Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.13
      1 /*	$NetBSD: crypt.c,v 1.13 1998/10/20 02:02:30 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Tom Truscott.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #if !defined(lint)
     41 #if 0
     42 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     43 #else
     44 __RCSID("$NetBSD: crypt.c,v 1.13 1998/10/20 02:02:30 matt Exp $");
     45 #endif
     46 #endif /* not lint */
     47 
     48 #include <limits.h>
     49 #include <pwd.h>
     50 #include <stdlib.h>
     51 #include <unistd.h>
     52 
     53 /*
     54  * UNIX password, and DES, encryption.
     55  * By Tom Truscott, trt (at) rti.rti.org,
     56  * from algorithms by Robert W. Baldwin and James Gillogly.
     57  *
     58  * References:
     59  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     60  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     61  *
     62  * "Password Security: A Case History," R. Morris and Ken Thompson,
     63  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     64  *
     65  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     66  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     67  */
     68 
     69 /* =====  Configuration ==================== */
     70 
     71 /*
     72  * define "MUST_ALIGN" if your compiler cannot load/store
     73  * long integers at arbitrary (e.g. odd) memory locations.
     74  * (Either that or never pass unaligned addresses to des_cipher!)
     75  */
     76 #if !defined(__vax__) && !defined(__i386__)
     77 #define	MUST_ALIGN
     78 #endif
     79 
     80 #ifdef CHAR_BITS
     81 #if CHAR_BITS != 8
     82 	#error C_block structure assumes 8 bit characters
     83 #endif
     84 #endif
     85 
     86 /*
     87  * define "B64" to be the declaration for a 64 bit integer.
     88  * XXX this feature is currently unused, see "endian" comment below.
     89  */
     90 #if defined(cray)
     91 #define	B64	long
     92 #endif
     93 #if defined(convex)
     94 #define	B64	long long
     95 #endif
     96 
     97 /*
     98  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
     99  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
    100  * little effect on crypt().
    101  */
    102 #if defined(notdef)
    103 #define	LARGEDATA
    104 #endif
    105 
    106 /* compile with "-DSTATIC=void" when profiling */
    107 #ifndef STATIC
    108 #define	STATIC	static void
    109 #endif
    110 
    111 /* ==================================== */
    112 
    113 /*
    114  * Cipher-block representation (Bob Baldwin):
    115  *
    116  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    117  * representation is to store one bit per byte in an array of bytes.  Bit N of
    118  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    119  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    120  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    121  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    122  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    123  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    124  * converted to LSB format, and the output 64-bit block is converted back into
    125  * MSB format.
    126  *
    127  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    128  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    129  * the computation, the expansion is applied only once, the expanded
    130  * representation is maintained during the encryption, and a compression
    131  * permutation is applied only at the end.  To speed up the S-box lookups,
    132  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    133  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    134  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    135  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    136  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    137  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    138  * used, in which the output is the 64 bit result of an S-box lookup which
    139  * has been permuted by P and expanded by E, and is ready for use in the next
    140  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    141  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    142  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    143  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    144  * 8*64*8 = 4K bytes.
    145  *
    146  * To speed up bit-parallel operations (such as XOR), the 8 byte
    147  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    148  * machines which support it, a 64 bit value "b64".  This data structure,
    149  * "C_block", has two problems.  First, alignment restrictions must be
    150  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    151  * the architecture becomes visible.
    152  *
    153  * The byte-order problem is unfortunate, since on the one hand it is good
    154  * to have a machine-independent C_block representation (bits 1..8 in the
    155  * first byte, etc.), and on the other hand it is good for the LSB of the
    156  * first byte to be the LSB of i0.  We cannot have both these things, so we
    157  * currently use the "little-endian" representation and avoid any multi-byte
    158  * operations that depend on byte order.  This largely precludes use of the
    159  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    160  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    161  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    162  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    163  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    164  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    165  *
    166  * Permutation representation (Jim Gillogly):
    167  *
    168  * A transformation is defined by its effect on each of the 8 bytes of the
    169  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    170  * the input distributed appropriately.  The transformation is then the OR
    171  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    172  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    173  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    174  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    175  * is slower but tolerable, particularly for password encryption in which
    176  * the SPE transformation is iterated many times.  The small tables total 9K
    177  * bytes, the large tables total 72K bytes.
