Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.29
      1 /*	$NetBSD: crypt.c,v 1.29 2011/12/26 16:03:42 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Tom Truscott.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 #if !defined(lint)
     37 #if 0
     38 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     39 #else
     40 __RCSID("$NetBSD: crypt.c,v 1.29 2011/12/26 16:03:42 christos Exp $");
     41 #endif
     42 #endif /* not lint */
     43 
     44 #include <limits.h>
     45 #include <pwd.h>
     46 #include <stdlib.h>
     47 #include <unistd.h>
     48 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
     49 #include <stdio.h>
     50 #endif
     51 
     52 #include "crypt.h"
     53 
     54 /*
     55  * UNIX password, and DES, encryption.
     56  * By Tom Truscott, trt (at) rti.rti.org,
     57  * from algorithms by Robert W. Baldwin and James Gillogly.
     58  *
     59  * References:
     60  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     61  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     62  *
     63  * "Password Security: A Case History," R. Morris and Ken Thompson,
     64  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     65  *
     66  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     67  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     68  */
     69 
     70 /* =====  Configuration ==================== */
     71 
     72 /*
     73  * define "MUST_ALIGN" if your compiler cannot load/store
     74  * long integers at arbitrary (e.g. odd) memory locations.
     75  * (Either that or never pass unaligned addresses to des_cipher!)
     76  */
     77 #if !defined(__vax__) && !defined(__i386__)
     78 #define	MUST_ALIGN
     79 #endif
     80 
     81 #ifdef CHAR_BITS
     82 #if CHAR_BITS != 8
     83 	#error C_block structure assumes 8 bit characters
     84 #endif
     85 #endif
     86 
     87 /*
     88  * define "B64" to be the declaration for a 64 bit integer.
     89  * XXX this feature is currently unused, see "endian" comment below.
     90  */
     91 #if defined(cray)
     92 #define	B64	long
     93 #endif
     94 #if defined(convex)
     95 #define	B64	long long
     96 #endif
     97 
     98 /*
     99  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
    100  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
    101  * little effect on crypt().
    102  */
    103 #if defined(notdef)
    104 #define	LARGEDATA
    105 #endif
    106 
    107 /* compile with "-DSTATIC=void" when profiling */
    108 #ifndef STATIC
    109 #define	STATIC	static void
    110 #endif
    111 
    112 /* ==================================== */
    113 
    114 /*
    115  * Cipher-block representation (Bob Baldwin):
    116  *
    117  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    118  * representation is to store one bit per byte in an array of bytes.  Bit N of
    119  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    120  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    121  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    122  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    123  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    124  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    125  * converted to LSB format, and the output 64-bit block is converted back into
    126  * MSB format.
    127  *
    128  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    129  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    130  * the computation, the expansion is applied only once, the expanded
    131  * representation is maintained during the encryption, and a compression
    132  * permutation is applied only at the end.  To speed up the S-box lookups,
    133  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    134  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    135  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    136  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    137  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    138  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    139  * used, in which the output is the 64 bit result of an S-box lookup which
    140  * has been permuted by P and expanded by E, and is ready for use in the next
    141  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    142  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    143  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    144  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    145  * 8*64*8 = 4K bytes.
    146  *
    147  * To speed up bit-parallel operations (such as XOR), the 8 byte
    148  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    149  * machines which support it, a 64 bit value "b64".  This data structure,
    150  * "C_block", has two problems.  First, alignment restrictions must be
    151  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    152  * the architecture becomes visible.
    153  *
    154  * The byte-order problem is unfortunate, since on the one hand it is good
    155  * to have a machine-independent C_block representation (bits 1..8 in the
    156  * first byte, etc.), and on the other hand it is good for the LSB of the
    157  * first byte to be the LSB of i0.  We cannot have both these things, so we
    158  * currently use the "little-endian" representation and avoid any multi-byte
    159  * operations that depend on byte order.  This largely precludes use of the
    160  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    161  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    162  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    163  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    164  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    165  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    166  *
    167  * Permutation representation (Jim Gillogly):
    168  *
    169  * A transformation is defined by its effect on each of the 8 bytes of the
    170  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    171  * the input distributed appropriately.  The transformation is then the OR
    172  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    173  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    174  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    175  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    176  * is slower but tolerable, particularly for password encryption in which
    177  * the SPE transformation is iterated many times.  The small tables total 9K
    178  * bytes, the large tables total 72K bytes.
