getch.c revision 1.23 1 /* $NetBSD: getch.c,v 1.23 2000/04/22 21:14:19 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1981, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)getch.c 8.2 (Berkeley) 5/4/94";
40 #else
41 __RCSID("$NetBSD: getch.c,v 1.23 2000/04/22 21:14:19 thorpej Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <string.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <stdio.h>
49 #include "curses.h"
50 #include "curses_private.h"
51
52 #define DEFAULT_DELAY 2 /* default delay for timeout() */
53
54 /*
55 * Keyboard input handler. Do this by snarfing
56 * all the info we can out of the termcap entry for TERM and putting it
57 * into a set of keymaps. A keymap is an array the size of all the possible
58 * single characters we can get, the contents of the array is a structure
59 * that contains the type of entry this character is (i.e. part/end of a
60 * multi-char sequence or a plain char) and either a pointer which will point
61 * to another keymap (in the case of a multi-char sequence) OR the data value
62 * that this key should return.
63 *
64 */
65
66 /* private data structures for holding the key definitions */
67 typedef struct keymap keymap_t;
68 typedef struct key_entry key_entry_t;
69
70 struct key_entry {
71 short type; /* type of key this is */
72 union {
73 keymap_t *next; /* next keymap is key is multi-key sequence */
74 wchar_t symbol; /* key symbol if key is a leaf entry */
75 } value;
76 };
77 /* Types of key structures we can have */
78 #define KEYMAP_MULTI 1 /* part of a multi char sequence */
79 #define KEYMAP_LEAF 2 /* key has a symbol associated with it, either
80 * it is the end of a multi-char sequence or a
81 * single char key that generates a symbol */
82
83 /* allocate this many key_entry structs at once to speed start up must
84 * be a power of 2.
85 */
86 #define KEYMAP_ALLOC_CHUNK 4
87
88 /* The max number of different chars we can receive */
89 #define MAX_CHAR 256
90
91 struct keymap {
92 int count; /* count of number of key structs allocated */
93 short mapping[MAX_CHAR]; /* mapping of key to allocated structs */
94 key_entry_t **key; /* dynamic array of keys */
95 };
96
97
98 /* Key buffer */
99 #define INBUF_SZ 16 /* size of key buffer - must be larger than
100 * longest multi-key sequence */
101 static wchar_t inbuf[INBUF_SZ];
102 static int start, end, working; /* pointers for manipulating inbuf data */
103
104 #define INC_POINTER(ptr) do { \
105 (ptr)++; \
106 ptr %= INBUF_SZ; \
107 } while(/*CONSTCOND*/0)
108
109 static short state; /* state of the inkey function */
110
111 #define INKEY_NORM 0 /* no key backlog to process */
112 #define INKEY_ASSEMBLING 1 /* assembling a multi-key sequence */
113 #define INKEY_BACKOUT 2 /* recovering from an unrecognised key */
114 #define INKEY_TIMEOUT 3 /* multi-key sequence timeout */
115
116 /* The termcap data we are interested in and the symbols they map to */
117 struct tcdata {
118 const char *name; /* name of termcap entry */
119 wchar_t symbol; /* the symbol associated with it */
120 };
121
122 static const struct tcdata tc[] = {
123 {"K1", KEY_A1},
124 {"K2", KEY_B2},
125 {"K3", KEY_A3},
126 {"K4", KEY_C1},
127 {"K5", KEY_C3},
128 {"k0", KEY_F0},
129 {"k1", KEY_F(1)},
130 {"k2", KEY_F(2)},
131 {"k3", KEY_F(3)},
132 {"k4", KEY_F(4)},
133 {"k5", KEY_F(5)},
134 {"k6", KEY_F(6)},
135 {"k7", KEY_F(7)},
136 {"k8", KEY_F(8)},
137 {"k9", KEY_F(9)},
138 {"kA", KEY_IL},
139 {"ka", KEY_CATAB},
140 {"kb", KEY_BACKSPACE},
141 {"kC", KEY_CLEAR},
142 {"kD", KEY_DC},
143 {"kd", KEY_DOWN},
144 {"kE", KEY_EOL},
145 {"kF", KEY_SF},
146 {"kH", KEY_LL},
147 {"kh", KEY_HOME},
148 {"kI", KEY_IC},
149 {"kL", KEY_DL},
150 {"kl", KEY_LEFT},
151 {"kN", KEY_NPAGE},
152 {"kP", KEY_PPAGE},
153 {"kR", KEY_SR},
154 {"kr", KEY_RIGHT},
155 {"kS", KEY_EOS},
156 {"kT", KEY_STAB},
157 {"kt", KEY_CTAB},
158 {"ku", KEY_UP}
159 };
160 /* Number of TC entries .... */
161 static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
162
163 /* The root keymap */
164
165 static keymap_t *base_keymap;
166
167 /* prototypes for private functions */
168 static key_entry_t *add_new_key(keymap_t *current, char chr, int key_type,
169 int symbol);
170 static keymap_t *new_keymap(void); /* create a new keymap */
171 static key_entry_t *new_key(void); /* create a new key entry */
172 static wchar_t inkey(int to, int delay);
173
174 /*
175 * Add a new key entry to the keymap pointed to by current. Entry
176 * contains the character to add to the keymap, type is the type of
177 * entry to add (either multikey or leaf) and symbol is the symbolic
178 * value for a leaf type entry. The function returns a pointer to the
179 * new keymap entry.