    178  *
    179  * The transformations used are:
    180  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    181  *	This is done by collecting the 32 even-numbered bits and applying
    182  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    183  *	bits and applying the same transformation.  Since there are only
    184  *	32 input bits, the IE3264 transformation table is half the size of
    185  *	the usual table.
    186  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    187  *	This is done by two trivial 48->32 bit compressions to obtain
    188  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    189  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    190  *	be possible to group the bits in the 64-bit block so that 2
    191  *	identical 32->32 bit transformations could be used instead,
    192  *	saving a factor of 4 in space and possibly 2 in time, but
    193  *	byte-ordering and other complications rear their ugly head.
    194  *	Similar opportunities/problems arise in the key schedule
    195  *	transforms.)
    196  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    197  *	This admittedly baroque 64->64 bit transformation is used to
    198  *	produce the first code (in 8*(6+2) format) of the key schedule.
    199  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    200  *	It would be possible to define 15 more transformations, each
    201  *	with a different rotation, to generate the entire key schedule.
    202  *	To save space, however, we instead permute each code into the
    203  *	next by using a transformation that "undoes" the PC2 permutation,
    204  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    205  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    206  *	invertible.  We get around that problem by using a modified PC2
    207  *	which retains the 8 otherwise-lost bits in the unused low-order
    208  *	bits of each byte.  The low-order bits are cleared when the
    209  *	codes are stored into the key schedule.
    210  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    211  *	This is faster than applying PC2ROT[0] twice,
    212  *
    213  * The Bell Labs "salt" (Bob Baldwin):
    214  *
    215  * The salting is a simple permutation applied to the 48-bit result of E.
    216  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    217  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    218  * 16777216 possible values.  (The original salt was 12 bits and could not
    219  * swap bits 13..24 with 36..48.)
    220  *
    221  * It is possible, but ugly, to warp the SPE table to account for the salt
    222  * permutation.  Fortunately, the conditional bit swapping requires only
    223  * about four machine instructions and can be done on-the-fly with about an
    224  * 8% performance penalty.
    225  */
    226 
    227 typedef union {
    228 	unsigned char b[8];
    229 	struct {
    230 		int32_t	i0;
    231 		int32_t	i1;
    232 	} b32;
    233 #if defined(B64)
    234 	B64	b64;
    235 #endif
    236 } C_block;
    237 
    238 /*
    239  * Convert twenty-four-bit long in host-order
    240  * to six bits (and 2 low-order zeroes) per char little-endian format.
    241  */
    242 #define	TO_SIX_BIT(rslt, src) {				\
    243 		C_block cvt;				\
    244 		cvt.b[0] = src; src >>= 6;		\
    245 		cvt.b[1] = src; src >>= 6;		\
    246 		cvt.b[2] = src; src >>= 6;		\
    247 		cvt.b[3] = src;				\
    248 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    249 	}
    250 
    251 /*
    252  * These macros may someday permit efficient use of 64-bit integers.
    253  */
    254 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    255 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    256 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    257 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    258 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    259 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    260 
    261 #if defined(LARGEDATA)
    262 	/* Waste memory like crazy.  Also, do permutations in line */
    263 #define	LGCHUNKBITS	3
    264 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    265 #define	PERM6464(d,d0,d1,cpp,p)				\
    266 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    267 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    268 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    269 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    270 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    271 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    272 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    273 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    274 #define	PERM3264(d,d0,d1,cpp,p)				\
    275 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    276 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    277 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    278 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    279 #else
    280 	/* "small data" */
    281 #define	LGCHUNKBITS	2
    282 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    283 #define	PERM6464(d,d0,d1,cpp,p)				\
