.1    cgd  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    173  1.1    cgd  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    174  1.1    cgd  * is slower but tolerable, particularly for password encryption in which
    175  1.1    cgd  * the SPE transformation is iterated many times.  The small tables total 9K
    176  1.1    cgd  * bytes, the large tables total 72K bytes.
    177  1.1    cgd  *
    178  1.1    cgd  * The transformations used are:
    179  1.1    cgd  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    180  1.1    cgd  *	This is done by collecting the 32 even-numbered bits and applying
    181  1.1    cgd  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    182  1.1    cgd  *	bits and applying the same transformation.  Since there are only
    183  1.1    cgd  *	32 input bits, the IE3264 transformation table is half the size of
    184  1.1    cgd  *	the usual table.
    185  1.1    cgd  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    186  1.1    cgd  *	This is done by two trivial 48->32 bit compressions to obtain
    187  1.1    cgd  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    188  1.1    cgd  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    189  1.1    cgd  *	be possible to group the bits in the 64-bit block so that 2
    190  1.1    cgd  *	identical 32->32 bit transformations could be used instead,
    191  1.1    cgd  *	saving a factor of 4 in space and possibly 2 in time, but
    192  1.1    cgd  *	byte-ordering and other complications rear their ugly head.
    193  1.1    cgd  *	Similar opportunities/problems arise in the key schedule
    194  1.1    cgd  *	transforms.)
    195  1.1    cgd  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    196  1.1    cgd  *	This admittedly baroque 64->64 bit transformation is used to
    197  1.1    cgd  *	produce the first code (in 8*(6+2) format) of the key schedule.
    198  1.1    cgd  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    199  1.1    cgd  *	It would be possible to define 15 more transformations, each
    200  1.1    cgd  *	with a different rotation, to generate the entire key schedule.
    201  1.1    cgd  *	To save space, however, we instead permute each code into the
    202  1.1    cgd  *	next by using a transformation that "undoes" the PC2 permutation,
    203  1.1    cgd  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    204  1.1    cgd  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    205  1.1    cgd  *	invertible.  We get around that problem by using a modified PC2
    206  1.1    cgd  *	which retains the 8 otherwise-lost bits in the unused low-order
    207  1.1    cgd  *	bits of each byte.  The low-order bits are cleared when the
    208  1.1    cgd  *	codes are stored into the key schedule.
    209  1.1    cgd  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    210  1.1    cgd  *	This is faster than applying PC2ROT[0] twice,
    211  1.1    cgd  *
    212  1.1    cgd  * The Bell Labs "salt" (Bob Baldwin):
    213  1.1    cgd  *
    214  1.1    cgd  * The salting is a simple permutation applied to the 48-bit result of E.
    215  1.1    cgd  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    216  1.1    cgd  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    217  1.1    cgd  * 16777216 possible values.  (The original salt was 12 bits and could not
    218  1.1    cgd  * swap bits 13..24 with 36..48.)
    219  1.1    cgd  *
    220  1.1    cgd  * It is possible, but ugly, to warp the SPE table to account for the salt
    221  1.1    cgd  * permutation.  Fortunately, the conditional bit swapping requires only
    222  1.1    cgd  * about four machine instructions and can be done on-the-fly with about an
    223  1.1    cgd  * 8% performance penalty.
    224  1.1    cgd  */
    225  1.1    cgd 
    226  1.1    cgd typedef union {
    227  1.1    cgd 	unsigned char b[8];
    228  1.1    cgd 	struct {
    229  1.4    cgd 		int32_t	i0;
    230  1.4    cgd 		int32_t	i1;
    231  1.1    cgd 	} b32;
    232  1.1    cgd #if defined(B64)
    233  1.1    cgd 	B64	b64;
    234  1.1    cgd #endif
    235  1.1    cgd } C_block;
    236  1.1    cgd 
    237  1.1    cgd /*
    238  1.1    cgd  * Convert twenty-four-bit long in host-order
    239  1.1    cgd  * to six bits (and 2 low-order zeroes) per char little-endian format.
    240  1.1    cgd  */
    241  1.1    cgd #define	TO_SIX_BIT(rslt, src) {				\
    242  1.1    cgd 		C_block cvt;				\
    243  1.1    cgd 		cvt.b[0] = src; src >>= 6;		\
    244  1.1    cgd 		cvt.b[1] = src; src >>= 6;		\
    245  1.1    cgd 		cvt.b[2] = src; src >>= 6;		\
    246  1.1    cgd 		cvt.b[3] = src;				\
    247  1.1    cgd 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    248  1.1    cgd 	}
    249  1.1    cgd 
    250  1.1    cgd /*
    251  1.1    cgd  * These macros may someday permit efficient use of 64-bit integers.
