Home | History | Annotate | Line # | Download | only in libcrypt
crypt.c revision 1.7
      1 /*	$NetBSD: crypt.c,v 1.7 1997/10/09 10:28:43 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Tom Truscott.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #if !defined(lint)
     41 #if 0
     42 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     43 #else
     44 __RCSID("$NetBSD: crypt.c,v 1.7 1997/10/09 10:28:43 lukem Exp $");
     45 #endif
     46 #endif /* not lint */
     47 
     48 #include <limits.h>
     49 #include <pwd.h>
     50 #include <unistd.h>
     51 
     52 /*
     53  * UNIX password, and DES, encryption.
     54  * By Tom Truscott, trt (at) rti.rti.org,
     55  * from algorithms by Robert W. Baldwin and James Gillogly.
     56  *
     57  * References:
     58  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     59  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     60  *
     61  * "Password Security: A Case History," R. Morris and Ken Thompson,
     62  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     63  *
     64  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     65  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     66  */
     67 
     68 /* =====  Configuration ==================== */
     69 
     70 /*
     71  * define "MUST_ALIGN" if your compiler cannot load/store
     72  * long integers at arbitrary (e.g. odd) memory locations.
     73  * (Either that or never pass unaligned addresses to des_cipher!)
     74  */
     75 #if !defined(vax)
     76 #define	MUST_ALIGN
     77 #endif
     78 
     79 #ifdef CHAR_BITS
     80 #if CHAR_BITS != 8
     81 	#error C_block structure assumes 8 bit characters
     82 #endif
     83 #endif
     84 
     85 /*
     86  * define "B64" to be the declaration for a 64 bit integer.
     87  * XXX this feature is currently unused, see "endian" comment below.
     88  */
     89 #if defined(cray)
     90 #define	B64	long
     91 #endif
     92 #if defined(convex)
     93 #define	B64	long long
     94 #endif
     95 
     96 /*
     97  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
     98  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
     99  * little effect on crypt().
    100  */
    101 #if defined(notdef)
    102 #define	LARGEDATA
    103 #endif
    104 
    105 /* compile with "-DSTATIC=void" when profiling */
    106 #ifndef STATIC
    107 #define	STATIC	static void
    108 #endif
    109 
    110 /* ==================================== */
    111 
    112 /*
    113  * Cipher-block representation (Bob Baldwin):
    114  *
    115  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    116  * representation is to store one bit per byte in an array of bytes.  Bit N of
    117  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    118  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    119  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    120  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    121  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    122  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    123  * converted to LSB format, and the output 64-bit block is converted back into
    124  * MSB format.
    125  *
    126  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    127  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    128  * the computation, the expansion is applied only once, the expanded
    129  * representation is maintained during the encryption, and a compression
    130  * permutation is applied only at the end.  To speed up the S-box lookups,
    131  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    132  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    133  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    134  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    135  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    136  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    137  * used, in which the output is the 64 bit result of an S-box lookup which
    138  * has been permuted by P and expanded by E, and is ready for use in the next
    139  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    140  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    141  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    142  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    143  * 8*64*8 = 4K bytes.
    144  *
    145  * To speed up bit-parallel operations (such as XOR), the 8 byte
    146  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    147  * machines which support it, a 64 bit value "b64".  This data structure,
    148  * "C_block", has two problems.  First, alignment restrictions must be
    149  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    150  * the architecture becomes visible.
    151  *
    152  * The byte-order problem is unfortunate, since on the one hand it is good
    153  * to have a machine-independent C_block representation (bits 1..8 in the
    154  * first byte, etc.), and on the other hand it is good for the LSB of the
    155  * first byte to be the LSB of i0.  We cannot have both these things, so we
    156  * currently use the "little-endian" representation and avoid any multi-byte
    157  * operations that depend on byte order.  This largely precludes use of the
    158  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    159  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    160  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    161  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    162  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    163  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    164  *
    165  * Permutation representation (Jim Gillogly):
    166  *
    167  * A transformation is defined by its effect on each of the 8 bytes of the
    168  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    169  * the input distributed appropriately.  The transformation is then the OR
    170  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    171  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    172  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    173  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    174  * is slower but tolerable, particularly for password encryption in which
    175  * the SPE transformation is iterated many times.  The small tables total 9K
    176  * bytes, the large tables total 72K bytes.
