crypt.c revision 1.29 1 /* $NetBSD: crypt.c,v 1.29 2011/12/26 16:03:42 christos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Tom Truscott.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #if !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.29 2011/12/26 16:03:42 christos Exp $");
41 #endif
42 #endif /* not lint */
43
44 #include <limits.h>
45 #include <pwd.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49 #include <stdio.h>
50 #endif
51
52 #include "crypt.h"
53
54 /*
55 * UNIX password, and DES, encryption.
56 * By Tom Truscott, trt (at) rti.rti.org,
57 * from algorithms by Robert W. Baldwin and James Gillogly.
58 *
59 * References:
60 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62 *
63 * "Password Security: A Case History," R. Morris and Ken Thompson,
64 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65 *
66 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68 */
69
70 /* ===== Configuration ==================== */
71
72 /*
73 * define "MUST_ALIGN" if your compiler cannot load/store
74 * long integers at arbitrary (e.g. odd) memory locations.
75 * (Either that or never pass unaligned addresses to des_cipher!)
76 */
77 #if !defined(__vax__) && !defined(__i386__)
78 #define MUST_ALIGN
79 #endif
80
81 #ifdef CHAR_BITS
82 #if CHAR_BITS != 8
83 #error C_block structure assumes 8 bit characters
84 #endif
85 #endif
86
87 /*
88 * define "B64" to be the declaration for a 64 bit integer.
89 * XXX this feature is currently unused, see "endian" comment below.
90 */
91 #if defined(cray)
92 #define B64 long
93 #endif
94 #if defined(convex)
95 #define B64 long long
96 #endif
97
98 /*
99 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 * little effect on crypt().
102 */
103 #if defined(notdef)
104 #define LARGEDATA
105 #endif
106
107 /* compile with "-DSTATIC=void" when profiling */
108 #ifndef STATIC
109 #define STATIC static void
110 #endif
111
112 /* ==================================== */
113
114 /*
115 * Cipher-block representation (Bob Baldwin):
116 *
117 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
118 * representation is to store one bit per byte in an array of bytes. Bit N of
119 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 * first byte, 9..16 in the second, and so on. The DES spec apparently has
122 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 * the MSB of the first byte. Specifically, the 64-bit input data and key are
125 * converted to LSB format, and the output 64-bit block is converted back into
126 * MSB format.
127 *
128 * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
130 * the computation, the expansion is applied only once, the expanded
131 * representation is maintained during the encryption, and a compression
132 * permutation is applied only at the end. To speed up the S-box lookups,
133 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
135 * most significant ones. The low two bits of each byte are zero. (Thus,
136 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
139 * used, in which the output is the 64 bit result of an S-box lookup which
140 * has been permuted by P and expanded by E, and is ready for use in the next
141 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
143 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
144 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
145 * 8*64*8 = 4K bytes.
146 *
147 * To speed up bit-parallel operations (such as XOR), the 8 byte
148 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 * machines which support it, a 64 bit value "b64". This data structure,
150 * "C_block", has two problems. First, alignment restrictions must be
151 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
152 * the architecture becomes visible.
153 *
154 * The byte-order problem is unfortunate, since on the one hand it is good
155 * to have a machine-independent C_block representation (bits 1..8 in the
156 * first byte, etc.), and on the other hand it is good for the LSB of the
157 * first byte to be the LSB of i0. We cannot have both these things, so we
158 * currently use the "little-endian" representation and avoid any multi-byte
159 * operations that depend on byte order. This largely precludes use of the
160 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
161 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
162 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
164 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 * requires a 128 kilobyte table, so perhaps this is not a big loss.
166 *
167 * Permutation representation (Jim Gillogly):
168 *
169 * A transformation is defined by its effect on each of the 8 bytes of the
170 * 64-bit input. For each byte we give a 64-bit output that has the bits in
171 * the input distributed appropriately. The transformation is then the OR
172 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
173 * each transformation. Unless LARGEDATA is defined, however, a more compact
174 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
176 * is slower but tolerable, particularly for password encryption in which
177 * the SPE transformation is iterated many times. The small tables total 9K
178 * bytes, the large tables total 72K bytes.