    252  1.1    cgd  */
    253  1.1    cgd #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    254  1.1    cgd #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    255  1.1    cgd #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    256  1.1    cgd #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    257  1.1    cgd #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    258  1.4    cgd #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    259  1.1    cgd 
    260  1.1    cgd #if defined(LARGEDATA)
    261  1.1    cgd 	/* Waste memory like crazy.  Also, do permutations in line */
    262  1.1    cgd #define	LGCHUNKBITS	3
    263  1.1    cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    264  1.1    cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    265  1.1    cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    266  1.1    cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    267  1.1    cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    268  1.1    cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    269  1.1    cgd 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    270  1.1    cgd 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    271  1.1    cgd 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    272  1.1    cgd 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    273  1.1    cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    274  1.1    cgd 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    275  1.1    cgd 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    276  1.1    cgd 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    277  1.1    cgd 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    278  1.1    cgd #else
    279  1.1    cgd 	/* "small data" */
    280  1.1    cgd #define	LGCHUNKBITS	2
    281  1.1    cgd #define	CHUNKBITS	(1<<LGCHUNKBITS)
    282  1.1    cgd #define	PERM6464(d,d0,d1,cpp,p)				\
    283  1.1    cgd 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    284  1.1    cgd #define	PERM3264(d,d0,d1,cpp,p)				\
    285  1.1    cgd 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    286  1.1    cgd 
    287  1.7  lukem 
    288  1.7  lukem STATIC	init_des __P((void));
    289  1.7  lukem STATIC	init_perm __P((C_block [][], unsigned char [], int, int));
    290  1.7  lukem STATIC	permute __P((unsigned char *, C_block *, C_block *, int));
    291  1.7  lukem #ifdef DEBUG
    292  1.7  lukem STATIC	prtab __P((char *, unsigned char *, int));
    293  1.7  lukem #endif
    294  1.7  lukem 
    295  1.7  lukem 
    296  1.1    cgd STATIC
    297  1.1    cgd permute(cp, out, p, chars_in)
    298  1.1    cgd 	unsigned char *cp;
    299  1.1    cgd 	C_block *out;
    300  1.7  lukem 	C_block *p;
    301  1.1    cgd 	int chars_in;
    302  1.1    cgd {
    303  1.7  lukem 	DCL_BLOCK(D,D0,D1);
    304  1.7  lukem 	C_block *tp;
    305  1.7  lukem 	int t;
    306  1.1    cgd 
    307  1.1    cgd 	ZERO(D,D0,D1);
    308  1.1    cgd 	do {
    309  1.1    cgd 		t = *cp++;
    310  1.1    cgd 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    311  1.1    cgd 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    312  1.1    cgd 	} while (--chars_in > 0);
    313  1.1    cgd 	STORE(D,D0,D1,*out);
    314  1.1    cgd }
    315  1.1    cgd #endif /* LARGEDATA */
    316  1.1    cgd 
    317  1.1    cgd 
    318  1.1    cgd /* =====  (mostly) Standard DES Tables ==================== */
    319  1.1    cgd 
    320  1.1    cgd static unsigned char IP[] = {		/* initial permutation */
    321  1.1    cgd 	58, 50, 42, 34, 26, 18, 10,  2,
    322  1.1    cgd 	60, 52, 44, 36, 28, 20, 12,  4,
    323  1.1    cgd 	62, 54, 46, 38, 30, 22, 14,  6,
    324  1.1    cgd 	64, 56, 48, 40, 32, 24, 16,  8,
    325  1.1    cgd 	57, 49, 41, 33, 25, 17,  9,  1,
    326  1.1    cgd 	59, 51, 43, 35, 27, 19, 11,  3,
    327  1.1    cgd 	61, 53, 45, 37, 29, 21, 13,  5,
    328  1.1    cgd 	63, 55, 47, 39, 31, 23, 15,  7,
    329  1.1    cgd };
    330  1.1    cgd 
    331  1.1    cgd /* The final permutation is the inverse of IP - no table is necessary */
    332  1.1    cgd 
    333  1.1    cgd static unsigned char ExpandTr[] = {	/* expansion operation */
    334  1.1    cgd 	32,  1,  2,  3,  4,  5,
    335  1.1    cgd 	 4,  5,  6,  7,  8,  9,
    336  1.1    cgd 	 8,  9, 10, 11, 12, 13,
    337  1.1    cgd 	12, 13, 14, 15, 16, 17,
    338  1.1    cgd 	16, 17, 18, 19, 20, 21,
    339  1.1    cgd 	20, 21, 22, 23, 24, 25,
    340  1.1    cgd 	24, 25, 26, 27, 28, 29,
    341  1.1    cgd 	28, 29, 30, 31, 32,  1,
    342  1.1    cgd };
    343  1.1    cgd 
    344  1.1    cgd static unsigned char PC1[] = {		/* permuted choice table 1 */
    345  1.1    cgd 	57, 49, 41, 33, 25, 17,  9,
    346  1.1    cgd 	 1, 58, 50, 42, 34, 26, 18,
    347  1.1    cgd 	10,  2, 59, 51, 43, 35, 27,
    348  1.1    cgd 	19, 11,  3, 60, 52, 44, 36,
    349  1.1    cgd 
    350  1.1    cgd 	63, 55, 47, 39, 31, 23, 15,
    351  1.1    cgd 	 7, 62, 54, 46, 38, 30, 22,
    352  1.1    cgd 	14,  6, 61, 53, 45, 37, 29,
    353  1.1    cgd 	21, 13,  5, 28, 20, 12,  4,
    354  1.1    cgd };
    355  1.1    cgd 
    356  1.1    cgd static unsigned char Rotates[] = {	/* PC1 rotation schedule */
    357  1.1    cgd 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    358  1.1    cgd };
    359  1.1    cgd 
    360  1.1    cgd /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    361  1.1    cgd static unsigned char PC2[] = {		/* permuted choice table 2 */
    362  1.1    cgd 	 9, 18,    14, 17, 11, 24,  1,  5,
    363  1.1    cgd 	22, 25,     3, 28, 15,  6, 21, 10,
    364  1.1    cgd 	35, 38,    23, 19, 12,  4, 26,  8,
    365  1.1    cgd 	43, 54,    16,  7, 27, 20, 13,  2,
    366  1.1    cgd 
