crypt.c revision 1.4 1 /*
2 * Copyright (c) 1989 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Tom Truscott.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 /*static char sccsid[] = "from: @(#)crypt.c 5.11 (Berkeley) 6/25/91";*/
39 static char rcsid[] = "$Id: crypt.c,v 1.4 1994/12/20 16:00:32 cgd Exp $";
40 #endif /* LIBC_SCCS and not lint */
41
42 #include <unistd.h>
43 #include <limits.h>
44 #include <pwd.h>
45
46 /*
47 * UNIX password, and DES, encryption.
48 * By Tom Truscott, trt (at) rti.rti.org,
49 * from algorithms by Robert W. Baldwin and James Gillogly.
50 *
51 * References:
52 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
53 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
54 *
55 * "Password Security: A Case History," R. Morris and Ken Thompson,
56 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
57 *
58 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
59 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
60 */
61
62 /* ===== Configuration ==================== */
63
64 /*
65 * define "MUST_ALIGN" if your compiler cannot load/store
66 * long integers at arbitrary (e.g. odd) memory locations.
67 * (Either that or never pass unaligned addresses to des_cipher!)
68 */
69 #if !defined(vax)
70 #define MUST_ALIGN
71 #endif
72
73 #ifdef CHAR_BITS
74 #if CHAR_BITS != 8
75 #error C_block structure assumes 8 bit characters
76 #endif
77 #endif
78
79 /*
80 * define "B64" to be the declaration for a 64 bit integer.
81 * XXX this feature is currently unused, see "endian" comment below.
82 */
83 #if defined(cray)
84 #define B64 long
85 #endif
86 #if defined(convex)
87 #define B64 long long
88 #endif
89
90 /*
91 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
92 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
93 * little effect on crypt().
94 */
95 #if defined(notdef)
96 #define LARGEDATA
97 #endif
98
99 /* compile with "-DSTATIC=int" when profiling */
100 #ifndef STATIC
101 #define STATIC static
102 #endif
103 STATIC init_des(), init_perm(), permute();
104 #ifdef DEBUG
105 STATIC prtab();
106 #endif
107
108 /* ==================================== */
109
110 /*
111 * Cipher-block representation (Bob Baldwin):
112 *
113 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
114 * representation is to store one bit per byte in an array of bytes. Bit N of
115 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
116 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
117 * first byte, 9..16 in the second, and so on. The DES spec apparently has
118 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
119 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
120 * the MSB of the first byte. Specifically, the 64-bit input data and key are
121 * converted to LSB format, and the output 64-bit block is converted back into
122 * MSB format.
123 *
124 * DES operates internally on groups of 32 bits which are expanded to 48 bits
125 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
126 * the computation, the expansion is applied only once, the expanded
127 * representation is maintained during the encryption, and a compression
128 * permutation is applied only at the end. To speed up the S-box lookups,
129 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
130 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
131 * most significant ones. The low two bits of each byte are zero. (Thus,
132 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
133 * first byte in the eight byte representation, bit 2 of the 48 bit value is
134 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
135 * used, in which the output is the 64 bit result of an S-box lookup which
136 * has been permuted by P and expanded by E, and is ready for use in the next
137 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
138 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
139 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
140 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
141 * 8*64*8 = 4K bytes.
142 *
143 * To speed up bit-parallel operations (such as XOR), the 8 byte
144 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
145 * machines which support it, a 64 bit value "b64". This data structure,
146 * "C_block", has two problems. First, alignment restrictions must be
147 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
148 * the architecture becomes visible.
149 *
150 * The byte-order problem is unfortunate, since on the one hand it is good
151 * to have a machine-independent C_block representation (bits 1..8 in the
152 * first byte, etc.), and on the other hand it is good for the LSB of the
153 * first byte to be the LSB of i0. We cannot have both these things, so we
154 * currently use the "little-endian" representation and avoid any multi-byte
155 * operations that depend on byte order. This largely precludes use of the
156 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
157 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
158 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
159 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
160 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
161 * requires a 128 kilobyte table, so perhaps this is not a big loss.