    284 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    285 #define	PERM3264(d,d0,d1,cpp,p)				\
    286 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    287 #endif /* LARGEDATA */
    288 
    289 STATIC	init_des __P((void));
    290 STATIC	init_perm __P((C_block [64/CHUNKBITS][1<<CHUNKBITS], unsigned char [64], int, int));
    291 #ifndef LARGEDATA
    292 STATIC	permute __P((unsigned char *, C_block *, C_block *, int));
    293 #endif
    294 #ifdef DEBUG
    295 STATIC	prtab __P((char *, unsigned char *, int));
    296 #endif
    297 
    298 
    299 #ifndef LARGEDATA
    300 STATIC
    301 permute(cp, out, p, chars_in)
    302 	unsigned char *cp;
    303 	C_block *out;
    304 	C_block *p;
    305 	int chars_in;
    306 {
    307 	DCL_BLOCK(D,D0,D1);
    308 	C_block *tp;
    309 	int t;
    310 
    311 	ZERO(D,D0,D1);
    312 	do {
    313 		t = *cp++;
    314 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    315 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    316 	} while (--chars_in > 0);
    317 	STORE(D,D0,D1,*out);
    318 }
    319 #endif /* LARGEDATA */
    320 
    321 
    322 /* =====  (mostly) Standard DES Tables ==================== */
    323 
    324 static unsigned char IP[] = {		/* initial permutation */
    325 	58, 50, 42, 34, 26, 18, 10,  2,
    326 	60, 52, 44, 36, 28, 20, 12,  4,
    327 	62, 54, 46, 38, 30, 22, 14,  6,
    328 	64, 56, 48, 40, 32, 24, 16,  8,
    329 	57, 49, 41, 33, 25, 17,  9,  1,
    330 	59, 51, 43, 35, 27, 19, 11,  3,
    331 	61, 53, 45, 37, 29, 21, 13,  5,
    332 	63, 55, 47, 39, 31, 23, 15,  7,
    333 };
    334 
    335 /* The final permutation is the inverse of IP - no table is necessary */
    336 
    337 static unsigned char ExpandTr[] = {	/* expansion operation */
    338 	32,  1,  2,  3,  4,  5,
    339 	 4,  5,  6,  7,  8,  9,
    340 	 8,  9, 10, 11, 12, 13,
    341 	12, 13, 14, 15, 16, 17,
    342 	16, 17, 18, 19, 20, 21,
    343 	20, 21, 22, 23, 24, 25,
    344 	24, 25, 26, 27, 28, 29,
    345 	28, 29, 30, 31, 32,  1,
    346 };
    347 
    348 static unsigned char PC1[] = {		/* permuted choice table 1 */
    349 	57, 49, 41, 33, 25, 17,  9,
    350 	 1, 58, 50, 42, 34, 26, 18,
    351 	10,  2, 59, 51, 43, 35, 27,
    352 	19, 11,  3, 60, 52, 44, 36,
    353 
    354 	63, 55, 47, 39, 31, 23, 15,
    355 	 7, 62, 54, 46, 38, 30, 22,
    356 	14,  6, 61, 53, 45, 37, 29,
    357 	21, 13,  5, 28, 20, 12,  4,
    358 };
    359 
    360 static unsigned char Rotates[] = {	/* PC1 rotation schedule */
    361 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    362 };
    363 
    364 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    365 static unsigned char PC2[] = {		/* permuted choice table 2 */
    366 	 9, 18,    14, 17, 11, 24,  1,  5,
    367 	22, 25,     3, 28, 15,  6, 21, 10,
    368 	35, 38,    23, 19, 12,  4, 26,  8,
    369 	43, 54,    16,  7, 27, 20, 13,  2,
    370 
    371 	 0,  0,    41, 52, 31, 37, 47, 55,
    372 	 0,  0,    30, 40, 51, 45, 33, 48,
    373 	 0,  0,    44, 49, 39, 56, 34, 53,
    374 	 0,  0,    46, 42, 50, 36, 29, 32,
    375 };
    376 
    377 static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    378 					/* S[1]			*/
    379 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    380 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    381 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    382 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    383 					/* S[2]			*/
    384 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    385 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    386 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    387 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    388 					/* S[3]			*/
    389 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    390 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    391 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    392 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    393 					/* S[4]			*/
    394 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    395 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    396 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    397 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    398 					/* S[5]			*/
    399 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    400 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    401 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    402 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    403 					/* S[6]			*/
    404 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    405 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    406 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    407 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    408 					/* S[7]			*/
    409 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    410 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    411 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    412 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    413 					/* S[8]			*/
