crypt.c revision 1.32 1 /* $NetBSD: crypt.c,v 1.32 2011/12/27 23:34:13 christos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Tom Truscott.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #if !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.32 2011/12/27 23:34:13 christos Exp $");
41 #endif
42 #endif /* not lint */
43
44 #include <limits.h>
45 #include <pwd.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49 #include <stdio.h>
50 #endif
51
52 #include "crypt.h"
53
54 /*
55 * UNIX password, and DES, encryption.
56 * By Tom Truscott, trt (at) rti.rti.org,
57 * from algorithms by Robert W. Baldwin and James Gillogly.
58 *
59 * References:
60 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62 *
63 * "Password Security: A Case History," R. Morris and Ken Thompson,
64 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65 *
66 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68 */
69
70 /* ===== Configuration ==================== */
71
72 /*
73 * define "MUST_ALIGN" if your compiler cannot load/store
74 * long integers at arbitrary (e.g. odd) memory locations.
75 * (Either that or never pass unaligned addresses to des_cipher!)
76 */
77 #if !defined(__vax__) && !defined(__i386__)
78 #define MUST_ALIGN
79 #endif
80
81 #ifdef CHAR_BITS
82 #if CHAR_BITS != 8
83 #error C_block structure assumes 8 bit characters
84 #endif
85 #endif
86
87 /*
88 * define "B64" to be the declaration for a 64 bit integer.
89 * XXX this feature is currently unused, see "endian" comment below.
90 */
91 #if defined(cray)
92 #define B64 long
93 #endif
94 #if defined(convex)
95 #define B64 long long
96 #endif
97
98 /*
99 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 * little effect on crypt().
102 */
103 #if defined(notdef)
104 #define LARGEDATA
105 #endif
106
107 /* compile with "-DSTATIC=void" when profiling */
108 #ifndef STATIC
109 #define STATIC static void
110 #endif
111
112 /* ==================================== */
113
114 /*
115 * Cipher-block representation (Bob Baldwin):
116 *
117 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
118 * representation is to store one bit per byte in an array of bytes. Bit N of
119 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 * first byte, 9..16 in the second, and so on. The DES spec apparently has
122 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 * the MSB of the first byte. Specifically, the 64-bit input data and key are
125 * converted to LSB format, and the output 64-bit block is converted back into
126 * MSB format.
127 *
128 * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
130 * the computation, the expansion is applied only once, the expanded
131 * representation is maintained during the encryption, and a compression
132 * permutation is applied only at the end. To speed up the S-box lookups,
133 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
135 * most significant ones. The low two bits of each byte are zero. (Thus,
136 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
139 * used, in which the output is the 64 bit result of an S-box lookup which
140 * has been permuted by P and expanded by E, and is ready for use in the next
141 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
143 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
144 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
145 * 8*64*8 = 4K bytes.
146 *
147 * To speed up bit-parallel operations (such as XOR), the 8 byte
148 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 * machines which support it, a 64 bit value "b64". This data structure,
150 * "C_block", has two problems. First, alignment restrictions must be
151 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
152 * the architecture becomes visible.
153 *
154 * The byte-order problem is unfortunate, since on the one hand it is good
155 * to have a machine-independent C_block representation (bits 1..8 in the
156 * first byte, etc.), and on the other hand it is good for the LSB of the
157 * first byte to be the LSB of i0. We cannot have both these things, so we
158 * currently use the "little-endian" representation and avoid any multi-byte
159 * operations that depend on byte order. This largely precludes use of the
160 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
161 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
162 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
164 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 * requires a 128 kilobyte table, so perhaps this is not a big loss.
166 *
167 * Permutation representation (Jim Gillogly):
168 *
169 * A transformation is defined by its effect on each of the 8 bytes of the
170 * 64-bit input. For each byte we give a 64-bit output that has the bits in
171 * the input distributed appropriately. The transformation is then the OR
172 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
173 * each transformation. Unless LARGEDATA is defined, however, a more compact
174 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
176 * is slower but tolerable, particularly for password encryption in which
177 * the SPE transformation is iterated many times. The small tables total 9K
178 * bytes, the large tables total 72K bytes.