162 *
163 * Permutation representation (Jim Gillogly):
164 *
165 * A transformation is defined by its effect on each of the 8 bytes of the
166 * 64-bit input. For each byte we give a 64-bit output that has the bits in
167 * the input distributed appropriately. The transformation is then the OR
168 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
169 * each transformation. Unless LARGEDATA is defined, however, a more compact
170 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
171 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
172 * is slower but tolerable, particularly for password encryption in which
173 * the SPE transformation is iterated many times. The small tables total 9K
174 * bytes, the large tables total 72K bytes.
175 *
176 * The transformations used are:
177 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
178 * This is done by collecting the 32 even-numbered bits and applying
179 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
180 * bits and applying the same transformation. Since there are only
181 * 32 input bits, the IE3264 transformation table is half the size of
182 * the usual table.
183 * CF6464: Compression, final permutation, and LSB->MSB conversion.
184 * This is done by two trivial 48->32 bit compressions to obtain
185 * a 64-bit block (the bit numbering is given in the "CIFP" table)
186 * followed by a 64->64 bit "cleanup" transformation. (It would
187 * be possible to group the bits in the 64-bit block so that 2
188 * identical 32->32 bit transformations could be used instead,
189 * saving a factor of 4 in space and possibly 2 in time, but
190 * byte-ordering and other complications rear their ugly head.
191 * Similar opportunities/problems arise in the key schedule
192 * transforms.)
193 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
194 * This admittedly baroque 64->64 bit transformation is used to
195 * produce the first code (in 8*(6+2) format) of the key schedule.
196 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
197 * It would be possible to define 15 more transformations, each
198 * with a different rotation, to generate the entire key schedule.
199 * To save space, however, we instead permute each code into the
200 * next by using a transformation that "undoes" the PC2 permutation,
201 * rotates the code, and then applies PC2. Unfortunately, PC2
202 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
203 * invertible. We get around that problem by using a modified PC2
204 * which retains the 8 otherwise-lost bits in the unused low-order
205 * bits of each byte. The low-order bits are cleared when the
206 * codes are stored into the key schedule.
207 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
208 * This is faster than applying PC2ROT[0] twice,
209 *
210 * The Bell Labs "salt" (Bob Baldwin):
211 *
212 * The salting is a simple permutation applied to the 48-bit result of E.
213 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
214 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
215 * 16777216 possible values. (The original salt was 12 bits and could not
216 * swap bits 13..24 with 36..48.)
217 *
218 * It is possible, but ugly, to warp the SPE table to account for the salt
219 * permutation. Fortunately, the conditional bit swapping requires only
220 * about four machine instructions and can be done on-the-fly with about an
221 * 8% performance penalty.
222 */
223
224 typedef union {
225 unsigned char b[8];
226 struct {
227 int32_t i0;
228 int32_t i1;
229 } b32;
230 #if defined(B64)
231 B64 b64;
232 #endif
233 } C_block;
234
235 /*
236 * Convert twenty-four-bit long in host-order
237 * to six bits (and 2 low-order zeroes) per char little-endian format.
238 */
239 #define TO_SIX_BIT(rslt, src) { \
240 C_block cvt; \
241 cvt.b[0] = src; src >>= 6; \
242 cvt.b[1] = src; src >>= 6; \
243 cvt.b[2] = src; src >>= 6; \
244 cvt.b[3] = src; \
245 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
246 }
247
248 /*
249 * These macros may someday permit efficient use of 64-bit integers.