180 */
181 static key_entry_t *
182 add_new_key(keymap_t *current, char chr, int key_type, int symbol)
183 {
184 key_entry_t *the_key;
185 int i;
186
187 #ifdef DEBUG
188 __CTRACE("Adding character %s of type %d, symbol 0x%x\n", unctrl(chr),
189 key_type, symbol);
190 #endif
191 if (current->mapping[(unsigned) chr] < 0) {
192 /* first time for this char */
193 current->mapping[(unsigned) chr] = current->count; /* map new entry */
194 /* make sure we have room in the key array first */
195 if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
196 {
197 if ((current->key =
198 realloc(current->key,
199 (current->count) * sizeof(key_entry_t *)
200 + KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
201 fprintf(stderr,
202 "Could not malloc for key entry\n");
203 exit(1);
204 }
205
206 the_key = new_key();
207 for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
208 current->key[current->count + i]
209 = &the_key[i];
210 }
211 }
212
213 /* point at the current key array element to use */
214 the_key = current->key[current->count];
215
216 the_key->type = key_type;
217
218 switch (key_type) {
219 case KEYMAP_MULTI:
220 /* need for next key */
221 #ifdef DEBUG
222 __CTRACE("Creating new keymap\n");
223 #endif
224 the_key->value.next = new_keymap();
225 break;
226
227 case KEYMAP_LEAF:
228 /* the associated symbol for the key */
229 #ifdef DEBUG
230 __CTRACE("Adding leaf key\n");
231 #endif
232 the_key->value.symbol = symbol;
233 break;
234
235 default:
236 fprintf(stderr, "add_new_key: bad type passed\n");
237 exit(1);
238 }
239
240 current->count++;
241 } else {
242 /* the key is already known - just return the address. */
243 #ifdef DEBUG
244 __CTRACE("Keymap already known\n");
245 #endif
246 the_key = current->key[current->mapping[(unsigned) chr]];
247 }
248
249 return the_key;
250 }
251
252 /*
253 * Init_getch - initialise all the pointers & structures needed to make
254 * getch work in keypad mode.
255 *
256 */
257 void
258 __init_getch(char *sp)
259 {
260 static struct tinfo *termcap;
261 char entry[1024], termname[1024], *p;
262 int i, j, length, key_ent;
263 size_t limit;
264 key_entry_t *tmp_key;
265 keymap_t *current;
266 #ifdef DEBUG
267 int k;
268 #endif
269
270 /* init the inkey state variable */
271 state = INKEY_NORM;
272
273 /* init the base keymap */
274 base_keymap = new_keymap();
275
276 /* key input buffer pointers */
277 start = end = working = 0;
278
279 /* now do the termcap snarfing ... */
280 (void) strncpy(termname, sp, (size_t) 1022);
281 termname[1023] = 0;
282
283 if (t_getent(&termcap, termname) > 0) {
284 for (i = 0; i < num_tcs; i++) {
285 p = entry;
286 limit = 1023;
287 if (t_getstr(termcap, tc[i].name, &p, &limit) != NULL) {
288 current = base_keymap; /* always start with
289 * base keymap. */
290 length = (int) strlen(entry);
291 #ifdef DEBUG
292 __CTRACE("Processing termcap entry %s, sequence ",
293 tc[i].name);
294 for (k = 0; k <= length -1; k++)
295 __CTRACE("%s", unctrl(entry[k]));
296 __CTRACE("\n");
297 #endif
298 for (j = 0; j < length - 1; j++) {
299 /* add the entry to the struct */
300 tmp_key = add_new_key(current,
301 entry[j],
302 KEYMAP_MULTI, 0);
303
304 /* index into the key array - it's
305 clearer if we stash this */
306 key_ent = current->mapping[
307 (unsigned) entry[j]];
308
309 current->key[key_ent] = tmp_key;
310
311 /* next key uses this map... */
312 current = current->key[key_ent]->value.next;
313 }
314
315 /* this is the last key in the sequence (it
316 * may have been the only one but that does
317 * not matter) this means it is a leaf key and
318 * should have a symbol associated with it.