179 *
180 * The transformations used are:
181 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 * This is done by collecting the 32 even-numbered bits and applying
183 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 * bits and applying the same transformation. Since there are only
185 * 32 input bits, the IE3264 transformation table is half the size of
186 * the usual table.
187 * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 * This is done by two trivial 48->32 bit compressions to obtain
189 * a 64-bit block (the bit numbering is given in the "CIFP" table)
190 * followed by a 64->64 bit "cleanup" transformation. (It would
191 * be possible to group the bits in the 64-bit block so that 2
192 * identical 32->32 bit transformations could be used instead,
193 * saving a factor of 4 in space and possibly 2 in time, but
194 * byte-ordering and other complications rear their ugly head.
195 * Similar opportunities/problems arise in the key schedule
196 * transforms.)
197 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 * This admittedly baroque 64->64 bit transformation is used to
199 * produce the first code (in 8*(6+2) format) of the key schedule.
200 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 * It would be possible to define 15 more transformations, each
202 * with a different rotation, to generate the entire key schedule.
203 * To save space, however, we instead permute each code into the
204 * next by using a transformation that "undoes" the PC2 permutation,
205 * rotates the code, and then applies PC2. Unfortunately, PC2
206 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 * invertible. We get around that problem by using a modified PC2
208 * which retains the 8 otherwise-lost bits in the unused low-order
209 * bits of each byte. The low-order bits are cleared when the
210 * codes are stored into the key schedule.
211 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 * This is faster than applying PC2ROT[0] twice,
213 *
214 * The Bell Labs "salt" (Bob Baldwin):
215 *
216 * The salting is a simple permutation applied to the 48-bit result of E.
217 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
219 * 16777216 possible values. (The original salt was 12 bits and could not
220 * swap bits 13..24 with 36..48.)
221 *
222 * It is possible, but ugly, to warp the SPE table to account for the salt
223 * permutation. Fortunately, the conditional bit swapping requires only
224 * about four machine instructions and can be done on-the-fly with about an
225 * 8% performance penalty.
226 */
227
228 typedef union {
229 unsigned char b[8];
230 struct {
231 int32_t i0;
232 int32_t i1;
233 } b32;
234 #if defined(B64)
235 B64 b64;
236 #endif
237 } C_block;
238
239 /*
240 * Convert twenty-four-bit long in host-order
241 * to six bits (and 2 low-order zeroes) per char little-endian format.
242 */
243 #define TO_SIX_BIT(rslt, src) { \
244 C_block cvt; \
245 cvt.b[0] = src; src >>= 6; \
246 cvt.b[1] = src; src >>= 6; \
247 cvt.b[2] = src; src >>= 6; \
248 cvt.b[3] = src; \
249 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
250 }
251
252 /*
253 * These macros may someday permit efficient use of 64-bit integers.