250 */
251 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
252 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
253 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
254 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
255 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
256 #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
257
258 #if defined(LARGEDATA)
259 /* Waste memory like crazy. Also, do permutations in line */
260 #define LGCHUNKBITS 3
261 #define CHUNKBITS (1<<LGCHUNKBITS)
262 #define PERM6464(d,d0,d1,cpp,p) \
263 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
264 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
265 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
266 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
267 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
268 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
269 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
270 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
271 #define PERM3264(d,d0,d1,cpp,p) \
272 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
273 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
274 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
275 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
276 #else
277 /* "small data" */
278 #define LGCHUNKBITS 2
279 #define CHUNKBITS (1<<LGCHUNKBITS)
280 #define PERM6464(d,d0,d1,cpp,p) \
281 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
282 #define PERM3264(d,d0,d1,cpp,p) \
283 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
284
285 STATIC
286 permute(cp, out, p, chars_in)
287 unsigned char *cp;
288 C_block *out;
289 register C_block *p;
290 int chars_in;
291 {
292 register DCL_BLOCK(D,D0,D1);
293 register C_block *tp;
294 register int t;
295
296 ZERO(D,D0,D1);
297 do {
298 t = *cp++;
299 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
300 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
301 } while (--chars_in > 0);
302 STORE(D,D0,D1,*out);
303 }
304 #endif /* LARGEDATA */
305
306
307 /* ===== (mostly) Standard DES Tables ==================== */
308
309 static unsigned char IP[] = { /* initial permutation */
310 58, 50, 42, 34, 26, 18, 10, 2,
311 60, 52, 44, 36, 28, 20, 12, 4,
312 62, 54, 46, 38, 30, 22, 14, 6,
313 64, 56, 48, 40, 32, 24, 16, 8,
314 57, 49, 41, 33, 25, 17, 9, 1,
315 59, 51, 43, 35, 27, 19, 11, 3,
316 61, 53, 45, 37, 29, 21, 13, 5,
317 63, 55, 47, 39, 31, 23, 15, 7,
318 };
319
320 /* The final permutation is the inverse of IP - no table is necessary */
321
322 static unsigned char ExpandTr[] = { /* expansion operation */
323 32, 1, 2, 3, 4, 5,
324 4, 5, 6, 7, 8, 9,
325 8, 9, 10, 11, 12, 13,
326 12, 13, 14, 15, 16, 17,
327 16, 17, 18, 19, 20, 21,
328 20, 21, 22, 23, 24, 25,
329 24, 25, 26, 27, 28, 29,
330 28, 29, 30, 31, 32, 1,
331 };
332
333 static unsigned char PC1[] = { /* permuted choice table 1 */
334 57, 49, 41, 33, 25, 17, 9,
335 1, 58, 50, 42, 34, 26, 18,
336 10, 2, 59, 51, 43, 35, 27,
337 19, 11, 3, 60, 52, 44, 36,
338
339 63, 55, 47, 39, 31, 23, 15,
340 7, 62, 54, 46, 38, 30, 22,
341 14, 6, 61, 53, 45, 37, 29,
342 21, 13, 5, 28, 20, 12, 4,
343 };
344
345 static unsigned char Rotates[] = { /* PC1 rotation schedule */
346 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
347 };
348
349 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
350 static unsigned char PC2[] = { /* permuted choice table 2 */
351 9, 18, 14, 17, 11, 24, 1, 5,
352 22, 25, 3, 28, 15, 6, 21, 10,
353 35, 38, 23, 19, 12, 4, 26, 8,
354 43, 54, 16, 7, 27, 20, 13, 2,
355
356 0, 0, 41, 52, 31, 37, 47, 55,
357 0, 0, 30, 40, 51, 45, 33, 48,
358 0, 0, 44, 49, 39, 56, 34, 53,
359 0, 0, 46, 42, 50, 36, 29, 32,
360 };
361
362 static unsigned char S[8][64] = { /* 48->32 bit substitution tables */
363 /* S[1] */
364 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
365 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
366 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
367 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
368 /* S[2] */
369 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
370 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
371 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
372 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
373 /* S[3] */
374 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
375 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
376 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
377 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
378 /* S[4] */
379 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