    177  *
    178  * The transformations used are:
    179  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    180  *	This is done by collecting the 32 even-numbered bits and applying
    181  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    182  *	bits and applying the same transformation.  Since there are only
    183  *	32 input bits, the IE3264 transformation table is half the size of
    184  *	the usual table.
    185  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    186  *	This is done by two trivial 48->32 bit compressions to obtain
    187  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    188  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    189  *	be possible to group the bits in the 64-bit block so that 2
    190  *	identical 32->32 bit transformations could be used instead,
    191  *	saving a factor of 4 in space and possibly 2 in time, but
    192  *	byte-ordering and other complications rear their ugly head.
    193  *	Similar opportunities/problems arise in the key schedule
    194  *	transforms.)
    195  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    196  *	This admittedly baroque 64->64 bit transformation is used to
    197  *	produce the first code (in 8*(6+2) format) of the key schedule.
    198  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    199  *	It would be possible to define 15 more transformations, each
    200  *	with a different rotation, to generate the entire key schedule.
    201  *	To save space, however, we instead permute each code into the
    202  *	next by using a transformation that "undoes" the PC2 permutation,
    203  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    204  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    205  *	invertible.  We get around that problem by using a modified PC2
    206  *	which retains the 8 otherwise-lost bits in the unused low-order
    207  *	bits of each byte.  The low-order bits are cleared when the
    208  *	codes are stored into the key schedule.
    209  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    210  *	This is faster than applying PC2ROT[0] twice,
    211  *
    212  * The Bell Labs "salt" (Bob Baldwin):
    213  *
    214  * The salting is a simple permutation applied to the 48-bit result of E.
    215  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    216  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    217  * 16777216 possible values.  (The original salt was 12 bits and could not
    218  * swap bits 13..24 with 36..48.)
    219  *
    220  * It is possible, but ugly, to warp the SPE table to account for the salt
    221  * permutation.  Fortunately, the conditional bit swapping requires only
    222  * about four machine instructions and can be done on-the-fly with about an
    223  * 8% performance penalty.
    224  */
    225 
    226 typedef union {
    227 	unsigned char b[8];
    228 	struct {
    229 		int32_t	i0;
    230 		int32_t	i1;
    231 	} b32;
    232 #if defined(B64)
    233 	B64	b64;
    234 #endif
    235 } C_block;
    236 
    237 /*
    238  * Convert twenty-four-bit long in host-order
    239  * to six bits (and 2 low-order zeroes) per char little-endian format.
    240  */
    241 #define	TO_SIX_BIT(rslt, src) {				\
    242 		C_block cvt;				\
    243 		cvt.b[0] = src; src >>= 6;		\
    244 		cvt.b[1] = src; src >>= 6;		\
    245 		cvt.b[2] = src; src >>= 6;		\
    246 		cvt.b[3] = src;				\
    247 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    248 	}
    249 
    250 /*
    251  * These macros may someday permit efficient use of 64-bit integers.
    252  */
    253 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    254 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    255 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    256 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    257 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    258 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    259 
    260 #if defined(LARGEDATA)
    261 	/* Waste memory like crazy.  Also, do permutations in line */
    262 #define	LGCHUNKBITS	3
    263 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    264 #define	PERM6464(d,d0,d1,cpp,p)				\
    265 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    266 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    267 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    268 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    269 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    270 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    271 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    272 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    273 #define	PERM3264(d,d0,d1,cpp,p)				\
    274 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    275 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    276 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    277 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    278 #else
    279 	/* "small data" */
    280 #define	LGCHUNKBITS	2
    281 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    282 #define	PERM6464(d,d0,d1,cpp,p)				\
