crypt.c revision 1.23 1 /* $NetBSD: crypt.c,v 1.23 2006/04/08 23:24:44 christos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Tom Truscott.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #if !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.23 2006/04/08 23:24:44 christos Exp $");
41 #endif
42 #endif /* not lint */
43
44 #include <limits.h>
45 #include <pwd.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #ifdef DEBUG
49 #include <stdio.h>
50 #endif
51
52 #include "crypt.h"
53
54 /*
55 * UNIX password, and DES, encryption.
56 * By Tom Truscott, trt (at) rti.rti.org,
57 * from algorithms by Robert W. Baldwin and James Gillogly.
58 *
59 * References:
60 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62 *
63 * "Password Security: A Case History," R. Morris and Ken Thompson,
64 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65 *
66 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68 */
69
70 /* ===== Configuration ==================== */
71
72 /*
73 * define "MUST_ALIGN" if your compiler cannot load/store
74 * long integers at arbitrary (e.g. odd) memory locations.
75 * (Either that or never pass unaligned addresses to des_cipher!)
76 */
77 #if !defined(__vax__) && !defined(__i386__)
78 #define MUST_ALIGN
79 #endif
80
81 #ifdef CHAR_BITS
82 #if CHAR_BITS != 8
83 #error C_block structure assumes 8 bit characters
84 #endif
85 #endif
86
87 /*
88 * define "B64" to be the declaration for a 64 bit integer.
89 * XXX this feature is currently unused, see "endian" comment below.
90 */
91 #if defined(cray)
92 #define B64 long
93 #endif
94 #if defined(convex)
95 #define B64 long long
96 #endif
97
98 /*
99 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 * little effect on crypt().
102 */
103 #if defined(notdef)
104 #define LARGEDATA
105 #endif
106
107 /* compile with "-DSTATIC=void" when profiling */
108 #ifndef STATIC
109 #define STATIC static void
110 #endif
111
112 /* ==================================== */
113
114 /*
115 * Cipher-block representation (Bob Baldwin):
116 *
117 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
118 * representation is to store one bit per byte in an array of bytes. Bit N of
119 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 * first byte, 9..16 in the second, and so on. The DES spec apparently has
122 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 * the MSB of the first byte. Specifically, the 64-bit input data and key are
125 * converted to LSB format, and the output 64-bit block is converted back into
126 * MSB format.
127 *
128 * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
130 * the computation, the expansion is applied only once, the expanded
131 * representation is maintained during the encryption, and a compression
132 * permutation is applied only at the end. To speed up the S-box lookups,
133 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
135 * most significant ones. The low two bits of each byte are zero. (Thus,
136 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
139 * used, in which the output is the 64 bit result of an S-box lookup which
140 * has been permuted by P and expanded by E, and is ready for use in the next
141 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
143 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
144 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
145 * 8*64*8 = 4K bytes.
146 *
147 * To speed up bit-parallel operations (such as XOR), the 8 byte
148 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 * machines which support it, a 64 bit value "b64". This data structure,
150 * "C_block", has two problems. First, alignment restrictions must be
151 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
152 * the architecture becomes visible.
153 *
154 * The byte-order problem is unfortunate, since on the one hand it is good
155 * to have a machine-independent C_block representation (bits 1..8 in the
156 * first byte, etc.), and on the other hand it is good for the LSB of the
157 * first byte to be the LSB of i0. We cannot have both these things, so we
158 * currently use the "little-endian" representation and avoid any multi-byte
159 * operations that depend on byte order. This largely precludes use of the
160 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
161 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
162 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
164 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 * requires a 128 kilobyte table, so perhaps this is not a big loss.
166 *
167 * Permutation representation (Jim Gillogly):
168 *
169 * A transformation is defined by its effect on each of the 8 bytes of the
170 * 64-bit input. For each byte we give a 64-bit output that has the bits in
171 * the input distributed appropriately. The transformation is then the OR
172 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
173 * each transformation. Unless LARGEDATA is defined, however, a more compact
174 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
176 * is slower but tolerable, particularly for password encryption in which
177 * the SPE transformation is iterated many times. The small tables total 9K
178 * bytes, the large tables total 72K bytes.