380 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
381 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
382 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
383 /* S[5] */
384 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
385 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
386 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
387 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
388 /* S[6] */
389 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
390 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
391 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
392 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
393 /* S[7] */
394 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
395 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
396 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
397 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
398 /* S[8] */
399 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
400 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
401 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
402 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
403 };
404
405 static unsigned char P32Tr[] = { /* 32-bit permutation function */
406 16, 7, 20, 21,
407 29, 12, 28, 17,
408 1, 15, 23, 26,
409 5, 18, 31, 10,
410 2, 8, 24, 14,
411 32, 27, 3, 9,
412 19, 13, 30, 6,
413 22, 11, 4, 25,
414 };
415
416 static unsigned char CIFP[] = { /* compressed/interleaved permutation */
417 1, 2, 3, 4, 17, 18, 19, 20,
418 5, 6, 7, 8, 21, 22, 23, 24,
419 9, 10, 11, 12, 25, 26, 27, 28,
420 13, 14, 15, 16, 29, 30, 31, 32,
421
422 33, 34, 35, 36, 49, 50, 51, 52,
423 37, 38, 39, 40, 53, 54, 55, 56,
424 41, 42, 43, 44, 57, 58, 59, 60,
425 45, 46, 47, 48, 61, 62, 63, 64,
426 };
427
428 static unsigned char itoa64[] = /* 0..63 => ascii-64 */
429 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
430
431
432 /* ===== Tables that are initialized at run time ==================== */
433
434
435 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
436
437 /* Initial key schedule permutation */
438 static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
439
440 /* Subsequent key schedule rotation permutations */
441 static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
442
443 /* Initial permutation/expansion table */
444 static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
445
446 /* Table that combines the S, P, and E operations. */
447 static int32_t SPE[2][8][64];
448
449 /* compressed/interleaved => final permutation table */
450 static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
451
452
453 /* ==================================== */
454
455
456 static C_block constdatablock; /* encryption constant */
457 static char cryptresult[1+4+4+11+1]; /* encrypted result */
458
459 /*
460 * Return a pointer to static data consisting of the "setting"
461 * followed by an encryption produced by the "key" and "setting".
462 */
463 char *
464 crypt(key, setting)
465 register const char *key;
466 register const char *setting;
467 {
468 register char *encp;
469 register int32_t i;
470 register int t;
471 int32_t salt;
472 int num_iter, salt_size;
473 C_block keyblock, rsltblock;
474
475 for (i = 0; i < 8; i++) {
476 if ((t = 2*(unsigned char)(*key)) != 0)
477 key++;
478 keyblock.b[i] = t;
479 }
480 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
481 return (NULL);
482
483 encp = &cryptresult[0];
484 switch (*setting) {
485 case _PASSWORD_EFMT1:
486 /*
487 * Involve the rest of the password 8 characters at a time.
488 */
489 while (*key) {
490 if (des_cipher((char *)&keyblock,
491 (char *)&keyblock, 0L, 1))
492 return (NULL);
493 for (i = 0; i < 8; i++) {
494 if ((t = 2*(unsigned char)(*key)) != 0)
495 key++;
496 keyblock.b[i] ^= t;
497 }
498 if (des_setkey((char *)keyblock.b))
499 return (NULL);
500 }
501
502 *encp++ = *setting++;
503
504 /* get iteration count */
505 num_iter = 0;
506 for (i = 4; --i >= 0; ) {
507 if ((t = (unsigned char)setting[i]) == '\0')
508 t = '.';
509 encp[i] = t;
510 num_iter = (num_iter<<6) | a64toi[t];
511 }
512 setting += 4;
513 encp += 4;
514 salt_size = 4;
515 break;
516 default:
517 num_iter = 25;
518 salt_size = 2;
519 }
520
521 salt = 0;
522 for (i = salt_size; --i >= 0; ) {
523 if ((t = (unsigned char)setting[i]) == '\0')
524 t = '.';
525 encp[i] = t;
526 salt = (salt<<6) | a64toi[t];
527 }
528 encp += salt_size;
529 if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
530 salt, num_iter))
531 return (NULL);
532
533 /*
534 * Encode the 64 cipher bits as 11 ascii characters.
