Home | History | Annotate | Line # | Download | only in libcurses
getch.c revision 1.15
      1 /*	$NetBSD: getch.c,v 1.15 1999/12/07 03:53:11 simonb Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1981, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #ifndef lint
     38 #if 0
     39 static char sccsid[] = "@(#)getch.c	8.2 (Berkeley) 5/4/94";
     40 #else
     41 __RCSID("$NetBSD: getch.c,v 1.15 1999/12/07 03:53:11 simonb Exp $");
     42 #endif
     43 #endif					/* not lint */
     44 
     45 #include <string.h>
     46 #include <stdlib.h>
     47 #include <unistd.h>
     48 #include <stdio.h>
     49 #include "curses.h"
     50 
     51 #define DEFAULT_DELAY 2			/* default delay for timeout() */
     52 
     53 /*
     54  * Keyboard input handler.  Do this by snarfing
     55  * all the info we can out of the termcap entry for TERM and putting it
     56  * into a set of keymaps.  A keymap is an array the size of all the possible
     57  * single characters we can get, the contents of the array is a structure
     58  * that contains the type of entry this character is (i.e. part/end of a
     59  * multi-char sequence or a plain char) and either a pointer which will point
     60  * to another keymap (in the case of a multi-char sequence) OR the data value
     61  * that this key should return.
     62  *
     63  */
     64 
     65 /* private data structures for holding the key definitions */
     66 typedef struct keymap keymap_t;
     67 typedef struct key_entry key_entry_t;
     68 
     69 struct key_entry {
     70 	short   type;		/* type of key this is */
     71 	union {
     72 		keymap_t *next;	/* next keymap is key is multi-key sequence */
     73 		int     symbol;	/* key symbol if key is a leaf entry */
     74 	} value;
     75 };
     76 /* Types of key structures we can have */
     77 #define KEYMAP_MULTI  1		/* part of a multi char sequence */
     78 #define KEYMAP_LEAF   2		/* key has a symbol associated with it, either
     79 				 * it is the end of a multi-char sequence or a
     80 				 * single char key that generates a symbol */
     81 
     82 /* The max number of different chars we can receive */
     83 #define MAX_CHAR 256
     84 
     85 struct keymap {
     86 	int	count;		/* count of number of key structs allocated */
     87 	short	mapping[MAX_CHAR]; /* mapping of key to allocated structs */
     88 	key_entry_t **key;	/* dynamic array of keys */};
     89 
     90 
     91 /* Key buffer */
     92 #define INBUF_SZ 16		/* size of key buffer - must be larger than
     93 				 * longest multi-key sequence */
     94 static char    inbuf[INBUF_SZ];
     95 static int     start, end, working; /* pointers for manipulating inbuf data */
     96 
     97 #define INC_POINTER(ptr)  do {	\
     98 	(ptr)++;		\
     99 	ptr %= INBUF_SZ;	\
    100 } while(/*CONSTCOND*/0)
    101 
    102 static short	state;		/* state of the inkey function */
    103 
    104 #define INKEY_NORM	 0	/* no key backlog to process */
    105 #define INKEY_ASSEMBLING 1	/* assembling a multi-key sequence */
    106 #define INKEY_BACKOUT	 2	/* recovering from an unrecognised key */
    107 #define INKEY_TIMEOUT	 3	/* multi-key sequence timeout */
    108 
    109 /* The termcap data we are interested in and the symbols they map to */
    110 struct tcdata {
    111 	char	*name;		/* name of termcap entry */
    112 	int	symbol;		/* the symbol associated with it */
    113 };
    114 
    115 static const struct tcdata tc[] = {
    116 	{"K1", KEY_A1},
    117 	{"K2", KEY_B2},
    118 	{"K3", KEY_A3},
    119 	{"K4", KEY_C1},
    120 	{"K5", KEY_C3},
    121 	{"k0", KEY_F0},
    122 	{"k1", KEY_F(1)},
    123 	{"k2", KEY_F(2)},
    124 	{"k3", KEY_F(3)},
    125 	{"k4", KEY_F(4)},
    126 	{"k5", KEY_F(5)},
    127 	{"k6", KEY_F(6)},
    128 	{"k7", KEY_F(7)},
    129 	{"k8", KEY_F(8)},
    130 	{"k9", KEY_F(9)},
    131 	{"kA", KEY_IL},
    132 	{"ka", KEY_CATAB},
    133 	{"kb", KEY_BACKSPACE},
    134 	{"kC", KEY_CLEAR},
    135 	{"kD", KEY_DC},
    136 	{"kd", KEY_DOWN},
    137 	{"kE", KEY_EOL},
    138 	{"kF", KEY_SF},
    139 	{"kH", KEY_LL},
    140 	{"kh", KEY_HOME},
    141 	{"kI", KEY_IC},
    142 	{"kL", KEY_DL},
    143 	{"kl", KEY_LEFT},
    144 	{"kN", KEY_NPAGE},
    145 	{"kP", KEY_PPAGE},
    146 	{"kR", KEY_SR},
    147 	{"kr", KEY_RIGHT},
    148 	{"kS", KEY_EOS},
    149 	{"kT", KEY_STAB},
    150 	{"kt", KEY_CTAB},
    151 	{"ku", KEY_UP}
    152 };
    153 /* Number of TC entries .... */
    154 static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
    155 
    156 /* The root keymap */
    157 
    158 static keymap_t *base_keymap;
    159 
    160 /* prototypes for private functions */
    161 static keymap_t		*new_keymap(void);	/* create a new keymap */
    162 static key_entry_t	*new_key(void);		/* create a new key entry */
    163 static unsigned		inkey(int, int);
    164 
    165 /*
    166  * Init_getch - initialise all the pointers & structures needed to make
    167  * getch work in keypad mode.