179 *
180 * The transformations used are:
181 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 * This is done by collecting the 32 even-numbered bits and applying
183 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 * bits and applying the same transformation. Since there are only
185 * 32 input bits, the IE3264 transformation table is half the size of
186 * the usual table.
187 * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 * This is done by two trivial 48->32 bit compressions to obtain
189 * a 64-bit block (the bit numbering is given in the "CIFP" table)
190 * followed by a 64->64 bit "cleanup" transformation. (It would
191 * be possible to group the bits in the 64-bit block so that 2
192 * identical 32->32 bit transformations could be used instead,
193 * saving a factor of 4 in space and possibly 2 in time, but
194 * byte-ordering and other complications rear their ugly head.
195 * Similar opportunities/problems arise in the key schedule
196 * transforms.)
197 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 * This admittedly baroque 64->64 bit transformation is used to
199 * produce the first code (in 8*(6+2) format) of the key schedule.
200 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 * It would be possible to define 15 more transformations, each
202 * with a different rotation, to generate the entire key schedule.
203 * To save space, however, we instead permute each code into the
204 * next by using a transformation that "undoes" the PC2 permutation,
205 * rotates the code, and then applies PC2. Unfortunately, PC2
206 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 * invertible. We get around that problem by using a modified PC2
208 * which retains the 8 otherwise-lost bits in the unused low-order
209 * bits of each byte. The low-order bits are cleared when the
210 * codes are stored into the key schedule.
211 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 * This is faster than applying PC2ROT[0] twice,
213 *
214 * The Bell Labs "salt" (Bob Baldwin):
215 *
216 * The salting is a simple permutation applied to the 48-bit result of E.
217 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
219 * 16777216 possible values. (The original salt was 12 bits and could not
220 * swap bits 13..24 with 36..48.)
221 *
222 * It is possible, but ugly, to warp the SPE table to account for the salt
223 * permutation. Fortunately, the conditional bit swapping requires only
224 * about four machine instructions and can be done on-the-fly with about an
225 * 8% performance penalty.
226 */
227
228 typedef union {
229 unsigned char b[8];
230 struct {
231 int32_t i0;
232 int32_t i1;
233 } b32;
234 #if defined(B64)
235 B64 b64;
236 #endif
237 } C_block;
238
239 /*
240 * Convert twenty-four-bit long in host-order
241 * to six bits (and 2 low-order zeroes) per char little-endian format.
242 */
243 #define TO_SIX_BIT(rslt, src) { \
244 C_block cvt; \
245 cvt.b[0] = src; src >>= 6; \
246 cvt.b[1] = src; src >>= 6; \
247 cvt.b[2] = src; src >>= 6; \
248 cvt.b[3] = src; \
249 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
250 }
251
252 /*
253 * These macros may someday permit efficient use of 64-bit integers.
254 */
255 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
256 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
258 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
260 #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
261
262 #if defined(LARGEDATA)
263 /* Waste memory like crazy. Also, do permutations in line */
264 #define LGCHUNKBITS 3
265 #define CHUNKBITS (1<<LGCHUNKBITS)
266 #define PERM6464(d,d0,d1,cpp,p) \
267 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
268 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
269 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
270 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
271 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
272 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
273 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
274 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 #define PERM3264(d,d0,d1,cpp,p) \
276 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 #else
281 /* "small data" */
282 #define LGCHUNKBITS 2
283 #define CHUNKBITS (1<<LGCHUNKBITS)
284 #define PERM6464(d,d0,d1,cpp,p) \
285 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 #define PERM3264(d,d0,d1,cpp,p) \
287 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 #endif /* LARGEDATA */
289
290 STATIC init_des __P((void));
291 STATIC init_perm __P((C_block [64/CHUNKBITS][1<<CHUNKBITS], unsigned char [64], int, int));
292 #ifndef LARGEDATA
293 STATIC permute __P((unsigned char *, C_block *, C_block *, int));
294 #endif
295 #ifdef DEBUG
296 STATIC prtab __P((char *, unsigned char *, int));
297 #endif
298
299
300 #ifndef LARGEDATA
301 STATIC
302 permute(cp, out, p, chars_in)
303 unsigned char *cp;
304 C_block *out;
305 C_block *p;
306 int chars_in;
307 {
308 DCL_BLOCK(D,D0,D1);
309 C_block *tp;
310 int t;
311
312 ZERO(D,D0,D1);
313 do {
314 t = *cp++;
315 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
316 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
317 } while (--chars_in > 0);
318 STORE(D,D0,D1,*out);
319 }
320 #endif /* LARGEDATA */
321
322
323 /* ===== (mostly) Standard DES Tables ==================== */
324
325 static const unsigned char IP[] = { /* initial permutation */