535 */
536 i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
537 rsltblock.b[2];
538 encp[3] = itoa64[i&0x3f]; i >>= 6;
539 encp[2] = itoa64[i&0x3f]; i >>= 6;
540 encp[1] = itoa64[i&0x3f]; i >>= 6;
541 encp[0] = itoa64[i]; encp += 4;
542 i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
543 rsltblock.b[5];
544 encp[3] = itoa64[i&0x3f]; i >>= 6;
545 encp[2] = itoa64[i&0x3f]; i >>= 6;
546 encp[1] = itoa64[i&0x3f]; i >>= 6;
547 encp[0] = itoa64[i]; encp += 4;
548 i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
549 encp[2] = itoa64[i&0x3f]; i >>= 6;
550 encp[1] = itoa64[i&0x3f]; i >>= 6;
551 encp[0] = itoa64[i];
552
553 encp[3] = 0;
554
555 return (cryptresult);
556 }
557
558
559 /*
560 * The Key Schedule, filled in by des_setkey() or setkey().
561 */
562 #define KS_SIZE 16
563 static C_block KS[KS_SIZE];
564
565 /*
566 * Set up the key schedule from the key.
567 */
568 des_setkey(key)
569 register const char *key;
570 {
571 register DCL_BLOCK(K, K0, K1);
572 register C_block *ptabp;
573 register int i;
574 static int des_ready = 0;
575
576 if (!des_ready) {
577 init_des();
578 des_ready = 1;
579 }
580
581 PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
582 key = (char *)&KS[0];
583 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
584 for (i = 1; i < 16; i++) {
585 key += sizeof(C_block);
586 STORE(K,K0,K1,*(C_block *)key);
587 ptabp = (C_block *)PC2ROT[Rotates[i]-1];
588 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
589 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
590 }
591 return (0);
592 }
593
594 /*
595 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
596 * iterations of DES, using the the given 24-bit salt and the pre-computed key
597 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
598 *
599 * NOTE: the performance of this routine is critically dependent on your
600 * compiler and machine architecture.
601 */
602 des_cipher(in, out, salt, num_iter)
603 const char *in;
604 char *out;
605 long salt;
606 int num_iter;
607 {
608 /* variables that we want in registers, most important first */
609 #if defined(pdp11)
610 register int j;
611 #endif
612 register int32_t L0, L1, R0, R1, k;
613 register C_block *kp;
614 register int ks_inc, loop_count;
615 C_block B;
616
617 L0 = salt;
618 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
619
620 #if defined(vax) || defined(pdp11)
621 salt = ~salt; /* "x &~ y" is faster than "x & y". */
622 #define SALT (~salt)
623 #else
624 #define SALT salt
625 #endif
626
627 #if defined(MUST_ALIGN)
628 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
629 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
630 LOAD(L,L0,L1,B);
631 #else
632 LOAD(L,L0,L1,*(C_block *)in);
633 #endif
634 LOADREG(R,R0,R1,L,L0,L1);
635 L0 &= 0x55555555L;
636 L1 &= 0x55555555L;
637 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
638 R0 &= 0xaaaaaaaaL;
639 R1 = (R1 >> 1) & 0x55555555L;
640 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
641 STORE(L,L0,L1,B);
642 PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
643 PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
644
645 if (num_iter >= 0)
646 { /* encryption */
647 kp = &KS[0];
648 ks_inc = sizeof(*kp);
649 }
650 else
651 { /* decryption */
652 num_iter = -num_iter;
653 kp = &KS[KS_SIZE-1];
654 ks_inc = -(long)sizeof(*kp);
655 }
656
657 while (--num_iter >= 0) {
658 loop_count = 8;
659 do {
660
661 #define SPTAB(t, i) \
662 (*(int32_t*)((unsigned char *)t + i*(sizeof(int32_t)/4)))
663 #if defined(gould)
664 /* use this if B.b[i] is evaluated just once ... */