254 */
255 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
256 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
258 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
260 #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
261
262 #if defined(LARGEDATA)
263 /* Waste memory like crazy. Also, do permutations in line */
264 #define LGCHUNKBITS 3
265 #define CHUNKBITS (1<<LGCHUNKBITS)
266 #define PERM6464(d,d0,d1,cpp,p) \
267 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
268 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
269 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
270 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
271 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
272 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
273 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
274 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 #define PERM3264(d,d0,d1,cpp,p) \
276 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 #else
281 /* "small data" */
282 #define LGCHUNKBITS 2
283 #define CHUNKBITS (1<<LGCHUNKBITS)
284 #define PERM6464(d,d0,d1,cpp,p) \
285 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 #define PERM3264(d,d0,d1,cpp,p) \
287 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 #endif /* LARGEDATA */
289
290 STATIC init_des(void);
291 STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292 const unsigned char [64], int, int);
293 #ifndef LARGEDATA
294 STATIC permute(const unsigned char *, C_block *, C_block *, int);
295 #endif
296 #ifdef DEBUG
297 STATIC prtab(const char *, unsigned char *, int);
298 #endif
299
300
301 #ifndef LARGEDATA
302 STATIC
303 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
304 {
305 DCL_BLOCK(D,D0,D1);
306 C_block *tp;
307 int t;
308
309 ZERO(D,D0,D1);
310 do {
311 t = *cp++;
312 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 } while (--chars_in > 0);
315 STORE(D,D0,D1,*out);
316 }
317 #endif /* LARGEDATA */
318
319
320 /* ===== (mostly) Standard DES Tables ==================== */
321
322 static const unsigned char IP[] = { /* initial permutation */
323 58, 50, 42, 34, 26, 18, 10, 2,
324 60, 52, 44, 36, 28, 20, 12, 4,
325 62, 54, 46, 38, 30, 22, 14, 6,
326 64, 56, 48, 40, 32, 24, 16, 8,
327 57, 49, 41, 33, 25, 17, 9, 1,
328 59, 51, 43, 35, 27, 19, 11, 3,
329 61, 53, 45, 37, 29, 21, 13, 5,
330 63, 55, 47, 39, 31, 23, 15, 7,
331 };
332
333 /* The final permutation is the inverse of IP - no table is necessary */
334
335 static const unsigned char ExpandTr[] = { /* expansion operation */
336 32, 1, 2, 3, 4, 5,
337 4, 5, 6, 7, 8, 9,
338 8, 9, 10, 11, 12, 13,
339 12, 13, 14, 15, 16, 17,
340 16, 17, 18, 19, 20, 21,
341 20, 21, 22, 23, 24, 25,
342 24, 25, 26, 27, 28, 29,
343 28, 29, 30, 31, 32, 1,
344 };
345
346 static const unsigned char PC1[] = { /* permuted choice table 1 */
347 57, 49, 41, 33, 25, 17, 9,
348 1, 58, 50, 42, 34, 26, 18,
349 10, 2, 59, 51, 43, 35, 27,
350 19, 11, 3, 60, 52, 44, 36,
351
352 63, 55, 47, 39, 31, 23, 15,
353 7, 62, 54, 46, 38, 30, 22,
354 14, 6, 61, 53, 45, 37, 29,
355 21, 13, 5, 28, 20, 12, 4,
356 };
357
358 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
359 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360 };
361
362 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 static const unsigned char PC2[] = { /* permuted choice table 2 */
364 9, 18, 14, 17, 11, 24, 1, 5,
365 22, 25, 3, 28, 15, 6, 21, 10,
366 35, 38, 23, 19, 12, 4, 26, 8,
367 43, 54, 16, 7, 27, 20, 13, 2,
368
369 0, 0, 41, 52, 31, 37, 47, 55,
370 0, 0, 30, 40, 51, 45, 33, 48,
371 0, 0, 44, 49, 39, 56, 34, 53,
372 0, 0, 46, 42, 50, 36, 29, 32,
373 };
374
375 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
376 /* S[1] */
377 { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
378 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
379 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
380 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
381 /* S[2] */
382 { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
383 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
384 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
385 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
386 /* S[3] */
387 { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
388 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
389 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
390 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
391 /* S[4] */
392 { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
393 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
394 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
395 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
396 /* S[5] */
397 { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
398 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
399 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
400 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
401 /* S[6] */
402 { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
403 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
404 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
405 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
406 /* S[7] */
407 { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
408 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
409 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
410 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
411 /* S[8] */
412 { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
413 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
414 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
415 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
416 };
417
418 static const unsigned char P32Tr[] = { /* 32-bit permutation function */
419 16, 7, 20, 21,
420 29, 12, 28, 17,
421 1, 15, 23, 26,
422 5, 18, 31, 10,
423 2, 8, 24, 14,
424 32, 27, 3, 9,
425 19, 13, 30, 6,
426 22, 11, 4, 25,
427 };
428
429 static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
430 1, 2, 3, 4, 17, 18, 19, 20,
431 5, 6, 7, 8, 21, 22, 23, 24,
432 9, 10, 11, 12, 25, 26, 27, 28,
433 13, 14, 15, 16, 29, 30, 31, 32,
434
435 33, 34, 35, 36, 49, 50, 51, 52,
436 37, 38, 39, 40, 53, 54, 55, 56,
437 41, 42, 43, 44, 57, 58, 59, 60,
438 45, 46, 47, 48, 61, 62, 63, 64,
439 };
440
441 static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
442 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443
444
445 /* ===== Tables that are initialized at run time ==================== */
446
447
448 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
449
450 /* Initial key schedule permutation */
451 static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
452
453 /* Subsequent key schedule rotation permutations */
454 static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
455
456 /* Initial permutation/expansion table */
457 static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
458
459 /* Table that combines the S, P, and E operations. */
460 static int32_t SPE[2][8][64];
461
462 /* compressed/interleaved => final permutation table */
463 static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
464
465
466 /* ==================================== */
467
468
469 static C_block constdatablock; /* encryption constant */
470 static char cryptresult[1+4+4+11+1]; /* encrypted result */
471
472
473 /*
474 * Return a pointer to static data consisting of the "setting"
475 * followed by an encryption produced by the "key" and "setting".