326 58, 50, 42, 34, 26, 18, 10, 2,
327 60, 52, 44, 36, 28, 20, 12, 4,
328 62, 54, 46, 38, 30, 22, 14, 6,
329 64, 56, 48, 40, 32, 24, 16, 8,
330 57, 49, 41, 33, 25, 17, 9, 1,
331 59, 51, 43, 35, 27, 19, 11, 3,
332 61, 53, 45, 37, 29, 21, 13, 5,
333 63, 55, 47, 39, 31, 23, 15, 7,
334 };
335
336 /* The final permutation is the inverse of IP - no table is necessary */
337
338 static const unsigned char ExpandTr[] = { /* expansion operation */
339 32, 1, 2, 3, 4, 5,
340 4, 5, 6, 7, 8, 9,
341 8, 9, 10, 11, 12, 13,
342 12, 13, 14, 15, 16, 17,
343 16, 17, 18, 19, 20, 21,
344 20, 21, 22, 23, 24, 25,
345 24, 25, 26, 27, 28, 29,
346 28, 29, 30, 31, 32, 1,
347 };
348
349 static const unsigned char PC1[] = { /* permuted choice table 1 */
350 57, 49, 41, 33, 25, 17, 9,
351 1, 58, 50, 42, 34, 26, 18,
352 10, 2, 59, 51, 43, 35, 27,
353 19, 11, 3, 60, 52, 44, 36,
354
355 63, 55, 47, 39, 31, 23, 15,
356 7, 62, 54, 46, 38, 30, 22,
357 14, 6, 61, 53, 45, 37, 29,
358 21, 13, 5, 28, 20, 12, 4,
359 };
360
361 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
362 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
363 };
364
365 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
366 static const unsigned char PC2[] = { /* permuted choice table 2 */
367 9, 18, 14, 17, 11, 24, 1, 5,
368 22, 25, 3, 28, 15, 6, 21, 10,
369 35, 38, 23, 19, 12, 4, 26, 8,
370 43, 54, 16, 7, 27, 20, 13, 2,
371
372 0, 0, 41, 52, 31, 37, 47, 55,
373 0, 0, 30, 40, 51, 45, 33, 48,
374 0, 0, 44, 49, 39, 56, 34, 53,
375 0, 0, 46, 42, 50, 36, 29, 32,
376 };
377
378 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
379 /* S[1] */
380 { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
381 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
382 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
383 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
384 /* S[2] */
385 { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
386 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
387 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
388 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
389 /* S[3] */
390 { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
391 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
392 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
393 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
394 /* S[4] */
395 { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
396 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
397 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
398 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
399 /* S[5] */
400 { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
401 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
402 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
403 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
404 /* S[6] */
405 { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
406 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
407 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
408 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
409 /* S[7] */
410 { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
411 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
412 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
413 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
414 /* S[8] */
415 { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
416 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
417 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
418 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
419 };
420
421 static const unsigned char P32Tr[] = { /* 32-bit permutation function */
422 16, 7, 20, 21,
423 29, 12, 28, 17,
424 1, 15, 23, 26,
425 5, 18, 31, 10,
426 2, 8, 24, 14,
427 32, 27, 3, 9,
428 19, 13, 30, 6,
429 22, 11, 4, 25,
430 };
431
432 static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
433 1, 2, 3, 4, 17, 18, 19, 20,
434 5, 6, 7, 8, 21, 22, 23, 24,
435 9, 10, 11, 12, 25, 26, 27, 28,
436 13, 14, 15, 16, 29, 30, 31, 32,
437
438 33, 34, 35, 36, 49, 50, 51, 52,
439 37, 38, 39, 40, 53, 54, 55, 56,
440 41, 42, 43, 44, 57, 58, 59, 60,
441 45, 46, 47, 48, 61, 62, 63, 64,
442 };
443
444 static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
445 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
446
447
448 /* ===== Tables that are initialized at run time ==================== */
449
450
451 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
452
453 /* Initial key schedule permutation */
454 static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
455
456 /* Subsequent key schedule rotation permutations */
457 static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
458
459 /* Initial permutation/expansion table */
460 static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
461
462 /* Table that combines the S, P, and E operations. */
463 static int32_t SPE[2][8][64];
464
465 /* compressed/interleaved => final permutation table */
466 static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
467
468
469 /* ==================================== */
470
471
472 static C_block constdatablock; /* encryption constant */
473 static char cryptresult[1+4+4+11+1]; /* encrypted result */
474
475
476 /*
477 * Return a pointer to static data consisting of the "setting"
478 * followed by an encryption produced by the "key" and "setting".