    367  1.1    cgd 	 0,  0,    41, 52, 31, 37, 47, 55,
    368  1.1    cgd 	 0,  0,    30, 40, 51, 45, 33, 48,
    369  1.1    cgd 	 0,  0,    44, 49, 39, 56, 34, 53,
    370  1.1    cgd 	 0,  0,    46, 42, 50, 36, 29, 32,
    371  1.1    cgd };
    372  1.1    cgd 
    373  1.1    cgd static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    374  1.1    cgd 					/* S[1]			*/
    375  1.6  mikel 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    376  1.6  mikel 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    377  1.6  mikel 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    378  1.6  mikel 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    379  1.1    cgd 					/* S[2]			*/
    380  1.6  mikel 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    381  1.6  mikel 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    382  1.6  mikel 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    383  1.6  mikel 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    384  1.1    cgd 					/* S[3]			*/
    385  1.6  mikel 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    386  1.6  mikel 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    387  1.6  mikel 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    388  1.6  mikel 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    389  1.1    cgd 					/* S[4]			*/
    390  1.6  mikel 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    391  1.6  mikel 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    392  1.6  mikel 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    393  1.6  mikel 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    394  1.1    cgd 					/* S[5]			*/
    395  1.6  mikel 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    396  1.6  mikel 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    397  1.6  mikel 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    398  1.6  mikel 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    399  1.1    cgd 					/* S[6]			*/
    400  1.6  mikel 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    401  1.6  mikel 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    402  1.6  mikel 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    403  1.6  mikel 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    404  1.1    cgd 					/* S[7]			*/
    405  1.6  mikel 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    406  1.6  mikel 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    407  1.6  mikel 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    408  1.6  mikel 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    409  1.1    cgd 					/* S[8]			*/
    410  1.6  mikel 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    411  1.6  mikel 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    412  1.6  mikel 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    413  1.6  mikel 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    414  1.1    cgd };
    415  1.1    cgd 
    416  1.1    cgd static unsigned char P32Tr[] = {	/* 32-bit permutation function */
    417  1.1    cgd 	16,  7, 20, 21,
    418  1.1    cgd 	29, 12, 28, 17,
    419  1.1    cgd 	 1, 15, 23, 26,
    420  1.1    cgd 	 5, 18, 31, 10,
    421  1.1    cgd 	 2,  8, 24, 14,
    422  1.1    cgd 	32, 27,  3,  9,
    423  1.1    cgd 	19, 13, 30,  6,
    424  1.1    cgd 	22, 11,  4, 25,
    425  1.1    cgd };
    426  1.1    cgd 
    427  1.1    cgd static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
    428  1.1    cgd 	 1,  2,  3,  4,   17, 18, 19, 20,
    429  1.1    cgd 	 5,  6,  7,  8,   21, 22, 23, 24,
    430  1.1    cgd 	 9, 10, 11, 12,   25, 26, 27, 28,
    431  1.1    cgd 	13, 14, 15, 16,   29, 30, 31, 32,
    432  1.1    cgd 
    433  1.1    cgd 	33, 34, 35, 36,   49, 50, 51, 52,
    434  1.1    cgd 	37, 38, 39, 40,   53, 54, 55, 56,
    435  1.1    cgd 	41, 42, 43, 44,   57, 58, 59, 60,
    436  1.1    cgd 	45, 46, 47, 48,   61, 62, 63, 64,
    437  1.1    cgd };
    438  1.1    cgd 
    439  1.1    cgd static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    440  1.1    cgd 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    441  1.1    cgd 
    442  1.1    cgd 
    443  1.1    cgd /* =====  Tables that are initialized at run time  ==================== */
    444  1.1    cgd 
    445  1.1    cgd 
    446  1.1    cgd static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    447  1.1    cgd 
    448  1.1    cgd /* Initial key schedule permutation */
    449  1.1    cgd static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    450  1.1    cgd 
    451  1.1    cgd /* Subsequent key schedule rotation permutations */
    452  1.1    cgd static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    453  1.1    cgd 
    454  1.1    cgd /* Initial permutation/expansion table */
    455  1.1    cgd static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    456  1.1    cgd 
    457  1.1    cgd /* Table that combines the S, P, and E operations.  */
    458  1.4    cgd static int32_t SPE[2][8][64];
    459  1.1    cgd 
    460  1.1    cgd /* compressed/interleaved => final permutation table */
    461  1.1    cgd static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    462  1.1    cgd 
    463  1.1    cgd 
    464  1.1    cgd /* ==================================== */
    465  1.1    cgd 
    466  1.1    cgd 
    467  1.1    cgd static C_block	constdatablock;			/* encryption constant */
    468  1.1    cgd static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    469  1.1    cgd 
    470  1.1    cgd /*
    471  1.1    cgd  * Return a pointer to static data consisting of the "setting"
    472  1.1    cgd  * followed by an encryption produced by the "key" and "setting".