    179  *
    180  * The transformations used are:
    181  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    182  *	This is done by collecting the 32 even-numbered bits and applying
    183  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    184  *	bits and applying the same transformation.  Since there are only
    185  *	32 input bits, the IE3264 transformation table is half the size of
    186  *	the usual table.
    187  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    188  *	This is done by two trivial 48->32 bit compressions to obtain
    189  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    190  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    191  *	be possible to group the bits in the 64-bit block so that 2
    192  *	identical 32->32 bit transformations could be used instead,
    193  *	saving a factor of 4 in space and possibly 2 in time, but
    194  *	byte-ordering and other complications rear their ugly head.
    195  *	Similar opportunities/problems arise in the key schedule
    196  *	transforms.)
    197  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    198  *	This admittedly baroque 64->64 bit transformation is used to
    199  *	produce the first code (in 8*(6+2) format) of the key schedule.
    200  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    201  *	It would be possible to define 15 more transformations, each
    202  *	with a different rotation, to generate the entire key schedule.
    203  *	To save space, however, we instead permute each code into the
    204  *	next by using a transformation that "undoes" the PC2 permutation,
    205  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    206  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    207  *	invertible.  We get around that problem by using a modified PC2
    208  *	which retains the 8 otherwise-lost bits in the unused low-order
    209  *	bits of each byte.  The low-order bits are cleared when the
    210  *	codes are stored into the key schedule.
    211  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    212  *	This is faster than applying PC2ROT[0] twice,
    213  *
    214  * The Bell Labs "salt" (Bob Baldwin):
    215  *
    216  * The salting is a simple permutation applied to the 48-bit result of E.
    217  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    218  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    219  * 16777216 possible values.  (The original salt was 12 bits and could not
    220  * swap bits 13..24 with 36..48.)
    221  *
    222  * It is possible, but ugly, to warp the SPE table to account for the salt
    223  * permutation.  Fortunately, the conditional bit swapping requires only
    224  * about four machine instructions and can be done on-the-fly with about an
    225  * 8% performance penalty.
    226  */
    227 
    228 typedef union {
    229 	unsigned char b[8];
    230 	struct {
    231 		int32_t	i0;
    232 		int32_t	i1;
    233 	} b32;
    234 #if defined(B64)
    235 	B64	b64;
    236 #endif
    237 } C_block;
    238 
    239 /*
    240  * Convert twenty-four-bit long in host-order
    241  * to six bits (and 2 low-order zeroes) per char little-endian format.
    242  */
    243 #define	TO_SIX_BIT(rslt, src) {				\
    244 		C_block cvt;				\
    245 		cvt.b[0] = src; src >>= 6;		\
    246 		cvt.b[1] = src; src >>= 6;		\
    247 		cvt.b[2] = src; src >>= 6;		\
    248 		cvt.b[3] = src;				\
    249 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    250 	}
    251 
    252 /*
    253  * These macros may someday permit efficient use of 64-bit integers.
    254  */
    255 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    256 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    257 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    258 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    259 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    260 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    261 
    262 #if defined(LARGEDATA)
    263 	/* Waste memory like crazy.  Also, do permutations in line */
    264 #define	LGCHUNKBITS	3
    265 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    266 #define	PERM6464(d,d0,d1,cpp,p)				\
    267 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    268 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    269 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    270 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    271 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    272 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    273 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    274 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    275 #define	PERM3264(d,d0,d1,cpp,p)				\
    276 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    277 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    278 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    279 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    280 #else
    281 	/* "small data" */
    282 #define	LGCHUNKBITS	2
    283 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    284 #define	PERM6464(d,d0,d1,cpp,p)				\
    285 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    286 #define	PERM3264(d,d0,d1,cpp,p)				\
    287 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    288 #endif /* LARGEDATA */
    289 
    290 STATIC	init_des(void);
    291 STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
    292 		       const unsigned char [64], int, int);
    293 #ifndef LARGEDATA
    294 STATIC	permute(const unsigned char *, C_block *, C_block *, int);
    295 #endif
    296 #ifdef DEBUG
    297 STATIC	prtab(const char *, unsigned char *, int);
    298 #endif
    299 
    300 
    301 #ifndef LARGEDATA
    302 STATIC
    303 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
    304 {
    305 	DCL_BLOCK(D,D0,D1);
    306 	C_block *tp;
    307 	int t;
    308 
    309 	ZERO(D,D0,D1);
    310 	do {
    311 		t = *cp++;
    312 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    313 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    314 	} while (--chars_in > 0);
    315 	STORE(D,D0,D1,*out);
    316 }
    317 #endif /* LARGEDATA */
    318 
    319 