    283 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    284 #define	PERM3264(d,d0,d1,cpp,p)				\
    285 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    286 
    287 
    288 STATIC	init_des __P((void));
    289 STATIC	init_perm __P((C_block [][], unsigned char [], int, int));
    290 STATIC	permute __P((unsigned char *, C_block *, C_block *, int));
    291 #ifdef DEBUG
    292 STATIC	prtab __P((char *, unsigned char *, int));
    293 #endif
    294 
    295 
    296 STATIC
    297 permute(cp, out, p, chars_in)
    298 	unsigned char *cp;
    299 	C_block *out;
    300 	C_block *p;
    301 	int chars_in;
    302 {
    303 	DCL_BLOCK(D,D0,D1);
    304 	C_block *tp;
    305 	int t;
    306 
    307 	ZERO(D,D0,D1);
    308 	do {
    309 		t = *cp++;
    310 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    311 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    312 	} while (--chars_in > 0);
    313 	STORE(D,D0,D1,*out);
    314 }
    315 #endif /* LARGEDATA */
    316 
    317 
    318 /* =====  (mostly) Standard DES Tables ==================== */
    319 
    320 static unsigned char IP[] = {		/* initial permutation */
    321 	58, 50, 42, 34, 26, 18, 10,  2,
    322 	60, 52, 44, 36, 28, 20, 12,  4,
    323 	62, 54, 46, 38, 30, 22, 14,  6,
    324 	64, 56, 48, 40, 32, 24, 16,  8,
    325 	57, 49, 41, 33, 25, 17,  9,  1,
    326 	59, 51, 43, 35, 27, 19, 11,  3,
    327 	61, 53, 45, 37, 29, 21, 13,  5,
    328 	63, 55, 47, 39, 31, 23, 15,  7,
    329 };
    330 
    331 /* The final permutation is the inverse of IP - no table is necessary */
    332 
    333 static unsigned char ExpandTr[] = {	/* expansion operation */
    334 	32,  1,  2,  3,  4,  5,
    335 	 4,  5,  6,  7,  8,  9,
    336 	 8,  9, 10, 11, 12, 13,
    337 	12, 13, 14, 15, 16, 17,
    338 	16, 17, 18, 19, 20, 21,
    339 	20, 21, 22, 23, 24, 25,
    340 	24, 25, 26, 27, 28, 29,
    341 	28, 29, 30, 31, 32,  1,
    342 };
    343 
    344 static unsigned char PC1[] = {		/* permuted choice table 1 */
    345 	57, 49, 41, 33, 25, 17,  9,
    346 	 1, 58, 50, 42, 34, 26, 18,
    347 	10,  2, 59, 51, 43, 35, 27,
    348 	19, 11,  3, 60, 52, 44, 36,
    349 
    350 	63, 55, 47, 39, 31, 23, 15,
    351 	 7, 62, 54, 46, 38, 30, 22,
    352 	14,  6, 61, 53, 45, 37, 29,
    353 	21, 13,  5, 28, 20, 12,  4,
    354 };
    355 
    356 static unsigned char Rotates[] = {	/* PC1 rotation schedule */
    357 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    358 };
    359 
    360 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    361 static unsigned char PC2[] = {		/* permuted choice table 2 */
    362 	 9, 18,    14, 17, 11, 24,  1,  5,
    363 	22, 25,     3, 28, 15,  6, 21, 10,
    364 	35, 38,    23, 19, 12,  4, 26,  8,
    365 	43, 54,    16,  7, 27, 20, 13,  2,
    366 
    367 	 0,  0,    41, 52, 31, 37, 47, 55,
    368 	 0,  0,    30, 40, 51, 45, 33, 48,
    369 	 0,  0,    44, 49, 39, 56, 34, 53,
    370 	 0,  0,    46, 42, 50, 36, 29, 32,
    371 };
    372 
    373 static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    374 					/* S[1]			*/
    375 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    376 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    377 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    378 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    379 					/* S[2]			*/
    380 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    381 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    382 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    383 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    384 					/* S[3]			*/
    385 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    386 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    387 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    388 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    389 					/* S[4]			*/
    390 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    391 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    392 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    393 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    394 					/* S[5]			*/
    395 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    396 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    397 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    398 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    399 					/* S[6]			*/
    400 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    401 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    402 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    403 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    404 					/* S[7]			*/
    405 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    406 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    407 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    408 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    409 					/* S[8]			*/
    410 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    411 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    412 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    413 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    414 };