    168  *
    169  */
    170 void
    171 __init_getch(sp)
    172 	char   *sp;
    173 {
    174 static	char termcap[1024];
    175 	char entry[1024], termname[1024], *p;
    176 	int i, j, length;
    177 	keymap_t *current;
    178 	key_entry_t *the_key;
    179 
    180 	/* init the inkey state variable */
    181 	state = INKEY_NORM;
    182 
    183 	/* init the base keymap */
    184 	base_keymap = new_keymap();
    185 
    186 	/* key input buffer pointers */
    187 	start = end = working = 0;
    188 
    189 	/* now do the termcap snarfing ... */
    190 	strncpy(termname, sp, 1022);
    191 	termname[1023] = 0;
    192 
    193 	if (tgetent(termcap, termname) <= 0)
    194 		return;
    195 
    196 	for (i = 0; i < num_tcs; i++) {
    197 
    198 		p = entry;
    199 		if (tgetstr(tc[i].name, &p) == NULL)
    200 			continue;
    201 
    202 		current = base_keymap;	/* always start with base keymap. */
    203 		length = strlen(entry);
    204 
    205 		for (j = 0; j < length - 1; j++) {
    206 			if (current->mapping[(unsigned) entry[j]] < 0) {
    207 				/* first time for this char */
    208 				current->mapping[(unsigned) entry[j]] = current->count;	/* map new entry */
    209 				the_key = new_key();
    210 				/* multikey coz we are here */
    211 				the_key->type = KEYMAP_MULTI;
    212 
    213 				/* need for next key */
    214 				the_key->value.next = new_keymap();
    215 
    216 				/* put into key array */
    217 				if ((current->key = realloc(current->key, (current->count + 1) * sizeof(key_entry_t *))) == NULL) {
    218 					fprintf(stderr,
    219 						"Could not malloc for key entry\n");
    220 					exit(1);
    221 				}
    222 
    223 				current->key[current->count++] = the_key;
    224 
    225 			}
    226 			/* next key uses this map... */
    227 			current = current->key[current->mapping[(unsigned) entry[j]]]->value.next;
    228 		}
    229 
    230 		/*
    231 		 * This is the last key in the sequence (it may have been
    232 		 * the only one but that does not matter) this means it is
    233 		 * a leaf key and should have a symbol associated with it.
    234 		 */
    235 		if (current->count > 0) {
    236 			/*
    237 			 * If there were other keys then we need to
    238 			 * extend the mapping array.
    239 			 */
    240 			if ((current->key =
    241 				realloc(current->key,
    242 					(current->count + 1) *
    243 					sizeof(key_entry_t *))) == NULL) {
    244 
    245 				fprintf(stderr,
    246 					"Could not malloc for key entry\n");
    247 				exit(1);
    248 			}
    249 		}
    250 		current->mapping[(unsigned) entry[length - 1]] = current->count;
    251 		the_key = new_key();
    252 		the_key->type = KEYMAP_LEAF;	/* leaf key */
    253 
    254 		/* the associated symbol */
    255 		the_key->value.symbol = tc[i].symbol;
    256 		current->key[current->count++] = the_key;
    257 	}
    258 }
    259 
    260 
    261 /*
    262  * new_keymap - allocates & initialises a new keymap structure.  This
    263  * function returns a pointer to the new keymap.