    320 /* =====  (mostly) Standard DES Tables ==================== */
    321 
    322 static const unsigned char IP[] = {	/* initial permutation */
    323 	58, 50, 42, 34, 26, 18, 10,  2,
    324 	60, 52, 44, 36, 28, 20, 12,  4,
    325 	62, 54, 46, 38, 30, 22, 14,  6,
    326 	64, 56, 48, 40, 32, 24, 16,  8,
    327 	57, 49, 41, 33, 25, 17,  9,  1,
    328 	59, 51, 43, 35, 27, 19, 11,  3,
    329 	61, 53, 45, 37, 29, 21, 13,  5,
    330 	63, 55, 47, 39, 31, 23, 15,  7,
    331 };
    332 
    333 /* The final permutation is the inverse of IP - no table is necessary */
    334 
    335 static const unsigned char ExpandTr[] = {	/* expansion operation */
    336 	32,  1,  2,  3,  4,  5,
    337 	 4,  5,  6,  7,  8,  9,
    338 	 8,  9, 10, 11, 12, 13,
    339 	12, 13, 14, 15, 16, 17,
    340 	16, 17, 18, 19, 20, 21,
    341 	20, 21, 22, 23, 24, 25,
    342 	24, 25, 26, 27, 28, 29,
    343 	28, 29, 30, 31, 32,  1,
    344 };
    345 
    346 static const unsigned char PC1[] = {	/* permuted choice table 1 */
    347 	57, 49, 41, 33, 25, 17,  9,
    348 	 1, 58, 50, 42, 34, 26, 18,
    349 	10,  2, 59, 51, 43, 35, 27,
    350 	19, 11,  3, 60, 52, 44, 36,
    351 
    352 	63, 55, 47, 39, 31, 23, 15,
    353 	 7, 62, 54, 46, 38, 30, 22,
    354 	14,  6, 61, 53, 45, 37, 29,
    355 	21, 13,  5, 28, 20, 12,  4,
    356 };
    357 
    358 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
    359 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    360 };
    361 
    362 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    363 static const unsigned char PC2[] = {	/* permuted choice table 2 */
    364 	 9, 18,    14, 17, 11, 24,  1,  5,
    365 	22, 25,     3, 28, 15,  6, 21, 10,
    366 	35, 38,    23, 19, 12,  4, 26,  8,
    367 	43, 54,    16,  7, 27, 20, 13,  2,
    368 
    369 	 0,  0,    41, 52, 31, 37, 47, 55,
    370 	 0,  0,    30, 40, 51, 45, 33, 48,
    371 	 0,  0,    44, 49, 39, 56, 34, 53,
    372 	 0,  0,    46, 42, 50, 36, 29, 32,
    373 };
    374 
    375 static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    376 					/* S[1]			*/
    377 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    378 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    379 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    380 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    381 					/* S[2]			*/
    382 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    383 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    384 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    385 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    386 					/* S[3]			*/
    387 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    388 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    389 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    390 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    391 					/* S[4]			*/
    392 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    393 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    394 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    395 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    396 					/* S[5]			*/
    397 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    398 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    399 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    400 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    401 					/* S[6]			*/
    402 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    403 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    404 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    405 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    406 					/* S[7]			*/
    407 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    408 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    409 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    410 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    411 					/* S[8]			*/
    412 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    413 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    414 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    415 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    416 };
    417 
    418 static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
    419 	16,  7, 20, 21,
    420 	29, 12, 28, 17,
    421 	 1, 15, 23, 26,
    422 	 5, 18, 31, 10,
    423 	 2,  8, 24, 14,
    424 	32, 27,  3,  9,
    425 	19, 13, 30,  6,
    426 	22, 11,  4, 25,
    427 };
    428 
    429 static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
    430 	 1,  2,  3,  4,   17, 18, 19, 20,
    431 	 5,  6,  7,  8,   21, 22, 23, 24,
    432 	 9, 10, 11, 12,   25, 26, 27, 28,
    433 	13, 14, 15, 16,   29, 30, 31, 32,
    434 
    435 	33, 34, 35, 36,   49, 50, 51, 52,
    436 	37, 38, 39, 40,   53, 54, 55, 56,
    437 	41, 42, 43, 44,   57, 58, 59, 60,
    438 	45, 46, 47, 48,   61, 62, 63, 64,
    439 };
    440 
    441 static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    442 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    443 
    444 
    445 /* =====  Tables that are initialized at run time  ==================== */
    446 
    447 
    448 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    449 
    450 /* Initial key schedule permutation */
    451 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    452 
    453 /* Subsequent key schedule rotation permutations */
    454 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    455 
    456 /* Initial permutation/expansion table */
    457 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    458 
    459 /* Table that combines the S, P, and E operations.  */
    460 static int32_t SPE[2][8][64];
    461 
    462 /* compressed/interleaved => final permutation table */
    463 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    464 
    465 
    466 /* ==================================== */
    467 
    468 
    469 static C_block	constdatablock;			/* encryption constant */
    470 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    471 
    472 
    473 /*
    474  * Return a pointer to static data consisting of the "setting"
    475  * followed by an encryption produced by the "key" and "setting".