479 */
480 char *
481 crypt(key, setting)
482 const char *key;
483 const char *setting;
484 {
485 char *encp;
486 int32_t i;
487 int t;
488 int32_t salt;
489 int num_iter, salt_size;
490 C_block keyblock, rsltblock;
491
492 /* Non-DES encryption schemes hook in here. */
493 if (setting[0] == _PASSWORD_NONDES) {
494 switch (setting[1]) {
495 case '2':
496 return (__bcrypt(key, setting));
497 case 's':
498 return (__crypt_sha1(key, setting));
499 case '1':
500 default:
501 return (__md5crypt(key, setting));
502 }
503 }
504
505 for (i = 0; i < 8; i++) {
506 if ((t = 2*(unsigned char)(*key)) != 0)
507 key++;
508 keyblock.b[i] = t;
509 }
510 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
511 return (NULL);
512
513 encp = &cryptresult[0];
514 switch (*setting) {
515 case _PASSWORD_EFMT1:
516 /*
517 * Involve the rest of the password 8 characters at a time.
518 */
519 while (*key) {
520 if (des_cipher((char *)(void *)&keyblock,
521 (char *)(void *)&keyblock, 0L, 1))
522 return (NULL);
523 for (i = 0; i < 8; i++) {
524 if ((t = 2*(unsigned char)(*key)) != 0)
525 key++;
526 keyblock.b[i] ^= t;
527 }
528 if (des_setkey((char *)keyblock.b))
529 return (NULL);
530 }
531
532 *encp++ = *setting++;
533
534 /* get iteration count */
535 num_iter = 0;
536 for (i = 4; --i >= 0; ) {
537 if ((t = (unsigned char)setting[i]) == '\0')
538 t = '.';
539 encp[i] = t;
540 num_iter = (num_iter<<6) | a64toi[t];
541 }
542 setting += 4;
543 encp += 4;
544 salt_size = 4;
545 break;
546 default:
547 num_iter = 25;
548 salt_size = 2;
549 }
550
551 salt = 0;
552 for (i = salt_size; --i >= 0; ) {
553 if ((t = (unsigned char)setting[i]) == '\0')
554 t = '.';
555 encp[i] = t;
556 salt = (salt<<6) | a64toi[t];
557 }
558 encp += salt_size;
559 if (des_cipher((char *)(void *)&constdatablock,
560 (char *)(void *)&rsltblock, salt, num_iter))
561 return (NULL);
562
563 /*
564 * Encode the 64 cipher bits as 11 ascii characters.