476 */
477 char *
478 crypt(const char *key, const char *setting)
479 {
480 char *encp;
481 int32_t i;
482 int t;
483 int32_t salt;
484 int num_iter, salt_size;
485 C_block keyblock, rsltblock;
486
487 /* Non-DES encryption schemes hook in here. */
488 if (setting[0] == _PASSWORD_NONDES) {
489 switch (setting[1]) {
490 case '2':
491 return (__bcrypt(key, setting));
492 case 's':
493 return (__crypt_sha1(key, setting));
494 case '1':
495 default:
496 return (__md5crypt(key, setting));
497 }
498 }
499
500 for (i = 0; i < 8; i++) {
501 if ((t = 2*(unsigned char)(*key)) != 0)
502 key++;
503 keyblock.b[i] = t;
504 }
505 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
506 return (NULL);
507
508 encp = &cryptresult[0];
509 switch (*setting) {
510 case _PASSWORD_EFMT1:
511 /*
512 * Involve the rest of the password 8 characters at a time.
513 */
514 while (*key) {
515 if (des_cipher((char *)(void *)&keyblock,
516 (char *)(void *)&keyblock, 0L, 1))
517 return (NULL);
518 for (i = 0; i < 8; i++) {
519 if ((t = 2*(unsigned char)(*key)) != 0)
520 key++;
521 keyblock.b[i] ^= t;
522 }
523 if (des_setkey((char *)keyblock.b))
524 return (NULL);
525 }
526
527 *encp++ = *setting++;
528
529 /* get iteration count */
530 num_iter = 0;
531 for (i = 4; --i >= 0; ) {
532 if ((t = (unsigned char)setting[i]) == '\0')
533 t = '.';
534 encp[i] = t;
535 num_iter = (num_iter << 6) |
536 a64toi[t & (sizeof(a64toi) - 1)];
537 }
538 setting += 4;
539 encp += 4;
540 salt_size = 4;
541 break;
542 default:
543 num_iter = 25;
544 salt_size = 2;
545 }
546
547 salt = 0;
548 for (i = salt_size; --i >= 0; ) {
549 if ((t = (unsigned char)setting[i]) == '\0')
550 t = '.';
551 encp[i] = t;
552 salt = (salt<<6) | a64toi[t & (sizeof(a64toi) - 1)];
553 }
554 encp += salt_size;
555 if (des_cipher((char *)(void *)&constdatablock,
556 (char *)(void *)&rsltblock, salt, num_iter))
557 return (NULL);
558
559 /*
560 * Encode the 64 cipher bits as 11 ascii characters.