    415 
    416 static unsigned char P32Tr[] = {	/* 32-bit permutation function */
    417 	16,  7, 20, 21,
    418 	29, 12, 28, 17,
    419 	 1, 15, 23, 26,
    420 	 5, 18, 31, 10,
    421 	 2,  8, 24, 14,
    422 	32, 27,  3,  9,
    423 	19, 13, 30,  6,
    424 	22, 11,  4, 25,
    425 };
    426 
    427 static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
    428 	 1,  2,  3,  4,   17, 18, 19, 20,
    429 	 5,  6,  7,  8,   21, 22, 23, 24,
    430 	 9, 10, 11, 12,   25, 26, 27, 28,
    431 	13, 14, 15, 16,   29, 30, 31, 32,
    432 
    433 	33, 34, 35, 36,   49, 50, 51, 52,
    434 	37, 38, 39, 40,   53, 54, 55, 56,
    435 	41, 42, 43, 44,   57, 58, 59, 60,
    436 	45, 46, 47, 48,   61, 62, 63, 64,
    437 };
    438 
    439 static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    440 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    441 
    442 
    443 /* =====  Tables that are initialized at run time  ==================== */
    444 
    445 
    446 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
    447 
    448 /* Initial key schedule permutation */
    449 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    450 
    451 /* Subsequent key schedule rotation permutations */
    452 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    453 
    454 /* Initial permutation/expansion table */
    455 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    456 
    457 /* Table that combines the S, P, and E operations.  */
    458 static int32_t SPE[2][8][64];
    459 
    460 /* compressed/interleaved => final permutation table */
    461 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    462 
    463 
    464 /* ==================================== */
    465 
    466 
    467 static C_block	constdatablock;			/* encryption constant */
    468 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    469 
    470 /*
    471  * Return a pointer to static data consisting of the "setting"
    472  * followed by an encryption produced by the "key" and "setting".
    473  */
    474 char *
    475 crypt(key, setting)
    476 	const char *key;
    477 	const char *setting;
    478 {
    479 	char *encp;
    480 	int32_t i;
    481 	int t;
    482 	int32_t salt;
    483 	int num_iter, salt_size;
    484 	C_block keyblock, rsltblock;
    485 
    486 	for (i = 0; i < 8; i++) {
    487 		if ((t = 2*(unsigned char)(*key)) != 0)
    488 			key++;
    489 		keyblock.b[i] = t;
    490 	}
    491 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
    492 		return (NULL);
    493 
    494 	encp = &cryptresult[0];
    495 	switch (*setting) {
    496 	case _PASSWORD_EFMT1:
    497 		/*
    498 		 * Involve the rest of the password 8 characters at a time.
    499 		 */
    500 		while (*key) {
    501 			if (des_cipher((char *)&keyblock,
    502 			    (char *)&keyblock, 0L, 1))
    503 				return (NULL);
    504 			for (i = 0; i < 8; i++) {
    505 				if ((t = 2*(unsigned char)(*key)) != 0)
    506 					key++;
    507 				keyblock.b[i] ^= t;
    508 			}
    509 			if (des_setkey((char *)keyblock.b))
    510 				return (NULL);
    511 		}
    512 
    513 		*encp++ = *setting++;
    514 
    515 		/* get iteration count */
    516 		num_iter = 0;
    517 		for (i = 4; --i >= 0; ) {
    518 			if ((t = (unsigned char)setting[i]) == '\0')
    519 				t = '.';
    520 			encp[i] = t;
    521 			num_iter = (num_iter<<6) | a64toi[t];
    522 		}
    523 		setting += 4;
    524 		encp += 4;
    525 		salt_size = 4;
    526 		break;
    527 	default:
    528 		num_iter = 25;
    529 		salt_size = 2;
    530 	}
    531 
    532 	salt = 0;
    533 	for (i = salt_size; --i >= 0; ) {
    534 		if ((t = (unsigned char)setting[i]) == '\0')
    535 			t = '.';
    536 		encp[i] = t;
    537 		salt = (salt<<6) | a64toi[t];
    538 	}
    539 	encp += salt_size;
    540 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
    541 	    salt, num_iter))
    542 		return (NULL);
    543 
    544 	/*
    545 	 * Encode the 64 cipher bits as 11 ascii characters.
    546 	 */
    547 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    548 	    rsltblock.b[2];
    549 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    550 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    551 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    552 	encp[0] = itoa64[i];		encp += 4;
    553 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    554 	    rsltblock.b[5];
    555 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    556 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    557 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    558 	encp[0] = itoa64[i];		encp += 4;
    559 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    560 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    561 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    562 	encp[0] = itoa64[i];
    563 
    564 	encp[3] = 0;
    565 
    566 	return (cryptresult);
    567 }
    568 
    569 
    570 /*
    571  * The Key Schedule, filled in by des_setkey() or setkey().