565 */
566 i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
567 rsltblock.b[2];
568 encp[3] = itoa64[i&0x3f]; i >>= 6;
569 encp[2] = itoa64[i&0x3f]; i >>= 6;
570 encp[1] = itoa64[i&0x3f]; i >>= 6;
571 encp[0] = itoa64[i]; encp += 4;
572 i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
573 rsltblock.b[5];
574 encp[3] = itoa64[i&0x3f]; i >>= 6;
575 encp[2] = itoa64[i&0x3f]; i >>= 6;
576 encp[1] = itoa64[i&0x3f]; i >>= 6;
577 encp[0] = itoa64[i]; encp += 4;
578 i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
579 encp[2] = itoa64[i&0x3f]; i >>= 6;
580 encp[1] = itoa64[i&0x3f]; i >>= 6;
581 encp[0] = itoa64[i];
582
583 encp[3] = 0;
584
585 return (cryptresult);
586 }
587
588
589 /*
590 * The Key Schedule, filled in by des_setkey() or setkey().
591 */
592 #define KS_SIZE 16
593 static C_block KS[KS_SIZE];
594
595 /*
596 * Set up the key schedule from the key.
597 */
598 int
599 des_setkey(key)
600 const char *key;
601 {
602 DCL_BLOCK(K, K0, K1);
603 C_block *ptabp;
604 int i;
605 static int des_ready = 0;
606
607 if (!des_ready) {
608 init_des();
609 des_ready = 1;
610 }
611
612 PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
613 key = (char *)&KS[0];
614 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
615 for (i = 1; i < 16; i++) {
616 key += sizeof(C_block);
617 STORE(K,K0,K1,*(C_block *)key);
618 ptabp = (C_block *)PC2ROT[Rotates[i]-1];
619 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
620 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
621 }
622 return (0);
623 }
624
625 /*
626 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
627 * iterations of DES, using the given 24-bit salt and the pre-computed key
628 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
629 *
630 * NOTE: the performance of this routine is critically dependent on your
631 * compiler and machine architecture.
632 */
633 int
634 des_cipher(in, out, salt, num_iter)
635 const char *in;
636 char *out;
637 long salt;
638 int num_iter;
639 {
640 /* variables that we want in registers, most important first */
641 #if defined(pdp11)
642 int j;
643 #endif
644 int32_t L0, L1, R0, R1, k;
645 C_block *kp;
646 int ks_inc, loop_count;
647 C_block B;
648
649 L0 = salt;
650 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
651
652 #if defined(__vax__) || defined(pdp11)
653 salt = ~salt; /* "x &~ y" is faster than "x & y". */
654 #define SALT (~salt)
655 #else
656 #define SALT salt
657 #endif
658
659 #if defined(MUST_ALIGN)
660 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
661 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
662 LOAD(L,L0,L1,B);
663 #else
664 LOAD(L,L0,L1,*(C_block *)in);
665 #endif
666 LOADREG(R,R0,R1,L,L0,L1);
667 L0 &= 0x55555555L;
668 L1 &= 0x55555555L;
669 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
670 R0 &= 0xaaaaaaaaL;
671 R1 = (R1 >> 1) & 0x55555555L;
672 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
673 STORE(L,L0,L1,B);
674 PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
675 PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
676
677 if (num_iter >= 0)
678 { /* encryption */
679 kp = &KS[0];
680 ks_inc = sizeof(*kp);
681 }
682 else
683 { /* decryption */
684 num_iter = -num_iter;
685 kp = &KS[KS_SIZE-1];
686 ks_inc = -(long)sizeof(*kp);
687 }
688
689 while (--num_iter >= 0) {
690 loop_count = 8;
691 do {
692
693 #define SPTAB(t, i) \
694 (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
695 #if defined(gould)
696 /* use this if B.b[i] is evaluated just once ... */
697 #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
698 #else
699 #if defined(pdp11)
700 /* use this if your "long" int indexing is slow */
701 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
702 #else
703 /* use this if "k" is allocated to a register ... */
704 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
705 #endif
706 #endif
707
708 #define CRUNCH(p0, p1, q0, q1) \
709 k = (q0 ^ q1) & SALT; \
710 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
711 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
712 kp = (C_block *)((char *)kp+ks_inc); \
713 \
714 DOXOR(p0, p1, 0); \
715 DOXOR(p0, p1, 1); \
716 DOXOR(p0, p1, 2); \
717 DOXOR(p0, p1, 3); \
718 DOXOR(p0, p1, 4); \
719 DOXOR(p0, p1, 5); \
720 DOXOR(p0, p1, 6); \
721 DOXOR(p0, p1, 7);
722
723 CRUNCH(L0, L1, R0, R1);
724 CRUNCH(R0, R1, L0, L1);
725 } while (--loop_count != 0);
726 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
727
728
729 /* swap L and R */
730 L0 ^= R0; L1 ^= R1;
731 R0 ^= L0; R1 ^= L1;
732 L0 ^= R0; L1 ^= R1;
733 }
734
735 /* store the encrypted (or decrypted) result */
736 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
737 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
738 STORE(L,L0,L1,B);
739 PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
740 #if defined(MUST_ALIGN)
741 STORE(L,L0,L1,B);
742 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
743 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
744 #else
745 STORE(L,L0,L1,*(C_block *)out);
746 #endif
747 return (0);
748 }
749
750
751 /*
752 * Initialize various tables. This need only be done once. It could even be
753 * done at compile time, if the compiler were capable of that sort of thing.