    473  1.1    cgd  */
    474  1.1    cgd char *
    475  1.1    cgd crypt(key, setting)
    476  1.7  lukem 	const char *key;
    477  1.7  lukem 	const char *setting;
    478  1.1    cgd {
    479  1.7  lukem 	char *encp;
    480  1.7  lukem 	int32_t i;
    481  1.7  lukem 	int t;
    482  1.4    cgd 	int32_t salt;
    483  1.1    cgd 	int num_iter, salt_size;
    484  1.1    cgd 	C_block keyblock, rsltblock;
    485  1.1    cgd 
    486  1.1    cgd 	for (i = 0; i < 8; i++) {
    487  1.1    cgd 		if ((t = 2*(unsigned char)(*key)) != 0)
    488  1.1    cgd 			key++;
    489  1.1    cgd 		keyblock.b[i] = t;
    490  1.1    cgd 	}
    491  1.1    cgd 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    492  1.1    cgd 		return (NULL);
    493  1.1    cgd 
    494  1.1    cgd 	encp = &cryptresult[0];
    495  1.1    cgd 	switch (*setting) {
    496  1.1    cgd 	case _PASSWORD_EFMT1:
    497  1.1    cgd 		/*
    498  1.1    cgd 		 * Involve the rest of the password 8 characters at a time.
    499  1.1    cgd 		 */
    500  1.1    cgd 		while (*key) {
    501  1.1    cgd 			if (des_cipher((char *)&keyblock,
    502  1.1    cgd 			    (char *)&keyblock, 0L, 1))
    503  1.1    cgd 				return (NULL);
    504  1.1    cgd 			for (i = 0; i < 8; i++) {
    505  1.1    cgd 				if ((t = 2*(unsigned char)(*key)) != 0)
    506  1.1    cgd 					key++;
    507  1.1    cgd 				keyblock.b[i] ^= t;
    508  1.1    cgd 			}
    509  1.1    cgd 			if (des_setkey((char *)keyblock.b))
    510  1.1    cgd 				return (NULL);
    511  1.1    cgd 		}
    512  1.1    cgd 
    513  1.1    cgd 		*encp++ = *setting++;
    514  1.1    cgd 
    515  1.1    cgd 		/* get iteration count */
    516  1.1    cgd 		num_iter = 0;
    517  1.1    cgd 		for (i = 4; --i >= 0; ) {
    518  1.1    cgd 			if ((t = (unsigned char)setting[i]) == '\0')
    519  1.1    cgd 				t = '.';
    520  1.1    cgd 			encp[i] = t;
    521  1.1    cgd 			num_iter = (num_iter<<6) | a64toi[t];
    522  1.1    cgd 		}
    523  1.1    cgd 		setting += 4;
    524  1.1    cgd 		encp += 4;
    525  1.1    cgd 		salt_size = 4;
    526  1.1    cgd 		break;
    527  1.1    cgd 	default:
    528  1.1    cgd 		num_iter = 25;
    529  1.1    cgd 		salt_size = 2;
    530  1.1    cgd 	}
    531  1.1    cgd 
    532  1.1    cgd 	salt = 0;
    533  1.1    cgd 	for (i = salt_size; --i >= 0; ) {
    534  1.1    cgd 		if ((t = (unsigned char)setting[i]) == '\0')
    535  1.1    cgd 			t = '.';
    536  1.1    cgd 		encp[i] = t;
    537  1.1    cgd 		salt = (salt<<6) | a64toi[t];
    538  1.1    cgd 	}
    539  1.1    cgd 	encp += salt_size;
    540  1.1    cgd 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
    541  1.1    cgd 	    salt, num_iter))
    542  1.1    cgd 		return (NULL);
    543  1.1    cgd 
    544  1.1    cgd 	/*
    545  1.1    cgd 	 * Encode the 64 cipher bits as 11 ascii characters.
    546  1.1    cgd 	 */
    547  1.4    cgd 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    548  1.4    cgd 	    rsltblock.b[2];
    549  1.1    cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    550  1.1    cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    551  1.1    cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    552  1.1    cgd 	encp[0] = itoa64[i];		encp += 4;
    553  1.4    cgd 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    554  1.4    cgd 	    rsltblock.b[5];
    555  1.1    cgd 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    556  1.1    cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    557  1.1    cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    558  1.1    cgd 	encp[0] = itoa64[i];		encp += 4;
    559  1.4    cgd 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    560  1.1    cgd 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    561  1.1    cgd 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    562  1.1    cgd 	encp[0] = itoa64[i];
    563  1.1    cgd 
    564  1.1    cgd 	encp[3] = 0;
    565  1.1    cgd 
    566  1.1    cgd 	return (cryptresult);
    567  1.1    cgd }
    568  1.1    cgd 
    569  1.1    cgd 
    570  1.1    cgd /*
    571  1.1    cgd  * The Key Schedule, filled in by des_setkey() or setkey().