    476  */
    477 char *
    478 crypt(const char *key, const char *setting)
    479 {
    480 	char *encp;
    481 	int32_t i;
    482 	int t;
    483 	int32_t salt;
    484 	int num_iter, salt_size;
    485 	C_block keyblock, rsltblock;
    486 
    487 	/* Non-DES encryption schemes hook in here. */
    488 	if (setting[0] == _PASSWORD_NONDES) {
    489 		switch (setting[1]) {
    490 		case '2':
    491 			return (__bcrypt(key, setting));
    492 		case 's':
    493 			return (__crypt_sha1(key, setting));
    494 		case '1':
    495 		default:
    496 			return (__md5crypt(key, setting));
    497 		}
    498 	}
    499 
    500 	for (i = 0; i < 8; i++) {
    501 		if ((t = 2*(unsigned char)(*key)) != 0)
    502 			key++;
    503 		keyblock.b[i] = t;
    504 	}
    505 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    506 		return (NULL);
    507 
    508 	encp = &cryptresult[0];
    509 	switch (*setting) {
    510 	case _PASSWORD_EFMT1:
    511 		/*
    512 		 * Involve the rest of the password 8 characters at a time.
    513 		 */
    514 		while (*key) {
    515 			if (des_cipher((char *)(void *)&keyblock,
    516 			    (char *)(void *)&keyblock, 0L, 1))
    517 				return (NULL);
    518 			for (i = 0; i < 8; i++) {
    519 				if ((t = 2*(unsigned char)(*key)) != 0)
    520 					key++;
    521 				keyblock.b[i] ^= t;
    522 			}
    523 			if (des_setkey((char *)keyblock.b))
    524 				return (NULL);
    525 		}
    526 
    527 		*encp++ = *setting++;
    528 
    529 		/* get iteration count */
    530 		num_iter = 0;
    531 		for (i = 4; --i >= 0; ) {
    532 			if ((t = (unsigned char)setting[i]) == '\0')
    533 				t = '.';
    534 			encp[i] = t;
    535 			num_iter = (num_iter << 6) |
    536 			    a64toi[t & (sizeof(a64toi) - 1)];
    537 		}
    538 		setting += 4;
    539 		encp += 4;
    540 		salt_size = 4;
    541 		break;
    542 	default:
    543 		num_iter = 25;
    544 		salt_size = 2;
    545 	}
    546 
    547 	salt = 0;
    548 	for (i = salt_size; --i >= 0; ) {
    549 		if ((t = (unsigned char)setting[i]) == '\0')
    550 			t = '.';
    551 		encp[i] = t;
    552 		salt = (salt<<6) | a64toi[t & (sizeof(a64toi) - 1)];
    553 	}
    554 	encp += salt_size;
    555 	if (des_cipher((char *)(void *)&constdatablock,
    556 	    (char *)(void *)&rsltblock, salt, num_iter))
    557 		return (NULL);
    558 
    559 	/*
    560 	 * Encode the 64 cipher bits as 11 ascii characters.
    561 	 */
    562 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    563 	    rsltblock.b[2];
    564 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    565 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    566 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    567 	encp[0] = itoa64[i];		encp += 4;
    568 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    569 	    rsltblock.b[5];
    570 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    571 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    572 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    573 	encp[0] = itoa64[i];		encp += 4;
    574 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    575 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    576 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    577 	encp[0] = itoa64[i];
    578 
    579 	encp[3] = 0;
    580 
    581 	return (cryptresult);
    582 }
    583 
    584 
    585 /*
    586  * The Key Schedule, filled in by des_setkey() or setkey().