    572  */
    573 #define	KS_SIZE	16
    574 static C_block	KS[KS_SIZE];
    575 
    576 /*
    577  * Set up the key schedule from the key.
    578  */
    579 int
    580 des_setkey(key)
    581 	const char *key;
    582 {
    583 	DCL_BLOCK(K, K0, K1);
    584 	C_block *ptabp;
    585 	int i;
    586 	static int des_ready = 0;
    587 
    588 	if (!des_ready) {
    589 		init_des();
    590 		des_ready = 1;
    591 	}
    592 
    593 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
    594 	key = (char *)&KS[0];
    595 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    596 	for (i = 1; i < 16; i++) {
    597 		key += sizeof(C_block);
    598 		STORE(K,K0,K1,*(C_block *)key);
    599 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    600 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
    601 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
    602 	}
    603 	return (0);
    604 }
    605 
    606 /*
    607  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    608  * iterations of DES, using the the given 24-bit salt and the pre-computed key
    609  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    610  *
    611  * NOTE: the performance of this routine is critically dependent on your
    612  * compiler and machine architecture.
    613  */
    614 int
    615 des_cipher(in, out, salt, num_iter)
    616 	const char *in;
    617 	char *out;
    618 	long salt;
    619 	int num_iter;
    620 {
    621 	/* variables that we want in registers, most important first */
    622 #if defined(pdp11)
    623 	register int j;
    624 #endif
    625 	register int32_t L0, L1, R0, R1, k;
    626 	register C_block *kp;
    627 	register int ks_inc, loop_count;
    628 	C_block B;
    629 
    630 	L0 = salt;
    631 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    632 
    633 #if defined(vax) || defined(pdp11)
    634 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    635 #define	SALT (~salt)
    636 #else
    637 #define	SALT salt
    638 #endif
    639 
    640 #if defined(MUST_ALIGN)
    641 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    642 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    643 	LOAD(L,L0,L1,B);
    644 #else
    645 	LOAD(L,L0,L1,*(C_block *)in);
    646 #endif
    647 	LOADREG(R,R0,R1,L,L0,L1);
    648 	L0 &= 0x55555555L;
    649 	L1 &= 0x55555555L;
    650 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    651 	R0 &= 0xaaaaaaaaL;
    652 	R1 = (R1 >> 1) & 0x55555555L;
    653 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    654 	STORE(L,L0,L1,B);
    655 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    656 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    657 
    658 	if (num_iter >= 0)
    659 	{		/* encryption */
    660 		kp = &KS[0];
    661 		ks_inc  = sizeof(*kp);
    662 	}
    663 	else
    664 	{		/* decryption */
    665 		return (1); /* always fail */
    666 	}
    667 
    668 	while (--num_iter >= 0) {
    669 		loop_count = 8;
    670 		do {
    671 
    672 #define	SPTAB(t, i) \
    673 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    674 #if defined(gould)
    675 			/* use this if B.b[i] is evaluated just once ... */
    676 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    677 #else
    678 #if defined(pdp11)
    679 			/* use this if your "long" int indexing is slow */
    680 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    681 #else
    682 			/* use this if "k" is allocated to a register ... */
    683 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    684 #endif
    685 #endif
    686 
    687 #define	CRUNCH(p0, p1, q0, q1)	\
    688 			k = (q0 ^ q1) & SALT;	\
    689 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    690 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    691 			kp = (C_block *)((char *)kp+ks_inc);	\
    692 							\
    693 			DOXOR(p0, p1, 0);		\
    694 			DOXOR(p0, p1, 1);		\
    695 			DOXOR(p0, p1, 2);		\
    696 			DOXOR(p0, p1, 3);		\
    697 			DOXOR(p0, p1, 4);		\
    698 			DOXOR(p0, p1, 5);		\
    699 			DOXOR(p0, p1, 6);		\
    700 			DOXOR(p0, p1, 7);
    701 
    702 			CRUNCH(L0, L1, R0, R1);
    703 			CRUNCH(R0, R1, L0, L1);
    704 		} while (--loop_count != 0);
    705 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    706 
    707 
    708 		/* swap L and R */
    709 		L0 ^= R0;  L1 ^= R1;
    710 		R0 ^= L0;  R1 ^= L1;
    711 		L0 ^= R0;  L1 ^= R1;
    712 	}
    713 
    714 	/* store the encrypted (or decrypted) result */
    715 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
    716 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
    717 	STORE(L,L0,L1,B);
    718 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    719 #if defined(MUST_ALIGN)
    720 	STORE(L,L0,L1,B);
    721 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    722 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    723 #else
    724 	STORE(L,L0,L1,*(C_block *)out);
    725 #endif
    726 	return (0);
    727 }
    728 
    729 
    730 /*
    731  * Initialize various tables.  This need only be done once.  It could even be
    732  * done at compile time, if the compiler were capable of that sort of thing.