    264  *
    265  */
    266 static keymap_t *
    267 new_keymap(void)
    268 {
    269 	int     i;
    270 	keymap_t *new_map;
    271 
    272 	if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
    273 		perror("Inkey: Cannot allocate new keymap");
    274 		exit(2);
    275 	}
    276 
    277 	/* Initialise the new map */
    278 	new_map->count = 0;
    279 	for (i = 0; i < MAX_CHAR; i++) {
    280 		new_map->mapping[i] = -1;	/* no mapping for char */
    281 	}
    282 
    283 	/* one does assume there will be at least one key mapped.... */
    284 	if ((new_map->key = malloc(sizeof(key_entry_t *))) == NULL) {
    285 		perror("Could not malloc first key ent");
    286 		exit(1);
    287 	}
    288 
    289 	return (new_map);
    290 }
    291 
    292 /*
    293  * new_key - allocates & initialises a new key entry.  This function returns
    294  * a pointer to the newly allocated key entry.
    295  *
    296  */
    297 static key_entry_t *
    298 new_key(void)
    299 {
    300 	key_entry_t *new_one;
    301 
    302 	if ((new_one = malloc(sizeof(key_entry_t))) == NULL) {
    303 		perror("inkey: Cannot allocate new key entry");
    304 		exit(2);
    305 	}
    306 	new_one->type = 0;
    307 	new_one->value.next = NULL;
    308 
    309 	return (new_one);
    310 }
    311 
    312 /*
    313  * inkey - do the work to process keyboard input, check for multi-key
    314  * sequences and return the appropriate symbol if we get a match.
    315  *
    316  */
    317 
    318 unsigned
    319 inkey(to, delay)
    320 	int     to, delay;
    321 {
    322 	int     k, nchar;
    323 	char    c;
    324 	keymap_t *current = base_keymap;
    325 
    326 	for (;;) {		/* loop until we get a complete key sequence */
    327 reread:
    328 		if (state == INKEY_NORM) {
    329 			if (delay && __timeout(delay) == ERR)
    330 				return ERR;
    331 			if ((nchar = read(STDIN_FILENO, &c, sizeof(char))) < 0)
    332 				return ERR;
    333 			if (delay && (__notimeout() == ERR))
    334 				return ERR;
    335 			if (nchar == 0)
    336 				return ERR;	/* just in case we are nodelay
    337 						 * mode */
    338 			k = (unsigned int) c;
    339 #ifdef DEBUG
    340 			__CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
    341 #endif
    342 
    343 			working = start;
    344 			inbuf[working] = k;
    345 			INC_POINTER(working);
    346 			end = working;
    347 			state = INKEY_ASSEMBLING;	/* go to the assembling
    348 							 * state now */
    349 		} else if (state == INKEY_BACKOUT) {
    350 			k = inbuf[working];
    351 			INC_POINTER(working);
    352 			if (working == end) {	/* see if we have run
    353 						 * out of keys in the
    354 						 * backlog */
    355 
    356 				/* if we have then switch to
    357 				   assembling */
    358 				state = INKEY_ASSEMBLING;
    359 			}
    360 		} else if (state == INKEY_ASSEMBLING) {
    361 			/* assembling a key sequence */
    362 			if (delay) {
    363 				if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
    364 						return ERR;
    365 			} else {
    366 				if (to && (__timeout(DEFAULT_DELAY) == ERR))
    367 					return ERR;
    368 			}
    369 			if ((nchar = read(STDIN_FILENO, &c,
    370 					  sizeof(char))) < 0)
    371 				return ERR;
    372 			if ((to || delay) && (__notimeout() == ERR))
    373 					return ERR;
    374 
    375 			k = (unsigned int) c;
    376 #ifdef DEBUG
    377 			__CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
    378 #endif
    379 			if (nchar == 0) {	/* inter-char timeout,
    380 						 * start backing out */
    381 				if (start == end)
    382 					/* no chars in the buffer, restart */
    383 					goto reread;
    384 
    385 				k = inbuf[start];
    386 				state = INKEY_TIMEOUT;
    387 			} else {
    388 				inbuf[working] = k;
    389 				INC_POINTER(working);
    390 				end = working;
    391 			}
    392 		} else {
    393 			fprintf(stderr, "Inkey state screwed - exiting!!!");
    394 			exit(2);
    395 		}
    396 
    397 		/* Check key has no special meaning and we have not timed out */