    587  */
    588 #define	KS_SIZE	16
    589 static C_block	KS[KS_SIZE];
    590 
    591 /*
    592  * Set up the key schedule from the key.
    593  */
    594 int
    595 des_setkey(const char *key)
    596 {
    597 	DCL_BLOCK(K, K0, K1);
    598 	C_block *help, *ptabp;
    599 	int i;
    600 	static int des_ready = 0;
    601 
    602 	if (!des_ready) {
    603 		init_des();
    604 		des_ready = 1;
    605 	}
    606 
    607 	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
    608 	help = &KS[0];
    609 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
    610 	for (i = 1; i < 16; i++) {
    611 		help++;
    612 		STORE(K,K0,K1,*help);
    613 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    614 		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
    615 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
    616 	}
    617 	return (0);
    618 }
    619 
    620 /*
    621  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    622  * iterations of DES, using the given 24-bit salt and the pre-computed key
    623  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    624  *
    625  * NOTE: the performance of this routine is critically dependent on your
    626  * compiler and machine architecture.
    627  */
    628 int
    629 des_cipher(const char *in, char *out, long salt, int num_iter)
    630 {
    631 	/* variables that we want in registers, most important first */
    632 #if defined(pdp11)
    633 	int j;
    634 #endif
    635 	int32_t L0, L1, R0, R1, k;
    636 	C_block *kp;
    637 	int ks_inc, loop_count;
    638 	C_block B;
    639 
    640 	L0 = salt;
    641 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    642 
    643 #if defined(__vax__) || defined(pdp11)
    644 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    645 #define	SALT (~salt)
    646 #else
    647 #define	SALT salt
    648 #endif
    649 
    650 #if defined(MUST_ALIGN)
    651 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    652 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    653 	LOAD(L,L0,L1,B);
    654 #else
    655 	LOAD(L,L0,L1,*(const C_block *)in);
    656 #endif
    657 	LOADREG(R,R0,R1,L,L0,L1);
    658 	L0 &= 0x55555555L;
    659 	L1 &= 0x55555555L;
    660 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    661 	R0 &= 0xaaaaaaaaL;
    662 	R1 = (R1 >> 1) & 0x55555555L;
    663 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    664 	STORE(L,L0,L1,B);
    665 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    666 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    667 
    668 	if (num_iter >= 0)
    669 	{		/* encryption */
    670 		kp = &KS[0];
    671 		ks_inc  = sizeof(*kp);
    672 	}
    673 	else
    674 	{		/* decryption */
    675 		num_iter = -num_iter;
    676 		kp = &KS[KS_SIZE-1];
    677 		ks_inc  = -(long)sizeof(*kp);
    678 	}
    679 
    680 	while (--num_iter >= 0) {
    681 		loop_count = 8;
    682 		do {
    683 
    684 #define	SPTAB(t, i) \
    685 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    686 #if defined(gould)
    687 			/* use this if B.b[i] is evaluated just once ... */
    688 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    689 #else
    690 #if defined(pdp11)
    691 			/* use this if your "long" int indexing is slow */
    692 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    693 #else
    694 			/* use this if "k" is allocated to a register ... */
    695 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    696 #endif
    697 #endif
    698 
    699 #define	CRUNCH(p0, p1, q0, q1)	\
    700 			k = (q0 ^ q1) & SALT;	\
    701 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    702 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    703 			kp = (C_block *)((char *)kp+ks_inc);	\
    704 							\
    705 			DOXOR(p0, p1, 0);		\
    706 			DOXOR(p0, p1, 1);		\
    707 			DOXOR(p0, p1, 2);		\
    708 			DOXOR(p0, p1, 3);		\
    709 			DOXOR(p0, p1, 4);		\
    710 			DOXOR(p0, p1, 5);		\
    711 			DOXOR(p0, p1, 6);		\
    712 			DOXOR(p0, p1, 7);
    713 
    714 			CRUNCH(L0, L1, R0, R1);
    715 			CRUNCH(R0, R1, L0, L1);
    716 		} while (--loop_count != 0);
    717 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    718 
    719 
    720 		/* swap L and R */
    721 		L0 ^= R0;  L1 ^= R1;
    722 		R0 ^= L0;  R1 ^= L1;
    723 		L0 ^= R0;  L1 ^= R1;
    724 	}
    725 
    726 	/* store the encrypted (or decrypted) result */
    727 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    728 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    729 	STORE(L,L0,L1,B);
    730 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    731 #if defined(MUST_ALIGN)
    732 	STORE(L,L0,L1,B);
    733 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    734 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    735 #else
    736 	STORE(L,L0,L1,*(C_block *)out);
    737 #endif
    738 	return (0);
    739 }
    740 
    741 
    742 /*
    743  * Initialize various tables.  This need only be done once.  It could even be
    744  * done at compile time, if the compiler were capable of that sort of thing.