179 *
180 * The transformations used are:
181 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 * This is done by collecting the 32 even-numbered bits and applying
183 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 * bits and applying the same transformation. Since there are only
185 * 32 input bits, the IE3264 transformation table is half the size of
186 * the usual table.
187 * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 * This is done by two trivial 48->32 bit compressions to obtain
189 * a 64-bit block (the bit numbering is given in the "CIFP" table)
190 * followed by a 64->64 bit "cleanup" transformation. (It would
191 * be possible to group the bits in the 64-bit block so that 2
192 * identical 32->32 bit transformations could be used instead,
193 * saving a factor of 4 in space and possibly 2 in time, but
194 * byte-ordering and other complications rear their ugly head.
195 * Similar opportunities/problems arise in the key schedule
196 * transforms.)
197 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 * This admittedly baroque 64->64 bit transformation is used to
199 * produce the first code (in 8*(6+2) format) of the key schedule.
200 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 * It would be possible to define 15 more transformations, each
202 * with a different rotation, to generate the entire key schedule.
203 * To save space, however, we instead permute each code into the
204 * next by using a transformation that "undoes" the PC2 permutation,
205 * rotates the code, and then applies PC2. Unfortunately, PC2
206 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 * invertible. We get around that problem by using a modified PC2
208 * which retains the 8 otherwise-lost bits in the unused low-order
209 * bits of each byte. The low-order bits are cleared when the
210 * codes are stored into the key schedule.
211 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 * This is faster than applying PC2ROT[0] twice,
213 *
214 * The Bell Labs "salt" (Bob Baldwin):
215 *
216 * The salting is a simple permutation applied to the 48-bit result of E.
217 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
219 * 16777216 possible values. (The original salt was 12 bits and could not
220 * swap bits 13..24 with 36..48.)
221 *
222 * It is possible, but ugly, to warp the SPE table to account for the salt
223 * permutation. Fortunately, the conditional bit swapping requires only
224 * about four machine instructions and can be done on-the-fly with about an
225 * 8% performance penalty.
226 */
227
228 typedef union {
229 unsigned char b[8];
230 struct {
231 int32_t i0;
232 int32_t i1;
233 } b32;
234 #if defined(B64)
235 B64 b64;
236 #endif
237 } C_block;
238
239 /*
240 * Convert twenty-four-bit long in host-order
241 * to six bits (and 2 low-order zeroes) per char little-endian format.
242 */
243 #define TO_SIX_BIT(rslt, src) { \
244 C_block cvt; \
245 cvt.b[0] = src; src >>= 6; \
246 cvt.b[1] = src; src >>= 6; \
247 cvt.b[2] = src; src >>= 6; \
248 cvt.b[3] = src; \
249 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
250 }
251
252 /*
253 * These macros may someday permit efficient use of 64-bit integers.
254 */
255 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
256 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
258 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
260 #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
261
262 #if defined(LARGEDATA)
263 /* Waste memory like crazy. Also, do permutations in line */
264 #define LGCHUNKBITS 3
265 #define CHUNKBITS (1<<LGCHUNKBITS)
266 #define PERM6464(d,d0,d1,cpp,p) \
267 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
268 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
269 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
270 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
271 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
272 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
273 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
274 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 #define PERM3264(d,d0,d1,cpp,p) \
276 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 #else
281 /* "small data" */
282 #define LGCHUNKBITS 2
283 #define CHUNKBITS (1<<LGCHUNKBITS)
284 #define PERM6464(d,d0,d1,cpp,p) \
285 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 #define PERM3264(d,d0,d1,cpp,p) \
287 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 #endif /* LARGEDATA */
289
290 STATIC init_des(void);
291 STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292 const unsigned char [64], int, int);
293 #ifndef LARGEDATA
294 STATIC permute(const unsigned char *, C_block *, C_block *, int);
295 #endif
296 #ifdef DEBUG
297 STATIC prtab(const char *, unsigned char *, int);
298 #endif
299
300
301 #ifndef LARGEDATA
302 STATIC
303 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
304 {
305 DCL_BLOCK(D,D0,D1);
306 C_block *tp;
307 int t;
308
309 ZERO(D,D0,D1);
310 do {
311 t = *cp++;
312 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 } while (--chars_in > 0);
315 STORE(D,D0,D1,*out);
316 }
317 #endif /* LARGEDATA */
318
319
320 /* ===== (mostly) Standard DES Tables ==================== */
321
322 static const unsigned char IP[] = { /* initial permutation */