    414 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    415 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    416 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    417 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    418 };
    419 
    420 static unsigned char P32Tr[] = {	/* 32-bit permutation function */
    421 	16,  7, 20, 21,
    422 	29, 12, 28, 17,
    423 	 1, 15, 23, 26,
    424 	 5, 18, 31, 10,
    425 	 2,  8, 24, 14,
    426 	32, 27,  3,  9,
    427 	19, 13, 30,  6,
    428 	22, 11,  4, 25,
    429 };
    430 
    431 static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
    432 	 1,  2,  3,  4,   17, 18, 19, 20,
    433 	 5,  6,  7,  8,   21, 22, 23, 24,
    434 	 9, 10, 11, 12,   25, 26, 27, 28,
    435 	13, 14, 15, 16,   29, 30, 31, 32,
    436 
    437 	33, 34, 35, 36,   49, 50, 51, 52,
    438 	37, 38, 39, 40,   53, 54, 55, 56,
    439 	41, 42, 43, 44,   57, 58, 59, 60,
    440 	45, 46, 47, 48,   61, 62, 63, 64,
    441 };
    442 
    443 static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    444 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    445 
    446 
    447 /* =====  Tables that are initialized at run time  ==================== */
    448 
    449 
    450 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    451 
    452 /* Initial key schedule permutation */
    453 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    454 
    455 /* Subsequent key schedule rotation permutations */
    456 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    457 
    458 /* Initial permutation/expansion table */
    459 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    460 
    461 /* Table that combines the S, P, and E operations.  */
    462 static int32_t SPE[2][8][64];
    463 
    464 /* compressed/interleaved => final permutation table */
    465 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    466 
    467 
    468 /* ==================================== */
    469 
    470 
    471 static C_block	constdatablock;			/* encryption constant */
    472 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    473 
    474 /*
    475  * Return a pointer to static data consisting of the "setting"
    476  * followed by an encryption produced by the "key" and "setting".
    477  */
    478 char *
    479 crypt(key, setting)
    480 	const char *key;
    481 	const char *setting;
    482 {
    483 	char *encp;
    484 	int32_t i;
    485 	int t;
    486 	int32_t salt;
    487 	int num_iter, salt_size;
    488 	C_block keyblock, rsltblock;
    489 
    490 	for (i = 0; i < 8; i++) {
    491 		if ((t = 2*(unsigned char)(*key)) != 0)
    492 			key++;
    493 		keyblock.b[i] = t;
    494 	}
    495 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    496 		return (NULL);
    497 
    498 	encp = &cryptresult[0];
    499 	switch (*setting) {
    500 	case _PASSWORD_EFMT1:
    501 		/*
    502 		 * Involve the rest of the password 8 characters at a time.
    503 		 */
    504 		while (*key) {
    505 			if (des_cipher((char *)&keyblock,
    506 			    (char *)&keyblock, 0L, 1))
    507 				return (NULL);
    508 			for (i = 0; i < 8; i++) {
    509 				if ((t = 2*(unsigned char)(*key)) != 0)
    510 					key++;
    511 				keyblock.b[i] ^= t;
    512 			}
    513 			if (des_setkey((char *)keyblock.b))
    514 				return (NULL);
    515 		}
    516 
    517 		*encp++ = *setting++;
    518 
    519 		/* get iteration count */
    520 		num_iter = 0;
    521 		for (i = 4; --i >= 0; ) {
    522 			if ((t = (unsigned char)setting[i]) == '\0')
    523 				t = '.';
    524 			encp[i] = t;
    525 			num_iter = (num_iter<<6) | a64toi[t];
    526 		}
    527 		setting += 4;
    528 		encp += 4;
    529 		salt_size = 4;
    530 		break;
    531 	default:
    532 		num_iter = 25;
    533 		salt_size = 2;
    534 	}
    535 
    536 	salt = 0;
    537 	for (i = salt_size; --i >= 0; ) {
    538 		if ((t = (unsigned char)setting[i]) == '\0')
    539 			t = '.';
    540 		encp[i] = t;
    541 		salt = (salt<<6) | a64toi[t];
    542 	}
    543 	encp += salt_size;
    544 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
    545 	    salt, num_iter))
    546 		return (NULL);
    547 
    548 	/*
    549 	 * Encode the 64 cipher bits as 11 ascii characters.
    550 	 */
    551 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    552 	    rsltblock.b[2];
    553 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    554 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    555 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    556 	encp[0] = itoa64[i];		encp += 4;
    557 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    558 	    rsltblock.b[5];
    559 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    560 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    561 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    562 	encp[0] = itoa64[i];		encp += 4;
    563 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    564 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    565 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    566 	encp[0] = itoa64[i];
    567 
    568 	encp[3] = 0;
    569 
    570 	return (cryptresult);
    571 }
    572 
    573 
    574 /*
    575  * The Key Schedule, filled in by des_setkey() or setkey().