561 */
562 i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
563 rsltblock.b[2];
564 encp[3] = itoa64[i&0x3f]; i >>= 6;
565 encp[2] = itoa64[i&0x3f]; i >>= 6;
566 encp[1] = itoa64[i&0x3f]; i >>= 6;
567 encp[0] = itoa64[i]; encp += 4;
568 i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
569 rsltblock.b[5];
570 encp[3] = itoa64[i&0x3f]; i >>= 6;
571 encp[2] = itoa64[i&0x3f]; i >>= 6;
572 encp[1] = itoa64[i&0x3f]; i >>= 6;
573 encp[0] = itoa64[i]; encp += 4;
574 i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
575 encp[2] = itoa64[i&0x3f]; i >>= 6;
576 encp[1] = itoa64[i&0x3f]; i >>= 6;
577 encp[0] = itoa64[i];
578
579 encp[3] = 0;
580
581 return (cryptresult);
582 }
583
584
585 /*
586 * The Key Schedule, filled in by des_setkey() or setkey().
587 */
588 #define KS_SIZE 16
589 static C_block KS[KS_SIZE];
590
591 /*
592 * Set up the key schedule from the key.
593 */
594 int
595 des_setkey(const char *key)
596 {
597 DCL_BLOCK(K, K0, K1);
598 C_block *help, *ptabp;
599 int i;
600 static int des_ready = 0;
601
602 if (!des_ready) {
603 init_des();
604 des_ready = 1;
605 }
606
607 PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
608 help = &KS[0];
609 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
610 for (i = 1; i < 16; i++) {
611 help++;
612 STORE(K,K0,K1,*help);
613 ptabp = (C_block *)PC2ROT[Rotates[i]-1];
614 PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
615 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
616 }
617 return (0);
618 }
619
620 /*
621 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
622 * iterations of DES, using the given 24-bit salt and the pre-computed key
623 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
624 *
625 * NOTE: the performance of this routine is critically dependent on your
626 * compiler and machine architecture.
627 */
628 int
629 des_cipher(const char *in, char *out, long salt, int num_iter)
630 {
631 /* variables that we want in registers, most important first */
632 #if defined(pdp11)
633 int j;
634 #endif
635 int32_t L0, L1, R0, R1, k;
636 C_block *kp;
637 int ks_inc, loop_count;
638 C_block B;
639
640 L0 = salt;
641 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
642
643 #if defined(__vax__) || defined(pdp11)
644 salt = ~salt; /* "x &~ y" is faster than "x & y". */
645 #define SALT (~salt)
646 #else
647 #define SALT salt
648 #endif
649
650 #if defined(MUST_ALIGN)
651 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
652 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
653 LOAD(L,L0,L1,B);
654 #else
655 LOAD(L,L0,L1,*(const C_block *)in);
656 #endif
657 LOADREG(R,R0,R1,L,L0,L1);
658 L0 &= 0x55555555L;
659 L1 &= 0x55555555L;
660 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
661 R0 &= 0xaaaaaaaaL;
662 R1 = (R1 >> 1) & 0x55555555L;
663 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
664 STORE(L,L0,L1,B);
665 PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
666 PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
667
668 if (num_iter >= 0)
669 { /* encryption */
670 kp = &KS[0];
671 ks_inc = sizeof(*kp);
672 }
673 else
674 { /* decryption */
675 num_iter = -num_iter;
676 kp = &KS[KS_SIZE-1];
677 ks_inc = -(long)sizeof(*kp);
678 }
679
680 while (--num_iter >= 0) {
681 loop_count = 8;
682 do {
683
684 #define SPTAB(t, i) \
685 (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
686 #if defined(gould)
687 /* use this if B.b[i] is evaluated just once ... */
688 #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
689 #else
690 #if defined(pdp11)
691 /* use this if your "long" int indexing is slow */
692 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
693 #else
694 /* use this if "k" is allocated to a register ... */
695 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
696 #endif
697 #endif
698
699 #define CRUNCH(p0, p1, q0, q1) \
700 k = (q0 ^ q1) & SALT; \
701 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
702 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
703 kp = (C_block *)((char *)kp+ks_inc); \
704 \
705 DOXOR(p0, p1, 0); \
706 DOXOR(p0, p1, 1); \
707 DOXOR(p0, p1, 2); \
708 DOXOR(p0, p1, 3); \
709 DOXOR(p0, p1, 4); \
710 DOXOR(p0, p1, 5); \
711 DOXOR(p0, p1, 6); \
712 DOXOR(p0, p1, 7);
713
714 CRUNCH(L0, L1, R0, R1);
715 CRUNCH(R0, R1, L0, L1);
716 } while (--loop_count != 0);
717 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
718
719
720 /* swap L and R */
721 L0 ^= R0; L1 ^= R1;
722 R0 ^= L0; R1 ^= L1;
723 L0 ^= R0; L1 ^= R1;
724 }
725
726 /* store the encrypted (or decrypted) result */
727 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
728 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
729 STORE(L,L0,L1,B);
730 PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
731 #if defined(MUST_ALIGN)
732 STORE(L,L0,L1,B);
733 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
734 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
735 #else
736 STORE(L,L0,L1,*(C_block *)out);
737 #endif
738 return (0);
739 }
740
741
742 /*
743 * Initialize various tables. This need only be done once. It could even be
744 * done at compile time, if the compiler were capable of that sort of thing.