    572  1.1    cgd  */
    573  1.1    cgd #define	KS_SIZE	16
    574  1.1    cgd static C_block	KS[KS_SIZE];
    575  1.1    cgd 
    576  1.1    cgd /*
    577  1.1    cgd  * Set up the key schedule from the key.
    578  1.1    cgd  */
    579  1.6  mikel int
    580  1.1    cgd des_setkey(key)
    581  1.7  lukem 	const char *key;
    582  1.1    cgd {
    583  1.7  lukem 	DCL_BLOCK(K, K0, K1);
    584  1.7  lukem 	C_block *ptabp;
    585  1.7  lukem 	int i;
    586  1.1    cgd 	static int des_ready = 0;
    587  1.1    cgd 
    588  1.1    cgd 	if (!des_ready) {
    589  1.1    cgd 		init_des();
    590  1.1    cgd 		des_ready = 1;
    591  1.1    cgd 	}
    592  1.1    cgd 
    593  1.1    cgd 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
    594  1.1    cgd 	key = (char *)&KS[0];
    595  1.1    cgd 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    596  1.1    cgd 	for (i = 1; i < 16; i++) {
    597  1.1    cgd 		key += sizeof(C_block);
    598  1.1    cgd 		STORE(K,K0,K1,*(C_block *)key);
    599  1.1    cgd 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    600  1.1    cgd 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
    601  1.1    cgd 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    602  1.1    cgd 	}
    603  1.1    cgd 	return (0);
    604  1.1    cgd }
    605  1.1    cgd 
    606  1.1    cgd /*
    607  1.1    cgd  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    608  1.1    cgd  * iterations of DES, using the the given 24-bit salt and the pre-computed key
    609  1.1    cgd  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    610  1.1    cgd  *
    611  1.1    cgd  * NOTE: the performance of this routine is critically dependent on your
    612  1.1    cgd  * compiler and machine architecture.
    613  1.1    cgd  */
    614  1.6  mikel int
    615  1.1    cgd des_cipher(in, out, salt, num_iter)
    616  1.1    cgd 	const char *in;
    617  1.1    cgd 	char *out;
    618  1.1    cgd 	long salt;
    619  1.1    cgd 	int num_iter;
    620  1.1    cgd {
    621  1.1    cgd 	/* variables that we want in registers, most important first */
    622  1.1    cgd #if defined(pdp11)
    623  1.1    cgd 	register int j;
    624  1.1    cgd #endif
    625  1.4    cgd 	register int32_t L0, L1, R0, R1, k;
    626  1.1    cgd 	register C_block *kp;
    627  1.1    cgd 	register int ks_inc, loop_count;
    628  1.1    cgd 	C_block B;
    629  1.1    cgd 
    630  1.1    cgd 	L0 = salt;
    631  1.1    cgd 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    632  1.1    cgd 
    633  1.1    cgd #if defined(vax) || defined(pdp11)
    634  1.1    cgd 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    635  1.1    cgd #define	SALT (~salt)
    636  1.1    cgd #else
    637  1.1    cgd #define	SALT salt
    638  1.1    cgd #endif
    639  1.1    cgd 
    640  1.1    cgd #if defined(MUST_ALIGN)
    641  1.1    cgd 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    642  1.1    cgd 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    643  1.1    cgd 	LOAD(L,L0,L1,B);
    644  1.1    cgd #else
    645  1.1    cgd 	LOAD(L,L0,L1,*(C_block *)in);
    646  1.1    cgd #endif
    647  1.1    cgd 	LOADREG(R,R0,R1,L,L0,L1);
    648  1.1    cgd 	L0 &= 0x55555555L;
    649  1.1    cgd 	L1 &= 0x55555555L;
    650  1.1    cgd 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    651  1.1    cgd 	R0 &= 0xaaaaaaaaL;
    652  1.1    cgd 	R1 = (R1 >> 1) & 0x55555555L;
    653  1.1    cgd 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    654  1.1    cgd 	STORE(L,L0,L1,B);
    655  1.1    cgd 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    656  1.1    cgd 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    657  1.1    cgd 
    658  1.1    cgd 	if (num_iter >= 0)
    659  1.1    cgd 	{		/* encryption */
    660  1.1    cgd 		kp = &KS[0];
    661  1.1    cgd 		ks_inc  = sizeof(*kp);
    662  1.1    cgd 	}
    663  1.1    cgd 	else
    664  1.1    cgd 	{		/* decryption */
    665  1.5    cgd 		return (1); /* always fail */
    666  1.1    cgd 	}
    667  1.1    cgd 
    668  1.1    cgd 	while (--num_iter >= 0) {
    669  1.1    cgd 		loop_count = 8;
    670  1.1    cgd 		do {
    671  1.1    cgd 
    672  1.4    cgd #define	SPTAB(t, i) \
    673  1.5    cgd 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    674  1.1    cgd #if defined(gould)
    675  1.1    cgd 			/* use this if B.b[i] is evaluated just once ... */
    676  1.1    cgd #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    677  1.1    cgd #else
    678  1.1    cgd #if defined(pdp11)
    679  1.1    cgd 			/* use this if your "long" int indexing is slow */
    680  1.1    cgd #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    681  1.1    cgd #else
    682  1.1    cgd 			/* use this if "k" is allocated to a register ... */