    576  */
    577 #define	KS_SIZE	16
    578 static C_block	KS[KS_SIZE];
    579 
    580 /*
    581  * Set up the key schedule from the key.
    582  */
    583 int
    584 des_setkey(key)
    585 	const char *key;
    586 {
    587 	DCL_BLOCK(K, K0, K1);
    588 	C_block *ptabp;
    589 	int i;
    590 	static int des_ready = 0;
    591 
    592 	if (!des_ready) {
    593 		init_des();
    594 		des_ready = 1;
    595 	}
    596 
    597 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
    598 	key = (char *)&KS[0];
    599 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    600 	for (i = 1; i < 16; i++) {
    601 		key += sizeof(C_block);
    602 		STORE(K,K0,K1,*(C_block *)key);
    603 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    604 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
    605 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    606 	}
    607 	return (0);
    608 }
    609 
    610 /*
    611  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    612  * iterations of DES, using the the given 24-bit salt and the pre-computed key
    613  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    614  *
    615  * NOTE: the performance of this routine is critically dependent on your
    616  * compiler and machine architecture.
    617  */
    618 int
    619 des_cipher(in, out, salt, num_iter)
    620 	const char *in;
    621 	char *out;
    622 	long salt;
    623 	int num_iter;
    624 {
    625 	/* variables that we want in registers, most important first */
    626 #if defined(pdp11)
    627 	int j;
    628 #endif
    629 	int32_t L0, L1, R0, R1, k;
    630 	C_block *kp;
    631 	int ks_inc, loop_count;
    632 	C_block B;
    633 
    634 	L0 = salt;
    635 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    636 
    637 #if defined(__vax__) || defined(pdp11)
    638 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    639 #define	SALT (~salt)
    640 #else
    641 #define	SALT salt
    642 #endif
    643 
    644 #if defined(MUST_ALIGN)
    645 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    646 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    647 	LOAD(L,L0,L1,B);
    648 #else
    649 	LOAD(L,L0,L1,*(C_block *)in);
    650 #endif
    651 	LOADREG(R,R0,R1,L,L0,L1);
    652 	L0 &= 0x55555555L;
    653 	L1 &= 0x55555555L;
    654 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    655 	R0 &= 0xaaaaaaaaL;
    656 	R1 = (R1 >> 1) & 0x55555555L;
    657 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    658 	STORE(L,L0,L1,B);
    659 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    660 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    661 
    662 	if (num_iter >= 0)
    663 	{		/* encryption */
    664 		kp = &KS[0];
    665 		ks_inc  = sizeof(*kp);
    666 	}
    667 	else
    668 	{		/* decryption */
    669 		return (1); /* always fail */
    670 	}
    671 
    672 	while (--num_iter >= 0) {
    673 		loop_count = 8;
    674 		do {
    675 
    676 #define	SPTAB(t, i) \
    677 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    678 #if defined(gould)
    679 			/* use this if B.b[i] is evaluated just once ... */
    680 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    681 #else
    682 #if defined(pdp11)
    683 			/* use this if your "long" int indexing is slow */
    684 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    685 #else
    686 			/* use this if "k" is allocated to a register ... */
    687 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    688 #endif
    689 #endif
    690 
    691 #define	CRUNCH(p0, p1, q0, q1)	\
    692 			k = (q0 ^ q1) & SALT;	\
    693 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    694 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    695 			kp = (C_block *)((char *)kp+ks_inc);	\
    696 							\
    697 			DOXOR(p0, p1, 0);		\
    698 			DOXOR(p0, p1, 1);		\
    699 			DOXOR(p0, p1, 2);		\
    700 			DOXOR(p0, p1, 3);		\
    701 			DOXOR(p0, p1, 4);		\
    702 			DOXOR(p0, p1, 5);		\
    703 			DOXOR(p0, p1, 6);		\
    704 			DOXOR(p0, p1, 7);
    705 
    706 			CRUNCH(L0, L1, R0, R1);
    707 			CRUNCH(R0, R1, L0, L1);
    708 		} while (--loop_count != 0);
    709 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    710 
    711 
    712 		/* swap L and R */
    713 		L0 ^= R0;  L1 ^= R1;
    714 		R0 ^= L0;  R1 ^= L1;
    715 		L0 ^= R0;  L1 ^= R1;
    716 	}
    717 
    718 	/* store the encrypted (or decrypted) result */
    719 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    720 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    721 	STORE(L,L0,L1,B);
    722 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    723 #if defined(MUST_ALIGN)
    724 	STORE(L,L0,L1,B);
    725 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    726 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    727 #else
    728 	STORE(L,L0,L1,*(C_block *)out);
    729 #endif
    730 	return (0);
    731 }
    732 
    733 
    734 /*
    735  * Initialize various tables.  This need only be done once.  It could even be
    736  * done at compile time, if the compiler were capable of that sort of thing.