745 */
746 STATIC
747 init_des(void)
748 {
749 int i, j;
750 int32_t k;
751 int tableno;
752 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
753
754 /*
755 * table that converts chars "./0-9A-Za-z"to integers 0-63.
756 */
757 for (i = 0; i < 64; i++)
758 a64toi[itoa64[i]] = i;
759
760 /*
761 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
762 */
763 for (i = 0; i < 64; i++)
764 perm[i] = 0;
765 for (i = 0; i < 64; i++) {
766 if ((k = PC2[i]) == 0)
767 continue;
768 k += Rotates[0]-1;
769 if ((k%28) < Rotates[0]) k -= 28;
770 k = PC1[k];
771 if (k > 0) {
772 k--;
773 k = (k|07) - (k&07);
774 k++;
775 }
776 perm[i] = k;
777 }
778 #ifdef DEBUG
779 prtab("pc1tab", perm, 8);
780 #endif
781 init_perm(PC1ROT, perm, 8, 8);
782
783 /*
784 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
785 */
786 for (j = 0; j < 2; j++) {
787 unsigned char pc2inv[64];
788 for (i = 0; i < 64; i++)
789 perm[i] = pc2inv[i] = 0;
790 for (i = 0; i < 64; i++) {
791 if ((k = PC2[i]) == 0)
792 continue;
793 pc2inv[k-1] = i+1;
794 }
795 for (i = 0; i < 64; i++) {
796 if ((k = PC2[i]) == 0)
797 continue;
798 k += j;
799 if ((k%28) <= j) k -= 28;
800 perm[i] = pc2inv[k];
801 }
802 #ifdef DEBUG
803 prtab("pc2tab", perm, 8);
804 #endif
805 init_perm(PC2ROT[j], perm, 8, 8);
806 }
807
808 /*
809 * Bit reverse, then initial permutation, then expansion.
810 */
811 for (i = 0; i < 8; i++) {
812 for (j = 0; j < 8; j++) {
813 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
814 if (k > 32)
815 k -= 32;
816 else if (k > 0)
817 k--;
818 if (k > 0) {
819 k--;
820 k = (k|07) - (k&07);
821 k++;
822 }
823 perm[i*8+j] = k;
824 }
825 }
826 #ifdef DEBUG
827 prtab("ietab", perm, 8);
828 #endif
829 init_perm(IE3264, perm, 4, 8);
830
831 /*
832 * Compression, then final permutation, then bit reverse.