323 58, 50, 42, 34, 26, 18, 10, 2,
324 60, 52, 44, 36, 28, 20, 12, 4,
325 62, 54, 46, 38, 30, 22, 14, 6,
326 64, 56, 48, 40, 32, 24, 16, 8,
327 57, 49, 41, 33, 25, 17, 9, 1,
328 59, 51, 43, 35, 27, 19, 11, 3,
329 61, 53, 45, 37, 29, 21, 13, 5,
330 63, 55, 47, 39, 31, 23, 15, 7,
331 };
332
333 /* The final permutation is the inverse of IP - no table is necessary */
334
335 static const unsigned char ExpandTr[] = { /* expansion operation */
336 32, 1, 2, 3, 4, 5,
337 4, 5, 6, 7, 8, 9,
338 8, 9, 10, 11, 12, 13,
339 12, 13, 14, 15, 16, 17,
340 16, 17, 18, 19, 20, 21,
341 20, 21, 22, 23, 24, 25,
342 24, 25, 26, 27, 28, 29,
343 28, 29, 30, 31, 32, 1,
344 };
345
346 static const unsigned char PC1[] = { /* permuted choice table 1 */
347 57, 49, 41, 33, 25, 17, 9,
348 1, 58, 50, 42, 34, 26, 18,
349 10, 2, 59, 51, 43, 35, 27,
350 19, 11, 3, 60, 52, 44, 36,
351
352 63, 55, 47, 39, 31, 23, 15,
353 7, 62, 54, 46, 38, 30, 22,
354 14, 6, 61, 53, 45, 37, 29,
355 21, 13, 5, 28, 20, 12, 4,
356 };
357
358 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
359 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360 };
361
362 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 static const unsigned char PC2[] = { /* permuted choice table 2 */
364 9, 18, 14, 17, 11, 24, 1, 5,
365 22, 25, 3, 28, 15, 6, 21, 10,
366 35, 38, 23, 19, 12, 4, 26, 8,
367 43, 54, 16, 7, 27, 20, 13, 2,
368
369 0, 0, 41, 52, 31, 37, 47, 55,
370 0, 0, 30, 40, 51, 45, 33, 48,
371 0, 0, 44, 49, 39, 56, 34, 53,
372 0, 0, 46, 42, 50, 36, 29, 32,
373 };
374
375 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
376 /* S[1] */
377 { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
378 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
379 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
380 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
381 /* S[2] */
382 { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
383 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
384 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
385 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
386 /* S[3] */
387 { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
388 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
389 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
390 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
391 /* S[4] */
392 { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
393 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
394 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
395 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
396 /* S[5] */
397 { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
398 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
399 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
400 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
401 /* S[6] */
402 { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
403 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
404 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
405 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
406 /* S[7] */
407 { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
408 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
409 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
410 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
411 /* S[8] */
412 { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
413 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
414 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
415 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
416 };
417
418 static const unsigned char P32Tr[] = { /* 32-bit permutation function */
419 16, 7, 20, 21,
420 29, 12, 28, 17,
421 1, 15, 23, 26,
422 5, 18, 31, 10,
423 2, 8, 24, 14,
424 32, 27, 3, 9,
425 19, 13, 30, 6,
426 22, 11, 4, 25,
427 };
428
429 static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
430 1, 2, 3, 4, 17, 18, 19, 20,
431 5, 6, 7, 8, 21, 22, 23, 24,
432 9, 10, 11, 12, 25, 26, 27, 28,
433 13, 14, 15, 16, 29, 30, 31, 32,
434
435 33, 34, 35, 36, 49, 50, 51, 52,
436 37, 38, 39, 40, 53, 54, 55, 56,
437 41, 42, 43, 44, 57, 58, 59, 60,
438 45, 46, 47, 48, 61, 62, 63, 64,
439 };
440
441 static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
442 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443
444
445 /* ===== Tables that are initialized at run time ==================== */
446
447
448 /* Initial key schedule permutation */
449 static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
450
451 /* Subsequent key schedule rotation permutations */
452 static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
453
454 /* Initial permutation/expansion table */
455 static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
456
457 /* Table that combines the S, P, and E operations. */
458 static int32_t SPE[2][8][64];
459
460 /* compressed/interleaved => final permutation table */
461 static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
462
463
464 /* ==================================== */
465
466
467 static C_block constdatablock; /* encryption constant */
468 static char cryptresult[1+4+4+11+1]; /* encrypted result */
469
470 /*
471 * We match the behavior of UFC-crypt on systems where "char" is signed by
472 * default (the majority), regardless of char's signedness on our system.