    733  */
    734 STATIC
    735 init_des()
    736 {
    737 	int i, j;
    738 	int32_t k;
    739 	int tableno;
    740 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    741 
    742 	/*
    743 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
    744 	 */
    745 	for (i = 0; i < 64; i++)
    746 		a64toi[itoa64[i]] = i;
    747 
    748 	/*
    749 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    750 	 */
    751 	for (i = 0; i < 64; i++)
    752 		perm[i] = 0;
    753 	for (i = 0; i < 64; i++) {
    754 		if ((k = PC2[i]) == 0)
    755 			continue;
    756 		k += Rotates[0]-1;
    757 		if ((k%28) < Rotates[0]) k -= 28;
    758 		k = PC1[k];
    759 		if (k > 0) {
    760 			k--;
    761 			k = (k|07) - (k&07);
    762 			k++;
    763 		}
    764 		perm[i] = k;
    765 	}
    766 #ifdef DEBUG
    767 	prtab("pc1tab", perm, 8);
    768 #endif
    769 	init_perm(PC1ROT, perm, 8, 8);
    770 
    771 	/*
    772 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    773 	 */
    774 	for (j = 0; j < 2; j++) {
    775 		unsigned char pc2inv[64];
    776 		for (i = 0; i < 64; i++)
    777 			perm[i] = pc2inv[i] = 0;
    778 		for (i = 0; i < 64; i++) {
    779 			if ((k = PC2[i]) == 0)
    780 				continue;
    781 			pc2inv[k-1] = i+1;
    782 		}
    783 		for (i = 0; i < 64; i++) {
    784 			if ((k = PC2[i]) == 0)
    785 				continue;
    786 			k += j;
    787 			if ((k%28) <= j) k -= 28;
    788 			perm[i] = pc2inv[k];
    789 		}
    790 #ifdef DEBUG
    791 		prtab("pc2tab", perm, 8);
    792 #endif
    793 		init_perm(PC2ROT[j], perm, 8, 8);
    794 	}
    795 
    796 	/*
    797 	 * Bit reverse, then initial permutation, then expansion.
    798 	 */
    799 	for (i = 0; i < 8; i++) {
    800 		for (j = 0; j < 8; j++) {
    801 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    802 			if (k > 32)
    803 				k -= 32;
    804 			else if (k > 0)
    805 				k--;
    806 			if (k > 0) {
    807 				k--;
    808 				k = (k|07) - (k&07);
    809 				k++;
    810 			}
    811 			perm[i*8+j] = k;
    812 		}
    813 	}
    814 #ifdef DEBUG
    815 	prtab("ietab", perm, 8);
    816 #endif
    817 	init_perm(IE3264, perm, 4, 8);
    818 
    819 	/*
    820 	 * Compression, then final permutation, then bit reverse.