    683  1.1    cgd #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    684  1.1    cgd #endif
    685  1.1    cgd #endif
    686  1.1    cgd 
    687  1.1    cgd #define	CRUNCH(p0, p1, q0, q1)	\
    688  1.1    cgd 			k = (q0 ^ q1) & SALT;	\
    689  1.1    cgd 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    690  1.1    cgd 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    691  1.1    cgd 			kp = (C_block *)((char *)kp+ks_inc);	\
    692  1.1    cgd 							\
    693  1.1    cgd 			DOXOR(p0, p1, 0);		\
    694  1.1    cgd 			DOXOR(p0, p1, 1);		\
    695  1.1    cgd 			DOXOR(p0, p1, 2);		\
    696  1.1    cgd 			DOXOR(p0, p1, 3);		\
    697  1.1    cgd 			DOXOR(p0, p1, 4);		\
    698  1.1    cgd 			DOXOR(p0, p1, 5);		\
    699  1.1    cgd 			DOXOR(p0, p1, 6);		\
    700  1.1    cgd 			DOXOR(p0, p1, 7);
    701  1.1    cgd 
    702  1.1    cgd 			CRUNCH(L0, L1, R0, R1);
    703  1.1    cgd 			CRUNCH(R0, R1, L0, L1);
    704  1.1    cgd 		} while (--loop_count != 0);
    705  1.1    cgd 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    706  1.1    cgd 
    707  1.1    cgd 
    708  1.1    cgd 		/* swap L and R */
    709  1.1    cgd 		L0 ^= R0;  L1 ^= R1;
    710  1.1    cgd 		R0 ^= L0;  R1 ^= L1;
    711  1.1    cgd 		L0 ^= R0;  L1 ^= R1;
    712  1.1    cgd 	}
    713  1.1    cgd 
    714  1.1    cgd 	/* store the encrypted (or decrypted) result */
    715  1.1    cgd 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    716  1.1    cgd 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    717  1.1    cgd 	STORE(L,L0,L1,B);
    718  1.1    cgd 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    719  1.1    cgd #if defined(MUST_ALIGN)
    720  1.1    cgd 	STORE(L,L0,L1,B);
    721  1.1    cgd 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    722  1.1    cgd 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    723  1.1    cgd #else
    724  1.1    cgd 	STORE(L,L0,L1,*(C_block *)out);
    725  1.1    cgd #endif
    726  1.1    cgd 	return (0);
    727  1.1    cgd }
    728  1.1    cgd 
    729  1.1    cgd 
    730  1.1    cgd /*
    731  1.1    cgd  * Initialize various tables.  This need only be done once.  It could even be
    732  1.1    cgd  * done at compile time, if the compiler were capable of that sort of thing.
    733  1.1    cgd  */
    734  1.1    cgd STATIC
    735  1.1    cgd init_des()
    736  1.1    cgd {
    737  1.7  lukem 	int i, j;
    738  1.7  lukem 	int32_t k;
    739  1.7  lukem 	int tableno;
    740  1.1    cgd 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    741  1.1    cgd 
    742  1.1    cgd 	/*
    743  1.1    cgd 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    744  1.1    cgd 	 */
    745  1.1    cgd 	for (i = 0; i < 64; i++)
    746  1.1    cgd 		a64toi[itoa64[i]] = i;
    747  1.1    cgd 
    748  1.1    cgd 	/*
    749  1.1    cgd 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    750  1.1    cgd 	 */
    751  1.1    cgd 	for (i = 0; i < 64; i++)
    752  1.1    cgd 		perm[i] = 0;
    753  1.1    cgd 	for (i = 0; i < 64; i++) {
    754  1.1    cgd 		if ((k = PC2[i]) == 0)
    755  1.1    cgd 			continue;
    756  1.1    cgd 		k += Rotates[0]-1;
    757  1.1    cgd 		if ((k%28) < Rotates[0]) k -= 28;
    758  1.1    cgd 		k = PC1[k];
    759  1.1    cgd 		if (k > 0) {
    760  1.1    cgd 			k--;
    761  1.1    cgd 			k = (k|07) - (k&07);
    762  1.1    cgd 			k++;
    763  1.1    cgd 		}
    764  1.1    cgd 		perm[i] = k;
    765  1.1    cgd 	}
    766  1.1    cgd #ifdef DEBUG
    767  1.1    cgd 	prtab("pc1tab", perm, 8);
    768  1.1    cgd #endif
    769  1.1    cgd 	init_perm(PC1ROT, perm, 8, 8);
    770  1.1    cgd 
    771  1.1    cgd 	/*
    772  1.1    cgd 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    773  1.1    cgd 	 */
    774  1.1    cgd 	for (j = 0; j < 2; j++) {
    775  1.1    cgd 		unsigned char pc2inv[64];
    776  1.1    cgd 		for (i = 0; i < 64; i++)
    777  1.1    cgd 			perm[i] = pc2inv[i] = 0;
    778  1.1    cgd 		for (i = 0; i < 64; i++) {
    779  1.1    cgd 			if ((k = PC2[i]) == 0)
    780  1.1    cgd 				continue;
    781  1.1    cgd 			pc2inv[k-1] = i+1;
    782  1.1    cgd 		}
    783  1.1    cgd 		for (i = 0; i < 64; i++) {
    784  1.1    cgd 			if ((k = PC2[i]) == 0)
    785  1.1    cgd 				continue;
    786  1.1    cgd 			k += j;
    787  1.1    cgd 			if ((k%28) <= j) k -= 28;
    788  1.1    cgd 			perm[i] = pc2inv[k];
    789  1.1    cgd 		}
    790  1.1    cgd #ifdef DEBUG
    791  1.1    cgd 		prtab("pc2tab", perm, 8);
    792  1.1    cgd #endif
    793  1.1    cgd 		init_perm(PC2ROT[j], perm, 8, 8);
    794  1.1    cgd 	}
    795  1.1    cgd 
    796  1.1    cgd 	/*
    797  1.1    cgd 	 * Bit reverse, then initial permutation, then expansion.