473 */
474 static inline int
475 ascii_to_bin(char ch)
476 {
477 signed char sch = ch;
478 int retval;
479
480 if (sch >= 'a')
481 retval = sch - ('a' - 38);
482 else if (sch >= 'A')
483 retval = sch - ('A' - 12);
484 else
485 retval = sch - '.';
486
487 return retval & 0x3f;
488 }
489
490 /*
491 * When we choose to "support" invalid salts, nevertheless disallow those
492 * containing characters that would violate the passwd file format.
493 */
494 static inline int
495 ascii_is_unsafe(char ch)
496 {
497 return !ch || ch == '\n' || ch == ':';
498 }
499
500 /*
501 * Return a pointer to static data consisting of the "setting"
502 * followed by an encryption produced by the "key" and "setting".
503 */
504 char *__crypt(const char *, const char *);
505 char *
506 __crypt(const char *key, const char *setting)
507 {
508 char *encp;
509 int32_t i;
510 int t;
511 int32_t salt;
512 int num_iter, salt_size;
513 C_block keyblock, rsltblock;
514
515 /* Non-DES encryption schemes hook in here. */
516 if (setting[0] == _PASSWORD_NONDES) {
517 switch (setting[1]) {
518 case '2':
519 return (__bcrypt(key, setting));
520 case 's':
521 return (__crypt_sha1(key, setting));
522 case '1':
523 default:
524 return (__md5crypt(key, setting));
525 }
526 }
527
528 for (i = 0; i < 8; i++) {
529 if ((t = 2*(unsigned char)(*key)) != 0)
530 key++;
531 keyblock.b[i] = t;
532 }
533 if (des_setkey((char *)keyblock.b))
534 return (NULL);
535
536 encp = &cryptresult[0];
537 switch (*setting) {
538 case _PASSWORD_EFMT1:
539 /*
540 * Involve the rest of the password 8 characters at a time.
541 */
542 while (*key) {
543 if (des_cipher((char *)(void *)&keyblock,
544 (char *)(void *)&keyblock, 0L, 1))
545 return (NULL);
546 for (i = 0; i < 8; i++) {
547 if ((t = 2*(unsigned char)(*key)) != 0)
548 key++;
549 keyblock.b[i] ^= t;
550 }
551 if (des_setkey((char *)keyblock.b))
552 return (NULL);
553 }
554
555 *encp++ = *setting++;
556
557 /* get iteration count */
558 num_iter = 0;
559 for (i = 4; --i >= 0; ) {
560 int value = ascii_to_bin(setting[i]);
561 if (itoa64[value] != setting[i])
562 return NULL;
563 encp[i] = setting[i];
564 num_iter = (num_iter << 6) | value;
565 }
566 if (num_iter == 0)
567 return NULL;
568 setting += 4;
569 encp += 4;
570 salt_size = 4;
571 break;
572 default:
573 num_iter = 25;
574 salt_size = 2;
575 if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
576 return NULL;
577 }
578
579 salt = 0;
580 for (i = salt_size; --i >= 0; ) {
581 int value = ascii_to_bin(setting[i]);
582 if (salt_size > 2 && itoa64[value] != setting[i])
583 return NULL;
584 encp[i] = setting[i];
585 salt = (salt << 6) | value;
586 }
587 encp += salt_size;
588 if (des_cipher((char *)(void *)&constdatablock,
589 (char *)(void *)&rsltblock, salt, num_iter))
590 return (NULL);
591
592 /*
593 * Encode the 64 cipher bits as 11 ascii characters.