665 #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
666 #else
667 #if defined(pdp11)
668 /* use this if your "long" int indexing is slow */
669 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
670 #else
671 /* use this if "k" is allocated to a register ... */
672 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
673 #endif
674 #endif
675
676 #define CRUNCH(p0, p1, q0, q1) \
677 k = (q0 ^ q1) & SALT; \
678 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
679 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
680 kp = (C_block *)((char *)kp+ks_inc); \
681 \
682 DOXOR(p0, p1, 0); \
683 DOXOR(p0, p1, 1); \
684 DOXOR(p0, p1, 2); \
685 DOXOR(p0, p1, 3); \
686 DOXOR(p0, p1, 4); \
687 DOXOR(p0, p1, 5); \
688 DOXOR(p0, p1, 6); \
689 DOXOR(p0, p1, 7);
690
691 CRUNCH(L0, L1, R0, R1);
692 CRUNCH(R0, R1, L0, L1);
693 } while (--loop_count != 0);
694 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
695
696
697 /* swap L and R */
698 L0 ^= R0; L1 ^= R1;
699 R0 ^= L0; R1 ^= L1;
700 L0 ^= R0; L1 ^= R1;
701 }
702
703 /* store the encrypted (or decrypted) result */
704 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
705 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
706 STORE(L,L0,L1,B);
707 PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
708 #if defined(MUST_ALIGN)
709 STORE(L,L0,L1,B);
710 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
711 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
712 #else
713 STORE(L,L0,L1,*(C_block *)out);
714 #endif
715 return (0);
716 }
717
718
719 /*
720 * Initialize various tables. This need only be done once. It could even be
721 * done at compile time, if the compiler were capable of that sort of thing.
722 */
723 STATIC
724 init_des()
725 {
726 register int i, j;
727 register int32_t k;
728 register int tableno;
729 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
730
731 /*
732 * table that converts chars "./0-9A-Za-z"to integers 0-63.
733 */
734 for (i = 0; i < 64; i++)
735 a64toi[itoa64[i]] = i;
736
737 /*
738 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
739 */
740 for (i = 0; i < 64; i++)
741 perm[i] = 0;
742 for (i = 0; i < 64; i++) {
743 if ((k = PC2[i]) == 0)
744 continue;
745 k += Rotates[0]-1;
746 if ((k%28) < Rotates[0]) k -= 28;
747 k = PC1[k];
748 if (k > 0) {
749 k--;
750 k = (k|07) - (k&07);
751 k++;
752 }
753 perm[i] = k;
754 }
755 #ifdef DEBUG
756 prtab("pc1tab", perm, 8);
757 #endif
758 init_perm(PC1ROT, perm, 8, 8);
759
760 /*
761 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
762 */
763 for (j = 0; j < 2; j++) {
764 unsigned char pc2inv[64];
765 for (i = 0; i < 64; i++)
766 perm[i] = pc2inv[i] = 0;
767 for (i = 0; i < 64; i++) {
768 if ((k = PC2[i]) == 0)
769 continue;
770 pc2inv[k-1] = i+1;
771 }
772 for (i = 0; i < 64; i++) {
773 if ((k = PC2[i]) == 0)
774 continue;
775 k += j;
776 if ((k%28) <= j) k -= 28;
777 perm[i] = pc2inv[k];
778 }
779 #ifdef DEBUG
780 prtab("pc2tab", perm, 8);
781 #endif
782 init_perm(PC2ROT[j], perm, 8, 8);
783 }
784
785 /*
786 * Bit reverse, then initial permutation, then expansion.
787 */
788 for (i = 0; i < 8; i++) {
789 for (j = 0; j < 8; j++) {
790 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
791 if (k > 32)
792 k -= 32;
793 else if (k > 0)
794 k--;
795 if (k > 0) {
796 k--;
797 k = (k|07) - (k&07);
798 k++;
799 }
800 perm[i*8+j] = k;
801 }
802 }
803 #ifdef DEBUG
804 prtab("ietab", perm, 8);
805 #endif
806 init_perm(IE3264, perm, 4, 8);
807
808 /*
809 * Compression, then final permutation, then bit reverse.