    737  */
    738 STATIC
    739 init_des()
    740 {
    741 	int i, j;
    742 	int32_t k;
    743 	int tableno;
    744 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    745 
    746 	/*
    747 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    748 	 */
    749 	for (i = 0; i < 64; i++)
    750 		a64toi[itoa64[i]] = i;
    751 
    752 	/*
    753 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    754 	 */
    755 	for (i = 0; i < 64; i++)
    756 		perm[i] = 0;
    757 	for (i = 0; i < 64; i++) {
    758 		if ((k = PC2[i]) == 0)
    759 			continue;
    760 		k += Rotates[0]-1;
    761 		if ((k%28) < Rotates[0]) k -= 28;
    762 		k = PC1[k];
    763 		if (k > 0) {
    764 			k--;
    765 			k = (k|07) - (k&07);
    766 			k++;
    767 		}
    768 		perm[i] = k;
    769 	}
    770 #ifdef DEBUG
    771 	prtab("pc1tab", perm, 8);
    772 #endif
    773 	init_perm(PC1ROT, perm, 8, 8);
    774 
    775 	/*
    776 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    777 	 */
    778 	for (j = 0; j < 2; j++) {
    779 		unsigned char pc2inv[64];
    780 		for (i = 0; i < 64; i++)
    781 			perm[i] = pc2inv[i] = 0;
    782 		for (i = 0; i < 64; i++) {
    783 			if ((k = PC2[i]) == 0)
    784 				continue;
    785 			pc2inv[k-1] = i+1;
    786 		}
    787 		for (i = 0; i < 64; i++) {
    788 			if ((k = PC2[i]) == 0)
    789 				continue;
    790 			k += j;
    791 			if ((k%28) <= j) k -= 28;
    792 			perm[i] = pc2inv[k];
    793 		}
    794 #ifdef DEBUG
    795 		prtab("pc2tab", perm, 8);
    796 #endif
    797 		init_perm(PC2ROT[j], perm, 8, 8);
    798 	}
    799 
    800 	/*
    801 	 * Bit reverse, then initial permutation, then expansion.
    802 	 */
    803 	for (i = 0; i < 8; i++) {
    804 		for (j = 0; j < 8; j++) {
    805 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    806 			if (k > 32)
    807 				k -= 32;
    808 			else if (k > 0)
    809 				k--;
    810 			if (k > 0) {
    811 				k--;
    812 				k = (k|07) - (k&07);
    813 				k++;
    814 			}
    815 			perm[i*8+j] = k;
    816 		}
    817 	}
    818 #ifdef DEBUG
    819 	prtab("ietab", perm, 8);
    820 #endif
    821 	init_perm(IE3264, perm, 4, 8);
    822 
    823 	/*
    824 	 * Compression, then final permutation, then bit reverse.