833 */
834 for (i = 0; i < 64; i++) {
835 k = IP[CIFP[i]-1];
836 if (k > 0) {
837 k--;
838 k = (k|07) - (k&07);
839 k++;
840 }
841 perm[k-1] = i+1;
842 }
843 #ifdef DEBUG
844 prtab("cftab", perm, 8);
845 #endif
846 init_perm(CF6464, perm, 8, 8);
847
848 /*
849 * SPE table
850 */
851 for (i = 0; i < 48; i++)
852 perm[i] = P32Tr[ExpandTr[i]-1];
853 for (tableno = 0; tableno < 8; tableno++) {
854 for (j = 0; j < 64; j++) {
855 k = (((j >> 0) &01) << 5)|
856 (((j >> 1) &01) << 3)|
857 (((j >> 2) &01) << 2)|
858 (((j >> 3) &01) << 1)|
859 (((j >> 4) &01) << 0)|
860 (((j >> 5) &01) << 4);
861 k = S[tableno][k];
862 k = (((k >> 3)&01) << 0)|
863 (((k >> 2)&01) << 1)|
864 (((k >> 1)&01) << 2)|
865 (((k >> 0)&01) << 3);
866 for (i = 0; i < 32; i++)
867 tmp32[i] = 0;
868 for (i = 0; i < 4; i++)
869 tmp32[4 * tableno + i] = (k >> i) & 01;
870 k = 0;
871 for (i = 24; --i >= 0; )
872 k = (k<<1) | tmp32[perm[i]-1];
873 TO_SIX_BIT(SPE[0][tableno][j], k);
874 k = 0;
875 for (i = 24; --i >= 0; )
876 k = (k<<1) | tmp32[perm[i+24]-1];
877 TO_SIX_BIT(SPE[1][tableno][j], k);
878 }
879 }
880 }
881
882 /*
883 * Initialize "perm" to represent transformation "p", which rearranges
884 * (perhaps with expansion and/or contraction) one packed array of bits
885 * (of size "chars_in" characters) into another array (of size "chars_out"
886 * characters).
887 *
888 * "perm" must be all-zeroes on entry to this routine.
889 */
890 STATIC
891 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
892 int chars_in, int chars_out)
893 {
894 int i, j, k, l;
895
896 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
897 l = p[k] - 1; /* where this bit comes from */
898 if (l < 0)
899 continue; /* output bit is always 0 */
900 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
901 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
902 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
903 if ((j & l) != 0)
904 perm[i][j].b[k>>3] |= 1<<(k&07);
905 }
906 }
907 }
908
909 /*
910 * "setkey" routine (for backwards compatibility)
911 */
912 int
913 setkey(const char *key)
914 {
915 int i, j, k;
916 C_block keyblock;
917
918 for (i = 0; i < 8; i++) {
919 k = 0;
920 for (j = 0; j < 8; j++) {
921 k <<= 1;
922 k |= (unsigned char)*key++;
923 }
924 keyblock.b[i] = k;
925 }
926 return (des_setkey((char *)keyblock.b));
927 }
928
929 /*
930 * "encrypt" routine (for backwards compatibility)
931 */
932 int
933 encrypt(char *block, int flag)
934 {
935 int i, j, k;
936 C_block cblock;
937
938 for (i = 0; i < 8; i++) {
939 k = 0;
940 for (j = 0; j < 8; j++) {
941 k <<= 1;
942 k |= (unsigned char)*block++;
943 }
944 cblock.b[i] = k;
945 }
946 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
947 return (1);
948 for (i = 7; i >= 0; i--) {
949 k = cblock.b[i];
950 for (j = 7; j >= 0; j--) {
951 *--block = k&01;
952 k >>= 1;
953 }
954 }
955 return (0);
956 }
957
958 #ifdef DEBUG
959 STATIC
960 prtab(const char *s, unsigned char *t, int num_rows)
961 {
962 int i, j;
963
964 (void)printf("%s:\n", s);
965 for (i = 0; i < num_rows; i++) {
966 for (j = 0; j < 8; j++) {
967 (void)printf("%3d", t[i*8+j]);
968 }
969 (void)printf("\n");
970 }
971 (void)printf("\n");
972 }
973 #endif
974
975 #if defined(MAIN) || defined(UNIT_TEST)
976 #include <err.h>
977
978 int
979 main(int argc, char *argv[])
980 {
981 if (argc < 2)
982 errx(1, "Usage: %s password [salt]\n", argv[0]);
983
984 printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
985 exit(0);
986 }
987 #endif
988