594 */
595 i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
596 rsltblock.b[2];
597 encp[3] = itoa64[i&0x3f]; i >>= 6;
598 encp[2] = itoa64[i&0x3f]; i >>= 6;
599 encp[1] = itoa64[i&0x3f]; i >>= 6;
600 encp[0] = itoa64[i]; encp += 4;
601 i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
602 rsltblock.b[5];
603 encp[3] = itoa64[i&0x3f]; i >>= 6;
604 encp[2] = itoa64[i&0x3f]; i >>= 6;
605 encp[1] = itoa64[i&0x3f]; i >>= 6;
606 encp[0] = itoa64[i]; encp += 4;
607 i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
608 encp[2] = itoa64[i&0x3f]; i >>= 6;
609 encp[1] = itoa64[i&0x3f]; i >>= 6;
610 encp[0] = itoa64[i];
611
612 encp[3] = 0;
613
614 return (cryptresult);
615 }
616
617 char *
618 crypt(const char *key, const char *salt)
619 {
620 char *res = __crypt(key, salt);
621 if (res)
622 return res;
623 /* How do I handle errors ? Return "*0" or "*1" */
624 return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
625 }
626
627 /*
628 * The Key Schedule, filled in by des_setkey() or setkey().
629 */
630 #define KS_SIZE 16
631 static C_block KS[KS_SIZE];
632
633 /*
634 * Set up the key schedule from the key.
635 */
636 int
637 des_setkey(const char *key)
638 {
639 DCL_BLOCK(K, K0, K1);
640 C_block *help, *ptabp;
641 int i;
642 static int des_ready = 0;
643
644 if (!des_ready) {
645 init_des();
646 des_ready = 1;
647 }
648
649 PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
650 help = &KS[0];
651 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
652 for (i = 1; i < 16; i++) {
653 help++;
654 STORE(K,K0,K1,*help);
655 ptabp = (C_block *)PC2ROT[Rotates[i]-1];
656 PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
657 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
658 }
659 return (0);
660 }
661
662 /*
663 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
664 * iterations of DES, using the given 24-bit salt and the pre-computed key
665 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
666 *
667 * NOTE: the performance of this routine is critically dependent on your
668 * compiler and machine architecture.
669 */
670 int
671 des_cipher(const char *in, char *out, long salt, int num_iter)
672 {
673 /* variables that we want in registers, most important first */
674 #if defined(pdp11)
675 int j;
676 #endif
677 int32_t L0, L1, R0, R1, k;
678 C_block *kp;
679 int ks_inc, loop_count;
680 C_block B;
681
682 L0 = salt;
683 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
684
685 #if defined(__vax__) || defined(pdp11)
686 salt = ~salt; /* "x &~ y" is faster than "x & y". */
687 #define SALT (~salt)
688 #else
689 #define SALT salt
690 #endif
691
692 #if defined(MUST_ALIGN)
693 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
694 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
695 LOAD(L,L0,L1,B);
696 #else
697 LOAD(L,L0,L1,*(const C_block *)in);
698 #endif
699 LOADREG(R,R0,R1,L,L0,L1);
700 L0 &= 0x55555555L;
701 L1 &= 0x55555555L;
702 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
703 R0 &= 0xaaaaaaaaL;
704 R1 = (R1 >> 1) & 0x55555555L;
705 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
706 STORE(L,L0,L1,B);
707 PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
708 PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
709
710 if (num_iter >= 0)
711 { /* encryption */
712 kp = &KS[0];
713 ks_inc = sizeof(*kp);
714 }
715 else
716 { /* decryption */
717 num_iter = -num_iter;
718 kp = &KS[KS_SIZE-1];
719 ks_inc = -(long)sizeof(*kp);
720 }
721
722 while (--num_iter >= 0) {
723 loop_count = 8;
724 do {
725