754 */
755 STATIC
756 init_des()
757 {
758 int i, j;
759 int32_t k;
760 int tableno;
761 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
762
763 /*
764 * table that converts chars "./0-9A-Za-z"to integers 0-63.
765 */
766 for (i = 0; i < 64; i++)
767 a64toi[itoa64[i]] = i;
768
769 /*
770 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
771 */
772 for (i = 0; i < 64; i++)
773 perm[i] = 0;
774 for (i = 0; i < 64; i++) {
775 if ((k = PC2[i]) == 0)
776 continue;
777 k += Rotates[0]-1;
778 if ((k%28) < Rotates[0]) k -= 28;
779 k = PC1[k];
780 if (k > 0) {
781 k--;
782 k = (k|07) - (k&07);
783 k++;
784 }
785 perm[i] = k;
786 }
787 #ifdef DEBUG
788 prtab("pc1tab", perm, 8);
789 #endif
790 init_perm(PC1ROT, perm, 8, 8);
791
792 /*
793 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
794 */
795 for (j = 0; j < 2; j++) {
796 unsigned char pc2inv[64];
797 for (i = 0; i < 64; i++)
798 perm[i] = pc2inv[i] = 0;
799 for (i = 0; i < 64; i++) {
800 if ((k = PC2[i]) == 0)
801 continue;
802 pc2inv[k-1] = i+1;
803 }
804 for (i = 0; i < 64; i++) {
805 if ((k = PC2[i]) == 0)
806 continue;
807 k += j;
808 if ((k%28) <= j) k -= 28;
809 perm[i] = pc2inv[k];
810 }
811 #ifdef DEBUG
812 prtab("pc2tab", perm, 8);
813 #endif
814 init_perm(PC2ROT[j], perm, 8, 8);
815 }
816
817 /*
818 * Bit reverse, then initial permutation, then expansion.
819 */
820 for (i = 0; i < 8; i++) {
821 for (j = 0; j < 8; j++) {
822 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
823 if (k > 32)
824 k -= 32;
825 else if (k > 0)
826 k--;
827 if (k > 0) {
828 k--;
829 k = (k|07) - (k&07);
830 k++;
831 }
832 perm[i*8+j] = k;
833 }
834 }
835 #ifdef DEBUG
836 prtab("ietab", perm, 8);
837 #endif
838 init_perm(IE3264, perm, 4, 8);
839
840 /*
841 * Compression, then final permutation, then bit reverse.