810 */
811 for (i = 0; i < 64; i++) {
812 k = IP[CIFP[i]-1];
813 if (k > 0) {
814 k--;
815 k = (k|07) - (k&07);
816 k++;
817 }
818 perm[k-1] = i+1;
819 }
820 #ifdef DEBUG
821 prtab("cftab", perm, 8);
822 #endif
823 init_perm(CF6464, perm, 8, 8);
824
825 /*
826 * SPE table
827 */
828 for (i = 0; i < 48; i++)
829 perm[i] = P32Tr[ExpandTr[i]-1];
830 for (tableno = 0; tableno < 8; tableno++) {
831 for (j = 0; j < 64; j++) {
832 k = (((j >> 0) &01) << 5)|
833 (((j >> 1) &01) << 3)|
834 (((j >> 2) &01) << 2)|
835 (((j >> 3) &01) << 1)|
836 (((j >> 4) &01) << 0)|
837 (((j >> 5) &01) << 4);
838 k = S[tableno][k];
839 k = (((k >> 3)&01) << 0)|
840 (((k >> 2)&01) << 1)|
841 (((k >> 1)&01) << 2)|
842 (((k >> 0)&01) << 3);
843 for (i = 0; i < 32; i++)
844 tmp32[i] = 0;
845 for (i = 0; i < 4; i++)
846 tmp32[4 * tableno + i] = (k >> i) & 01;
847 k = 0;
848 for (i = 24; --i >= 0; )
849 k = (k<<1) | tmp32[perm[i]-1];
850 TO_SIX_BIT(SPE[0][tableno][j], k);
851 k = 0;
852 for (i = 24; --i >= 0; )
853 k = (k<<1) | tmp32[perm[i+24]-1];
854 TO_SIX_BIT(SPE[1][tableno][j], k);
855 }
856 }
857 }
858
859 /*
860 * Initialize "perm" to represent transformation "p", which rearranges
861 * (perhaps with expansion and/or contraction) one packed array of bits
862 * (of size "chars_in" characters) into another array (of size "chars_out"
863 * characters).
864 *
865 * "perm" must be all-zeroes on entry to this routine.
866 */
867 STATIC
868 init_perm(perm, p, chars_in, chars_out)
869 C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
870 unsigned char p[64];
871 int chars_in, chars_out;
872 {
873 register int i, j, k, l;
874
875 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
876 l = p[k] - 1; /* where this bit comes from */
877 if (l < 0)
878 continue; /* output bit is always 0 */
879 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
880 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
881 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
882 if ((j & l) != 0)
883 perm[i][j].b[k>>3] |= 1<<(k&07);
884 }
885 }
886 }
887
888 /*
889 * "setkey" routine (for backwards compatibility)
890 */
891 setkey(key)
892 register const char *key;
893 {
894 register int i, j, k;
895 C_block keyblock;
896
897 for (i = 0; i < 8; i++) {
898 k = 0;
899 for (j = 0; j < 8; j++) {
900 k <<= 1;
901 k |= (unsigned char)*key++;
902 }
903 keyblock.b[i] = k;
904 }
905 return (des_setkey((char *)keyblock.b));
906 }
907
908 /*
909 * "encrypt" routine (for backwards compatibility)
910 */
911 encrypt(block, flag)
912 register char *block;
913 int flag;
914 {
915 register int i, j, k;
916 C_block cblock;
917
918 for (i = 0; i < 8; i++) {
919 k = 0;
920 for (j = 0; j < 8; j++) {
921 k <<= 1;
922 k |= (unsigned char)*block++;
923 }
924 cblock.b[i] = k;
925 }
926 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
927 return (1);
928 for (i = 7; i >= 0; i--) {
929 k = cblock.b[i];
930 for (j = 7; j >= 0; j--) {
931 *--block = k&01;
932 k >>= 1;
933 }
934 }
935 return (0);
936 }
937
938 #ifdef DEBUG
939 STATIC
940 prtab(s, t, num_rows)
941 char *s;
942 unsigned char *t;
943 int num_rows;
944 {
945 register int i, j;
946
947 (void)printf("%s:\n", s);
948 for (i = 0; i < num_rows; i++) {
949 for (j = 0; j < 8; j++) {
950 (void)printf("%3d", t[i*8+j]);
951 }
952 (void)printf("\n");
953 }
954 (void)printf("\n");
955 }
956 #endif
957