726 #define SPTAB(t, i) \
727 (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
728 #if defined(gould)
729 /* use this if B.b[i] is evaluated just once ... */
730 #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
731 #else
732 #if defined(pdp11)
733 /* use this if your "long" int indexing is slow */
734 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
735 #else
736 /* use this if "k" is allocated to a register ... */
737 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
738 #endif
739 #endif
740
741 #define CRUNCH(p0, p1, q0, q1) \
742 k = (q0 ^ q1) & SALT; \
743 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
744 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
745 kp = (C_block *)((char *)kp+ks_inc); \
746 \
747 DOXOR(p0, p1, 0); \
748 DOXOR(p0, p1, 1); \
749 DOXOR(p0, p1, 2); \
750 DOXOR(p0, p1, 3); \
751 DOXOR(p0, p1, 4); \
752 DOXOR(p0, p1, 5); \
753 DOXOR(p0, p1, 6); \
754 DOXOR(p0, p1, 7);
755
756 CRUNCH(L0, L1, R0, R1);
757 CRUNCH(R0, R1, L0, L1);
758 } while (--loop_count != 0);
759 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
760
761
762 /* swap L and R */
763 L0 ^= R0; L1 ^= R1;
764 R0 ^= L0; R1 ^= L1;
765 L0 ^= R0; L1 ^= R1;
766 }
767
768 /* store the encrypted (or decrypted) result */
769 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
770 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
771 STORE(L,L0,L1,B);
772 PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
773 #if defined(MUST_ALIGN)
774 STORE(L,L0,L1,B);
775 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
776 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
777 #else
778 STORE(L,L0,L1,*(C_block *)out);
779 #endif
780 return (0);
781 }
782
783
784 /*
785 * Initialize various tables. This need only be done once. It could even be
786 * done at compile time, if the compiler were capable of that sort of thing.
787 */
788 STATIC
789 init_des(void)
790 {
791 int i, j;
792 int32_t k;
793 int tableno;
794 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
795
796 /*
797 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
798 */
799 for (i = 0; i < 64; i++)
800 perm[i] = 0;
801 for (i = 0; i < 64; i++) {
802 if ((k = PC2[i]) == 0)
803 continue;
804 k += Rotates[0]-1;
805 if ((k%28) < Rotates[0]) k -= 28;
806 k = PC1[k];
807 if (k > 0) {
808 k--;
809 k = (k|07) - (k&07);
810 k++;
811 }
812 perm[i] = k;
813 }
814 #ifdef DEBUG
815 prtab("pc1tab", perm, 8);
816 #endif
817 init_perm(PC1ROT, perm, 8, 8);
818
819 /*
820 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
821 */
822 for (j = 0; j < 2; j++) {
823 unsigned char pc2inv[64];
824 for (i = 0; i < 64; i++)
825 perm[i] = pc2inv[i] = 0;
826 for (i = 0; i < 64; i++) {
827 if ((k = PC2[i]) == 0)
828 continue;
829 pc2inv[k-1] = i+1;
830 }
831 for (i = 0; i < 64; i++) {
832 if ((k = PC2[i]) == 0)
833 continue;
834 k += j;
835 if ((k%28) <= j) k -= 28;
836 perm[i] = pc2inv[k];
837 }
838 #ifdef DEBUG
839 prtab("pc2tab", perm, 8);
840 #endif
841 init_perm(PC2ROT[j], perm, 8, 8);
842 }
843
844 /*
845 * Bit reverse, then initial permutation, then expansion.
846 */
847 for (i = 0; i < 8; i++) {
848 for (j = 0; j < 8; j++) {
849 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
850 if (k > 32)
851 k -= 32;
852 else if (k > 0)
853 k--;
854 if (k > 0) {
855 k--;
856 k = (k|07) - (k&07);
857 k++;
858 }
859 perm[i*8+j] = k;
860 }
861 }
862 #ifdef DEBUG
863 prtab("ietab", perm, 8);
864 #endif
865 init_perm(IE3264, perm, 4, 8);
866
867 /*
868 * Compression, then final permutation, then bit reverse.