    745  */
    746 STATIC
    747 init_des(void)
    748 {
    749 	int i, j;
    750 	int32_t k;
    751 	int tableno;
    752 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    753 
    754 	/*
    755 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    756 	 */
    757 	for (i = 0; i < 64; i++)
    758 		a64toi[itoa64[i]] = i;
    759 
    760 	/*
    761 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    762 	 */
    763 	for (i = 0; i < 64; i++)
    764 		perm[i] = 0;
    765 	for (i = 0; i < 64; i++) {
    766 		if ((k = PC2[i]) == 0)
    767 			continue;
    768 		k += Rotates[0]-1;
    769 		if ((k%28) < Rotates[0]) k -= 28;
    770 		k = PC1[k];
    771 		if (k > 0) {
    772 			k--;
    773 			k = (k|07) - (k&07);
    774 			k++;
    775 		}
    776 		perm[i] = k;
    777 	}
    778 #ifdef DEBUG
    779 	prtab("pc1tab", perm, 8);
    780 #endif
    781 	init_perm(PC1ROT, perm, 8, 8);
    782 
    783 	/*
    784 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    785 	 */
    786 	for (j = 0; j < 2; j++) {
    787 		unsigned char pc2inv[64];
    788 		for (i = 0; i < 64; i++)
    789 			perm[i] = pc2inv[i] = 0;
    790 		for (i = 0; i < 64; i++) {
    791 			if ((k = PC2[i]) == 0)
    792 				continue;
    793 			pc2inv[k-1] = i+1;
    794 		}
    795 		for (i = 0; i < 64; i++) {
    796 			if ((k = PC2[i]) == 0)
    797 				continue;
    798 			k += j;
    799 			if ((k%28) <= j) k -= 28;
    800 			perm[i] = pc2inv[k];
    801 		}
    802 #ifdef DEBUG
    803 		prtab("pc2tab", perm, 8);
    804 #endif
    805 		init_perm(PC2ROT[j], perm, 8, 8);
    806 	}
    807 
    808 	/*
    809 	 * Bit reverse, then initial permutation, then expansion.
    810 	 */
    811 	for (i = 0; i < 8; i++) {
    812 		for (j = 0; j < 8; j++) {
    813 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    814 			if (k > 32)
    815 				k -= 32;
    816 			else if (k > 0)
    817 				k--;
    818 			if (k > 0) {
    819 				k--;
    820 				k = (k|07) - (k&07);
    821 				k++;
    822 			}
    823 			perm[i*8+j] = k;
    824 		}
    825 	}
    826 #ifdef DEBUG
    827 	prtab("ietab", perm, 8);
    828 #endif
    829 	init_perm(IE3264, perm, 4, 8);
    830 
    831 	/*
    832 	 * Compression, then final permutation, then bit reverse.