    398 		if ((current->mapping[k] < 0) || (state == INKEY_TIMEOUT)) {
    399 			/* return the first key we know about */
    400 			k = inbuf[start];
    401 
    402 			INC_POINTER(start);
    403 			working = start;
    404 
    405 			if (start == end) {	/* only one char processed */
    406 				state = INKEY_NORM;
    407 			} else {/* otherwise we must have more than one char
    408 				 * to backout */
    409 				state = INKEY_BACKOUT;
    410 			}
    411 			return k;
    412 		} else {	/* must be part of a multikey sequence */
    413 			/* check for completed key sequence */
    414 			if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
    415 				start = working;	/* eat the key sequence
    416 							 * in inbuf */
    417 
    418 				/* check if inbuf empty now */
    419 				if (start == end) {
    420 					/* if it is go back to normal */
    421 					state = INKEY_NORM;
    422 				} else {
    423 					/* otherwise go to backout state */
    424 					state = INKEY_BACKOUT;
    425 				}
    426 
    427 				/* return the symbol */
    428 				return current->key[current->mapping[k]]->value.symbol;
    429 
    430 			} else {
    431 				/*
    432 				 * Step on to next part of the multi-key
    433 				 * sequence.
    434 				 */
    435 				current = current->key[current->mapping[k]]->value.next;
    436 			}
    437 		}
    438 	}
    439 }
    440 
    441 /*
    442  * wgetch --
    443  *	Read in a character from the window.
    444  */
    445 int
    446 wgetch(win)
    447 	WINDOW *win;
    448 {
    449 	int     inp, weset;
    450 	int	nchar;
    451 	char    c;
    452 
    453 	if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
    454 	    && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
    455 	    && __echoit)
    456 		return (ERR);
    457 #ifdef DEBUG
    458 	__CTRACE("wgetch: __echoit = %d, __rawmode = %d\n",
    459 	    __echoit, __rawmode);
    460 #endif
    461 	if (__echoit && !__rawmode) {
    462 		cbreak();
    463 		weset = 1;
    464 	} else
    465 		weset = 0;
    466 
    467 	__save_termios();
    468 
    469 	if (win->flags & __KEYPAD) {
    470 		switch (win->delay)
    471 		{
    472 		case -1:
    473 			inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
    474 			break;
    475 		case 0:
    476 			if (__nodelay() == ERR) return ERR;
    477 			inp = inkey(0, 0);
    478 			break;
    479 		default:
    480 			inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
    481 			break;
    482 		}
    483 	} else {
    484 		switch (win->delay)
    485 		{
    486 		case -1:
    487 			break;
    488 		case 0:
    489 			if (__nodelay() == ERR) {
    490 				__restore_termios();
    491 				return ERR;
    492 			}
    493 			break;
    494 		default:
    495 			if (__timeout(win->delay) == ERR) {
    496 				__restore_termios();
    497 				return ERR;
    498 			}
    499 			break;
    500 		}
    501 
    502 		if ((nchar = read(STDIN_FILENO, &c, sizeof(char))) < 0) {
    503 			inp = ERR;
    504 		} else {
    505 			if (nchar == 0) {
    506 				__restore_termios();
    507 				return ERR;	/* we have timed out */
    508 			}
    509 			inp = (unsigned int) c;
    510 		}
    511 	}
    512 #ifdef DEBUG
    513 	if (inp > 255)
    514 		  /* we have a key symbol - treat it differently */
    515 		  /* XXXX perhaps __unctrl should be expanded to include
    516 		   * XXXX the keysyms in the table....
    517 		   */
    518 		__CTRACE("wgetch assembled keysym 0x%x\n", inp);
    519 	else
    520 		__CTRACE("wgetch got '%s'\n", unctrl(inp));
    521 #endif
    522 	if (win->delay > -1) {
    523 		if (__delay() == ERR) {
    524 			__restore_termios();
    525 			return ERR;
    526 		}
    527 	}
    528 
    529 	__restore_termios();
    530 	if (__echoit) {
    531 		mvwaddch(curscr,
    532 		    (int) (win->cury + win->begy), (int) (win->curx + win->begx), inp);
    533 		waddch(win, inp);
    534 	}
    535 	if (weset)
    536 		nocbreak();
    537 
    538 	return ((inp < 0) || (inp == ERR) ? ERR : inp);
    539 }
    540