842 */
843 for (i = 0; i < 64; i++) {
844 k = IP[CIFP[i]-1];
845 if (k > 0) {
846 k--;
847 k = (k|07) - (k&07);
848 k++;
849 }
850 perm[k-1] = i+1;
851 }
852 #ifdef DEBUG
853 prtab("cftab", perm, 8);
854 #endif
855 init_perm(CF6464, perm, 8, 8);
856
857 /*
858 * SPE table
859 */
860 for (i = 0; i < 48; i++)
861 perm[i] = P32Tr[ExpandTr[i]-1];
862 for (tableno = 0; tableno < 8; tableno++) {
863 for (j = 0; j < 64; j++) {
864 k = (((j >> 0) &01) << 5)|
865 (((j >> 1) &01) << 3)|
866 (((j >> 2) &01) << 2)|
867 (((j >> 3) &01) << 1)|
868 (((j >> 4) &01) << 0)|
869 (((j >> 5) &01) << 4);
870 k = S[tableno][k];
871 k = (((k >> 3)&01) << 0)|
872 (((k >> 2)&01) << 1)|
873 (((k >> 1)&01) << 2)|
874 (((k >> 0)&01) << 3);
875 for (i = 0; i < 32; i++)
876 tmp32[i] = 0;
877 for (i = 0; i < 4; i++)
878 tmp32[4 * tableno + i] = (k >> i) & 01;
879 k = 0;
880 for (i = 24; --i >= 0; )
881 k = (k<<1) | tmp32[perm[i]-1];
882 TO_SIX_BIT(SPE[0][tableno][j], k);
883 k = 0;
884 for (i = 24; --i >= 0; )
885 k = (k<<1) | tmp32[perm[i+24]-1];
886 TO_SIX_BIT(SPE[1][tableno][j], k);
887 }
888 }
889 }
890
891 /*
892 * Initialize "perm" to represent transformation "p", which rearranges
893 * (perhaps with expansion and/or contraction) one packed array of bits
894 * (of size "chars_in" characters) into another array (of size "chars_out"
895 * characters).
896 *
897 * "perm" must be all-zeroes on entry to this routine.
898 */
899 STATIC
900 init_perm(perm, p, chars_in, chars_out)
901 C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
902 unsigned char p[64];
903 int chars_in, chars_out;
904 {
905 int i, j, k, l;
906
907 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
908 l = p[k] - 1; /* where this bit comes from */
909 if (l < 0)
910 continue; /* output bit is always 0 */
911 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
912 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
913 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
914 if ((j & l) != 0)
915 perm[i][j].b[k>>3] |= 1<<(k&07);
916 }
917 }
918 }
919
920 /*
921 * "setkey" routine (for backwards compatibility)
922 */
923 int
924 setkey(key)
925 const char *key;
926 {
927 int i, j, k;
928 C_block keyblock;
929
930 for (i = 0; i < 8; i++) {
931 k = 0;
932 for (j = 0; j < 8; j++) {
933 k <<= 1;
934 k |= (unsigned char)*key++;
935 }
936 keyblock.b[i] = k;
937 }
938 return (des_setkey((char *)keyblock.b));
939 }
940
941 /*
942 * "encrypt" routine (for backwards compatibility)
943 */
944 int
945 encrypt(block, flag)
946 char *block;
947 int flag;
948 {
949 int i, j, k;
950 C_block cblock;
951
952 for (i = 0; i < 8; i++) {
953 k = 0;
954 for (j = 0; j < 8; j++) {
955 k <<= 1;
956 k |= (unsigned char)*block++;
957 }
958 cblock.b[i] = k;
959 }
960 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
961 return (1);
962 for (i = 7; i >= 0; i--) {
963 k = cblock.b[i];
964 for (j = 7; j >= 0; j--) {
965 *--block = k&01;
966 k >>= 1;
967 }
968 }
969 return (0);
970 }
971
972 #ifdef DEBUG
973 STATIC
974 prtab(s, t, num_rows)
975 char *s;
976 unsigned char *t;
977 int num_rows;
978 {
979 int i, j;
980
981 (void)printf("%s:\n", s);
982 for (i = 0; i < num_rows; i++) {
983 for (j = 0; j < 8; j++) {
984 (void)printf("%3d", t[i*8+j]);
985 }
986 (void)printf("\n");
987 }
988 (void)printf("\n");
989 }
990 #endif
991
992 #if defined(MAIN) || defined(UNIT_TEST)
993 #include <stdio.h>
994 #include <err.h>
995
996 int
997 main (int argc, char *argv[])
998 {
999 if (argc < 2)
1000 errx(1, "Usage: %s password [salt]\n", argv[0]);
1001
1002 printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1003 exit(0);
1004 }
1005 #endif
1006