    798  1.1    cgd 	 */
    799  1.1    cgd 	for (i = 0; i < 8; i++) {
    800  1.1    cgd 		for (j = 0; j < 8; j++) {
    801  1.1    cgd 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    802  1.1    cgd 			if (k > 32)
    803  1.1    cgd 				k -= 32;
    804  1.1    cgd 			else if (k > 0)
    805  1.1    cgd 				k--;
    806  1.1    cgd 			if (k > 0) {
    807  1.1    cgd 				k--;
    808  1.1    cgd 				k = (k|07) - (k&07);
    809  1.1    cgd 				k++;
    810  1.1    cgd 			}
    811  1.1    cgd 			perm[i*8+j] = k;
    812  1.1    cgd 		}
    813  1.1    cgd 	}
    814  1.1    cgd #ifdef DEBUG
    815  1.1    cgd 	prtab("ietab", perm, 8);
    816  1.1    cgd #endif
    817  1.1    cgd 	init_perm(IE3264, perm, 4, 8);
    818  1.1    cgd 
    819  1.1    cgd 	/*
    820  1.1    cgd 	 * Compression, then final permutation, then bit reverse.
    821  1.1    cgd 	 */
    822  1.1    cgd 	for (i = 0; i < 64; i++) {
    823  1.1    cgd 		k = IP[CIFP[i]-1];
    824  1.1    cgd 		if (k > 0) {
    825  1.1    cgd 			k--;
    826  1.1    cgd 			k = (k|07) - (k&07);
    827  1.1    cgd 			k++;
    828  1.1    cgd 		}
    829  1.1    cgd 		perm[k-1] = i+1;
    830  1.1    cgd 	}
    831  1.1    cgd #ifdef DEBUG
    832  1.1    cgd 	prtab("cftab", perm, 8);
    833  1.1    cgd #endif
    834  1.1    cgd 	init_perm(CF6464, perm, 8, 8);
    835  1.1    cgd 
    836  1.1    cgd 	/*
    837  1.1    cgd 	 * SPE table
    838  1.1    cgd 	 */
    839  1.1    cgd 	for (i = 0; i < 48; i++)
    840  1.1    cgd 		perm[i] = P32Tr[ExpandTr[i]-1];
    841  1.1    cgd 	for (tableno = 0; tableno < 8; tableno++) {
    842  1.1    cgd 		for (j = 0; j < 64; j++)  {
    843  1.1    cgd 			k = (((j >> 0) &01) << 5)|
    844  1.1    cgd 			    (((j >> 1) &01) << 3)|
    845  1.1    cgd 			    (((j >> 2) &01) << 2)|
    846  1.1    cgd 			    (((j >> 3) &01) << 1)|
    847  1.1    cgd 			    (((j >> 4) &01) << 0)|
    848  1.1    cgd 			    (((j >> 5) &01) << 4);
    849  1.1    cgd 			k = S[tableno][k];
    850  1.1    cgd 			k = (((k >> 3)&01) << 0)|
    851  1.1    cgd 			    (((k >> 2)&01) << 1)|
    852  1.1    cgd 			    (((k >> 1)&01) << 2)|
    853  1.1    cgd 			    (((k >> 0)&01) << 3);
    854  1.1    cgd 			for (i = 0; i < 32; i++)
    855  1.1    cgd 				tmp32[i] = 0;
    856  1.1    cgd 			for (i = 0; i < 4; i++)
    857  1.1    cgd 				tmp32[4 * tableno + i] = (k >> i) & 01;
    858  1.1    cgd 			k = 0;
    859  1.1    cgd 			for (i = 24; --i >= 0; )
    860  1.1    cgd 				k = (k<<1) | tmp32[perm[i]-1];
    861  1.1    cgd 			TO_SIX_BIT(SPE[0][tableno][j], k);
    862  1.1    cgd 			k = 0;
    863  1.1    cgd 			for (i = 24; --i >= 0; )
    864  1.1    cgd 				k = (k<<1) | tmp32[perm[i+24]-1];
    865  1.1    cgd 			TO_SIX_BIT(SPE[1][tableno][j], k);
    866  1.1    cgd 		}
    867  1.1    cgd 	}
    868  1.1    cgd }
    869  1.1    cgd 
    870  1.1    cgd /*
    871  1.1    cgd  * Initialize "perm" to represent transformation "p", which rearranges
    872  1.1    cgd  * (perhaps with expansion and/or contraction) one packed array of bits
    873  1.1    cgd  * (of size "chars_in" characters) into another array (of size "chars_out"
    874  1.1    cgd  * characters).