869 */
870 for (i = 0; i < 64; i++) {
871 k = IP[CIFP[i]-1];
872 if (k > 0) {
873 k--;
874 k = (k|07) - (k&07);
875 k++;
876 }
877 perm[k-1] = i+1;
878 }
879 #ifdef DEBUG
880 prtab("cftab", perm, 8);
881 #endif
882 init_perm(CF6464, perm, 8, 8);
883
884 /*
885 * SPE table
886 */
887 for (i = 0; i < 48; i++)
888 perm[i] = P32Tr[ExpandTr[i]-1];
889 for (tableno = 0; tableno < 8; tableno++) {
890 for (j = 0; j < 64; j++) {
891 k = (((j >> 0) &01) << 5)|
892 (((j >> 1) &01) << 3)|
893 (((j >> 2) &01) << 2)|
894 (((j >> 3) &01) << 1)|
895 (((j >> 4) &01) << 0)|
896 (((j >> 5) &01) << 4);
897 k = S[tableno][k];
898 k = (((k >> 3)&01) << 0)|
899 (((k >> 2)&01) << 1)|
900 (((k >> 1)&01) << 2)|
901 (((k >> 0)&01) << 3);
902 for (i = 0; i < 32; i++)
903 tmp32[i] = 0;
904 for (i = 0; i < 4; i++)
905 tmp32[4 * tableno + i] = (k >> i) & 01;
906 k = 0;
907 for (i = 24; --i >= 0; )
908 k = (k<<1) | tmp32[perm[i]-1];
909 TO_SIX_BIT(SPE[0][tableno][j], k);
910 k = 0;
911 for (i = 24; --i >= 0; )
912 k = (k<<1) | tmp32[perm[i+24]-1];
913 TO_SIX_BIT(SPE[1][tableno][j], k);
914 }
915 }
916 }
917
918 /*
919 * Initialize "perm" to represent transformation "p", which rearranges
920 * (perhaps with expansion and/or contraction) one packed array of bits
921 * (of size "chars_in" characters) into another array (of size "chars_out"
922 * characters).
923 *
924 * "perm" must be all-zeroes on entry to this routine.
925 */
926 STATIC
927 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
928 int chars_in, int chars_out)
929 {
930 int i, j, k, l;
931
932 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
933 l = p[k] - 1; /* where this bit comes from */
934 if (l < 0)
935 continue; /* output bit is always 0 */
936 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
937 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
938 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
939 if ((j & l) != 0)
940 perm[i][j].b[k>>3] |= 1<<(k&07);
941 }
942 }
943 }
944
945 /*
946 * "setkey" routine (for backwards compatibility)
947 */
948 int
949 setkey(const char *key)
950 {
951 int i, j, k;
952 C_block keyblock;
953
954 for (i = 0; i < 8; i++) {
955 k = 0;
956 for (j = 0; j < 8; j++) {
957 k <<= 1;
958 k |= (unsigned char)*key++;
959 }
960 keyblock.b[i] = k;
961 }
962 return (des_setkey((char *)keyblock.b));
963 }
964
965 /*
966 * "encrypt" routine (for backwards compatibility)
967 */
968 int
969 encrypt(char *block, int flag)
970 {
971 int i, j, k;
972 C_block cblock;
973
974 for (i = 0; i < 8; i++) {
975 k = 0;
976 for (j = 0; j < 8; j++) {
977 k <<= 1;
978 k |= (unsigned char)*block++;
979 }
980 cblock.b[i] = k;
981 }
982 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
983 return (1);
984 for (i = 7; i >= 0; i--) {
985 k = cblock.b[i];
986 for (j = 7; j >= 0; j--) {
987 *--block = k&01;
988 k >>= 1;
989 }
990 }
991 return (0);
992 }
993
994 #ifdef DEBUG
995 STATIC
996 prtab(const char *s, unsigned char *t, int num_rows)
997 {
998 int i, j;
999
1000 (void)printf("%s:\n", s);
1001 for (i = 0; i < num_rows; i++) {
1002 for (j = 0; j < 8; j++) {
1003 (void)printf("%3d", t[i*8+j]);
1004 }
1005 (void)printf("\n");
1006 }
1007 (void)printf("\n");
1008 }
1009 #endif
1010
1011 #if defined(MAIN) || defined(UNIT_TEST)
1012 #include <err.h>
1013
1014 int
1015 main(int argc, char *argv[])
1016 {
1017 if (argc < 2)
1018 errx(1, "Usage: %s password [salt]\n", argv[0]);
1019
1020 printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1021 exit(0);
1022 }
1023 #endif
1024