    825 	 */
    826 	for (i = 0; i < 64; i++) {
    827 		k = IP[CIFP[i]-1];
    828 		if (k > 0) {
    829 			k--;
    830 			k = (k|07) - (k&07);
    831 			k++;
    832 		}
    833 		perm[k-1] = i+1;
    834 	}
    835 #ifdef DEBUG
    836 	prtab("cftab", perm, 8);
    837 #endif
    838 	init_perm(CF6464, perm, 8, 8);
    839 
    840 	/*
    841 	 * SPE table
    842 	 */
    843 	for (i = 0; i < 48; i++)
    844 		perm[i] = P32Tr[ExpandTr[i]-1];
    845 	for (tableno = 0; tableno < 8; tableno++) {
    846 		for (j = 0; j < 64; j++)  {
    847 			k = (((j >> 0) &01) << 5)|
    848 			    (((j >> 1) &01) << 3)|
    849 			    (((j >> 2) &01) << 2)|
    850 			    (((j >> 3) &01) << 1)|
    851 			    (((j >> 4) &01) << 0)|
    852 			    (((j >> 5) &01) << 4);
    853 			k = S[tableno][k];
    854 			k = (((k >> 3)&01) << 0)|
    855 			    (((k >> 2)&01) << 1)|
    856 			    (((k >> 1)&01) << 2)|
    857 			    (((k >> 0)&01) << 3);
    858 			for (i = 0; i < 32; i++)
    859 				tmp32[i] = 0;
    860 			for (i = 0; i < 4; i++)
    861 				tmp32[4 * tableno + i] = (k >> i) & 01;
    862 			k = 0;
    863 			for (i = 24; --i >= 0; )
    864 				k = (k<<1) | tmp32[perm[i]-1];
    865 			TO_SIX_BIT(SPE[0][tableno][j], k);
    866 			k = 0;
    867 			for (i = 24; --i >= 0; )
    868 				k = (k<<1) | tmp32[perm[i+24]-1];
    869 			TO_SIX_BIT(SPE[1][tableno][j], k);
    870 		}
    871 	}
    872 }
    873 
    874 /*
    875  * Initialize "perm" to represent transformation "p", which rearranges
    876  * (perhaps with expansion and/or contraction) one packed array of bits
    877  * (of size "chars_in" characters) into another array (of size "chars_out"
    878  * characters).
    879  *
    880  * "perm" must be all-zeroes on entry to this routine.
    881  */
    882 STATIC
    883 init_perm(perm, p, chars_in, chars_out)
    884 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
    885 	unsigned char p[64];
    886 	int chars_in, chars_out;
    887 {
    888 	int i, j, k, l;
    889 
    890 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    891 		l = p[k] - 1;		/* where this bit comes from */
    892 		if (l < 0)
    893 			continue;	/* output bit is always 0 */
    894 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    895 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    896 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    897 			if ((j & l) != 0)
    898 				perm[i][j].b[k>>3] |= 1<<(k&07);
    899 		}
    900 	}
    901 }
    902 
    903 /*
    904  * "setkey" routine (for backwards compatibility)
    905  */
    906 int
    907 setkey(key)
    908 	const char *key;
    909 {
    910 	int i, j, k;
    911 	C_block keyblock;
    912 
    913 	for (i = 0; i < 8; i++) {
    914 		k = 0;
    915 		for (j = 0; j < 8; j++) {
    916 			k <<= 1;
    917 			k |= (unsigned char)*key++;
    918 		}
    919 		keyblock.b[i] = k;
    920 	}
    921 	return (des_setkey((char *)keyblock.b));
    922 }
    923 
    924 /*
    925  * "encrypt" routine (for backwards compatibility)
    926  */
    927 int
    928 encrypt(block, flag)
    929 	char *block;
    930 	int flag;
    931 {
    932 	int i, j, k;
    933 	C_block cblock;
    934 
    935 	for (i = 0; i < 8; i++) {
    936 		k = 0;
    937 		for (j = 0; j < 8; j++) {
    938 			k <<= 1;
    939 			k |= (unsigned char)*block++;
    940 		}
    941 		cblock.b[i] = k;
    942 	}
    943 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    944 		return (1);
    945 	for (i = 7; i >= 0; i--) {
    946 		k = cblock.b[i];
    947 		for (j = 7; j >= 0; j--) {
    948 			*--block = k&01;
    949 			k >>= 1;
    950 		}
    951 	}
    952 	return (0);
    953 }
    954 
    955 #ifdef DEBUG
    956 STATIC
    957 prtab(s, t, num_rows)
    958 	char *s;
    959 	unsigned char *t;
    960 	int num_rows;
    961 {
    962 	int i, j;
    963 
    964 	(void)printf("%s:\n", s);
    965 	for (i = 0; i < num_rows; i++) {
    966 		for (j = 0; j < 8; j++) {
    967 			 (void)printf("%3d", t[i*8+j]);
    968 		}
    969 		(void)printf("\n");
    970 	}
    971 	(void)printf("\n");
    972 }
    973 #endif
    974