    821 	 */
    822 	for (i = 0; i < 64; i++) {
    823 		k = IP[CIFP[i]-1];
    824 		if (k > 0) {
    825 			k--;
    826 			k = (k|07) - (k&07);
    827 			k++;
    828 		}
    829 		perm[k-1] = i+1;
    830 	}
    831 #ifdef DEBUG
    832 	prtab("cftab", perm, 8);
    833 #endif
    834 	init_perm(CF6464, perm, 8, 8);
    835 
    836 	/*
    837 	 * SPE table
    838 	 */
    839 	for (i = 0; i < 48; i++)
    840 		perm[i] = P32Tr[ExpandTr[i]-1];
    841 	for (tableno = 0; tableno < 8; tableno++) {
    842 		for (j = 0; j < 64; j++)  {
    843 			k = (((j >> 0) &01) << 5)|
    844 			    (((j >> 1) &01) << 3)|
    845 			    (((j >> 2) &01) << 2)|
    846 			    (((j >> 3) &01) << 1)|
    847 			    (((j >> 4) &01) << 0)|
    848 			    (((j >> 5) &01) << 4);
    849 			k = S[tableno][k];
    850 			k = (((k >> 3)&01) << 0)|
    851 			    (((k >> 2)&01) << 1)|
    852 			    (((k >> 1)&01) << 2)|
    853 			    (((k >> 0)&01) << 3);
    854 			for (i = 0; i < 32; i++)
    855 				tmp32[i] = 0;
    856 			for (i = 0; i < 4; i++)
    857 				tmp32[4 * tableno + i] = (k >> i) & 01;
    858 			k = 0;
    859 			for (i = 24; --i >= 0; )
    860 				k = (k<<1) | tmp32[perm[i]-1];
    861 			TO_SIX_BIT(SPE[0][tableno][j], k);
    862 			k = 0;
    863 			for (i = 24; --i >= 0; )
    864 				k = (k<<1) | tmp32[perm[i+24]-1];
    865 			TO_SIX_BIT(SPE[1][tableno][j], k);
    866 		}
    867 	}
    868 }
    869 
    870 /*
    871  * Initialize "perm" to represent transformation "p", which rearranges
    872  * (perhaps with expansion and/or contraction) one packed array of bits
    873  * (of size "chars_in" characters) into another array (of size "chars_out"
    874  * characters).
    875  *
    876  * "perm" must be all-zeroes on entry to this routine.
    877  */
    878 STATIC
    879 init_perm(perm, p, chars_in, chars_out)
    880 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
    881 	unsigned char p[64];
    882 	int chars_in, chars_out;
    883 {
    884 	int i, j, k, l;
    885 
    886 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
    887 		l = p[k] - 1;		/* where this bit comes from */
    888 		if (l < 0)
    889 			continue;	/* output bit is always 0 */
    890 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
    891 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
    892 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
    893 			if ((j & l) != 0)
    894 				perm[i][j].b[k>>3] |= 1<<(k&07);
    895 		}
    896 	}
    897 }
    898 
    899 /*
    900  * "setkey" routine (for backwards compatibility)
    901  */
    902 int
    903 setkey(key)
    904 	const char *key;
    905 {
    906 	int i, j, k;
    907 	C_block keyblock;
    908 
    909 	for (i = 0; i < 8; i++) {
    910 		k = 0;
    911 		for (j = 0; j < 8; j++) {
    912 			k <<= 1;
    913 			k |= (unsigned char)*key++;
    914 		}
    915 		keyblock.b[i] = k;
    916 	}
    917 	return (des_setkey((char *)keyblock.b));
    918 }
    919 
    920 /*
    921  * "encrypt" routine (for backwards compatibility)
    922  */
    923 int
    924 encrypt(block, flag)
    925 	char *block;
    926 	int flag;
    927 {
    928 	int i, j, k;
    929 	C_block cblock;
    930 
    931 	for (i = 0; i < 8; i++) {
    932 		k = 0;
    933 		for (j = 0; j < 8; j++) {
    934 			k <<= 1;
    935 			k |= (unsigned char)*block++;
    936 		}
    937 		cblock.b[i] = k;
    938 	}
    939 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
    940 		return (1);
    941 	for (i = 7; i >= 0; i--) {
    942 		k = cblock.b[i];
    943 		for (j = 7; j >= 0; j--) {
    944 			*--block = k&01;
    945 			k >>= 1;
    946 		}
    947 	}
    948 	return (0);
    949 }
    950 
    951 #ifdef DEBUG
    952 STATIC
    953 prtab(s, t, num_rows)
    954 	char *s;
    955 	unsigned char *t;
    956 	int num_rows;
    957 {
    958 	int i, j;
    959 
    960 	(void)printf("%s:\n", s);
    961 	for (i = 0; i < num_rows; i++) {
    962 		for (j = 0; j < 8; j++) {
    963 			 (void)printf("%3d", t[i*8+j]);
    964 		}
    965 		(void)printf("\n");
    966 	}
    967 	(void)printf("\n");
    968 }
    969 #endif
    970