    833 	 */
    834 	for (i = 0; i < 64; i++) {
    835 		k = IP[CIFP[i]-1];
    836 		if (k > 0) {
    837 			k--;
    838 			k = (k|07) - (k&07);
    839 			k++;
    840 		}
    841 		perm[k-1] = i+1;
    842 	}
    843 #ifdef DEBUG
    844 	prtab("cftab", perm, 8);
    845 #endif
    846 	init_perm(CF6464, perm, 8, 8);
    847 
    848 	/*
    849 	 * SPE table
    850 	 */
    851 	for (i = 0; i < 48; i++)
    852 		perm[i] = P32Tr[ExpandTr[i]-1];
    853 	for (tableno = 0; tableno < 8; tableno++) {
    854 		for (j = 0; j < 64; j++)  {
    855 			k = (((j >> 0) &01) << 5)|
    856 			    (((j >> 1) &01) << 3)|
    857 			    (((j >> 2) &01) << 2)|
    858 			    (((j >> 3) &01) << 1)|
    859 			    (((j >> 4) &01) << 0)|
    860 			    (((j >> 5) &01) << 4);
    861 			k = S[tableno][k];
    862 			k = (((k >> 3)&01) << 0)|
    863 			    (((k >> 2)&01) << 1)|
    864 			    (((k >> 1)&01) << 2)|
    865 			    (((k >> 0)&01) << 3);
    866 			for (i = 0; i < 32; i++)
    867 				tmp32[i] = 0;
    868 			for (i = 0; i < 4; i++)
    869 				tmp32[4 * tableno + i] = (k >> i) & 01;
    870 			k = 0;
    871 			for (i = 24; --i >= 0; )
    872 				k = (k<<1) | tmp32[perm[i]-1];
    873 			TO_SIX_BIT(SPE[0][tableno][j], k);
    874 			k = 0;
    875 			for (i = 24; --i >= 0; )
    876 				k = (k<<1) | tmp32[perm[i+24]-1];
    877 			TO_SIX_BIT(SPE[1][tableno][j], k);
    878 		}
    879 	}
    880 }
    881 
    882 /*
    883  * Initialize "perm" to represent transformation "p", which rearranges
    884  * (perhaps with expansion and/or contraction) one packed array of bits
    885  * (of size "chars_in" characters) into another array (of size "chars_out"
    886  * characters).
    887  *
    888  * "perm" must be all-zeroes on entry to this routine.
    889  */
    890 STATIC
    891 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
    892     int chars_in, int chars_out)
    893 {
    894 	int i, j, k, l;
    895 
    896 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    897 		l = p[k] - 1;		/* where this bit comes from */
    898 		if (l < 0)
    899 			continue;	/* output bit is always 0 */
    900 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    901 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    902 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    903 			if ((j & l) != 0)
    904 				perm[i][j].b[k>>3] |= 1<<(k&07);
    905 		}
    906 	}
    907 }
    908 
    909 /*
    910  * "setkey" routine (for backwards compatibility)
    911  */
    912 int
    913 setkey(const char *key)
    914 {
    915 	int i, j, k;
    916 	C_block keyblock;
    917 
    918 	for (i = 0; i < 8; i++) {
    919 		k = 0;
    920 		for (j = 0; j < 8; j++) {
    921 			k <<= 1;
    922 			k |= (unsigned char)*key++;
    923 		}
    924 		keyblock.b[i] = k;
    925 	}
    926 	return (des_setkey((char *)keyblock.b));
    927 }
    928 
    929 /*
    930  * "encrypt" routine (for backwards compatibility)
    931  */
    932 int
    933 encrypt(char *block, int flag)
    934 {
    935 	int i, j, k;
    936 	C_block cblock;
    937 
    938 	for (i = 0; i < 8; i++) {
    939 		k = 0;
    940 		for (j = 0; j < 8; j++) {
    941 			k <<= 1;
    942 			k |= (unsigned char)*block++;
    943 		}
    944 		cblock.b[i] = k;
    945 	}
    946 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    947 		return (1);
    948 	for (i = 7; i >= 0; i--) {
    949 		k = cblock.b[i];
    950 		for (j = 7; j >= 0; j--) {
    951 			*--block = k&01;
    952 			k >>= 1;
    953 		}
    954 	}
    955 	return (0);
    956 }
    957 
    958 #ifdef DEBUG
    959 STATIC
    960 prtab(const char *s, unsigned char *t, int num_rows)
    961 {
    962 	int i, j;
    963 
    964 	(void)printf("%s:\n", s);
    965 	for (i = 0; i < num_rows; i++) {
    966 		for (j = 0; j < 8; j++) {
    967 			 (void)printf("%3d", t[i*8+j]);
    968 		}
    969 		(void)printf("\n");
    970 	}
    971 	(void)printf("\n");
    972 }
    973 #endif
    974 
    975 #if defined(MAIN) || defined(UNIT_TEST)
    976 #include <err.h>
    977 
    978 int
    979 main(int argc, char *argv[])
    980 {
    981     if (argc < 2)
    982 	errx(1, "Usage: %s password [salt]\n", argv[0]);
    983 
    984     printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
    985     exit(0);
    986 }
    987 #endif
    988