    875  1.1    cgd  *
    876  1.1    cgd  * "perm" must be all-zeroes on entry to this routine.
    877  1.1    cgd  */
    878  1.1    cgd STATIC
    879  1.1    cgd init_perm(perm, p, chars_in, chars_out)
    880  1.1    cgd 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
    881  1.1    cgd 	unsigned char p[64];
    882  1.1    cgd 	int chars_in, chars_out;
    883  1.1    cgd {
    884  1.7  lukem 	int i, j, k, l;
    885  1.1    cgd 
    886  1.1    cgd 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    887  1.1    cgd 		l = p[k] - 1;		/* where this bit comes from */
    888  1.1    cgd 		if (l < 0)
    889  1.1    cgd 			continue;	/* output bit is always 0 */
    890  1.1    cgd 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    891  1.1    cgd 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    892  1.1    cgd 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    893  1.1    cgd 			if ((j & l) != 0)
    894  1.1    cgd 				perm[i][j].b[k>>3] |= 1<<(k&07);
    895  1.1    cgd 		}
    896  1.1    cgd 	}
    897  1.1    cgd }
    898  1.1    cgd 
    899  1.1    cgd /*
    900  1.1    cgd  * "setkey" routine (for backwards compatibility)
    901  1.1    cgd  */
    902  1.6  mikel int
    903  1.1    cgd setkey(key)
    904  1.7  lukem 	const char *key;
    905  1.1    cgd {
    906  1.7  lukem 	int i, j, k;
    907  1.1    cgd 	C_block keyblock;
    908  1.1    cgd 
    909  1.1    cgd 	for (i = 0; i < 8; i++) {
    910  1.1    cgd 		k = 0;
    911  1.1    cgd 		for (j = 0; j < 8; j++) {
    912  1.1    cgd 			k <<= 1;
    913  1.1    cgd 			k |= (unsigned char)*key++;
    914  1.1    cgd 		}
    915  1.1    cgd 		keyblock.b[i] = k;
    916  1.1    cgd 	}
    917  1.1    cgd 	return (des_setkey((char *)keyblock.b));
    918  1.1    cgd }
    919  1.1    cgd 
    920  1.1    cgd /*
    921  1.1    cgd  * "encrypt" routine (for backwards compatibility)
    922  1.1    cgd  */
    923  1.6  mikel int
    924  1.1    cgd encrypt(block, flag)
    925  1.7  lukem 	char *block;
    926  1.1    cgd 	int flag;
    927  1.1    cgd {
    928  1.7  lukem 	int i, j, k;
    929  1.1    cgd 	C_block cblock;
    930  1.1    cgd 
    931  1.1    cgd 	for (i = 0; i < 8; i++) {
    932  1.1    cgd 		k = 0;
    933  1.1    cgd 		for (j = 0; j < 8; j++) {
    934  1.1    cgd 			k <<= 1;
    935  1.1    cgd 			k |= (unsigned char)*block++;
    936  1.1    cgd 		}
    937  1.1    cgd 		cblock.b[i] = k;
    938  1.1    cgd 	}
    939  1.1    cgd 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    940  1.1    cgd 		return (1);
    941  1.1    cgd 	for (i = 7; i >= 0; i--) {
    942  1.1    cgd 		k = cblock.b[i];
    943  1.1    cgd 		for (j = 7; j >= 0; j--) {
    944  1.1    cgd 			*--block = k&01;
    945  1.1    cgd 			k >>= 1;
    946  1.1    cgd 		}
    947  1.1    cgd 	}
    948  1.1    cgd 	return (0);
    949  1.1    cgd }
    950  1.1    cgd 
    951  1.1    cgd #ifdef DEBUG
    952  1.1    cgd STATIC
    953  1.1    cgd prtab(s, t, num_rows)
    954  1.1    cgd 	char *s;
    955  1.1    cgd 	unsigned char *t;
    956  1.1    cgd 	int num_rows;
    957  1.1    cgd {
    958  1.7  lukem 	int i, j;
    959  1.1    cgd 
    960  1.1    cgd 	(void)printf("%s:\n", s);
    961  1.1    cgd 	for (i = 0; i < num_rows; i++) {
    962  1.1    cgd 		for (j = 0; j < 8; j++) {
    963  1.1    cgd 			 (void)printf("%3d", t[i*8+j]);
    964  1.1    cgd 		}
    965  1.1    cgd 		(void)printf("\n");
    966  1.1    cgd 	}
    967  1.1    cgd 	(void)printf("\n");
    968  1.1    cgd }
    969  1.1    cgd #endif
    970