319 */
320 tmp_key = add_new_key(current,
321 entry[length - 1],
322 KEYMAP_LEAF,
323 tc[i].symbol);
324 current->key[
325 current->mapping[(int)entry[length - 1]]] =
326 tmp_key;
327 }
328 }
329 }
330 }
331
332
333 /*
334 * new_keymap - allocates & initialises a new keymap structure. This
335 * function returns a pointer to the new keymap.
336 *
337 */
338 static keymap_t *
339 new_keymap(void)
340 {
341 int i;
342 keymap_t *new_map;
343
344 if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
345 perror("Inkey: Cannot allocate new keymap");
346 exit(2);
347 }
348
349 /* Initialise the new map */
350 new_map->count = 0;
351 for (i = 0; i < MAX_CHAR; i++) {
352 new_map->mapping[i] = -1; /* no mapping for char */
353 }
354
355 /* key array will be allocated when first key is added */
356 new_map->key = NULL;
357
358 return new_map;
359 }
360
361 /*
362 * new_key - allocates & initialises a new key entry. This function returns
363 * a pointer to the newly allocated key entry.
364 *
365 */
366 static key_entry_t *
367 new_key(void)
368 {
369 key_entry_t *new_one;
370 int i;
371
372 if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
373 == NULL) {
374 perror("inkey: Cannot allocate new key entry chunk");
375 exit(2);
376 }
377
378 for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
379 new_one[i].type = 0;
380 new_one[i].value.next = NULL;
381 }
382
383 return new_one;
384 }
385
386 /*
387 * inkey - do the work to process keyboard input, check for multi-key
388 * sequences and return the appropriate symbol if we get a match.
389 *
390 */
391
392 wchar_t
393 inkey(int to, int delay)
394 {
395 wchar_t k;
396 int c;
397 keymap_t *current = base_keymap;
398
399 for (;;) { /* loop until we get a complete key sequence */
400 reread:
401 if (state == INKEY_NORM) {
402 if (delay && __timeout(delay) == ERR)
403 return ERR;
404 if ((c = getchar()) == EOF) {
405 clearerr(stdin);
406 return ERR;
407 }
408
409 if (delay && (__notimeout() == ERR))
410 return ERR;
411
412 k = (wchar_t) c;
413 #ifdef DEBUG
414 __CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
415 #endif
416
417 working = start;
418 inbuf[working] = k;
419 INC_POINTER(working);
420 end = working;
421 state = INKEY_ASSEMBLING; /* go to the assembling
422 * state now */
423 } else if (state == INKEY_BACKOUT) {
424 k = inbuf[working];
425 INC_POINTER(working);
426 if (working == end) { /* see if we have run
427 * out of keys in the
428 * backlog */
429
430 /* if we have then switch to
431 assembling */
432 state = INKEY_ASSEMBLING;
433 }
434 } else if (state == INKEY_ASSEMBLING) {
435 /* assembling a key sequence */
436 if (delay) {
437 if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
438 return ERR;
439 } else {
440 if (to && (__timeout(DEFAULT_DELAY) == ERR))
441 return ERR;
442 }
443
444 c = getchar();
445 if (ferror(stdin)) {
446 clearerr(stdin);
447 return ERR;
448 }
449
450 if ((to || delay) && (__notimeout() == ERR))
451 return ERR;
452
453 k = (wchar_t) c;
454 #ifdef DEBUG
455 __CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
456 #endif
457 if (feof(stdin)) { /* inter-char timeout,
458 * start backing out */
459 clearerr(stdin);
460 if (start == end)
461 /* no chars in the buffer, restart */
462 goto reread;
463
464 k = inbuf[start];
465 state = INKEY_TIMEOUT;
466 } else {
467 inbuf[working] = k;
468 INC_POINTER(working);
469 end = working;
470 }
471 } else {
472 fprintf(stderr, "Inkey state screwed - exiting!!!");
473 exit(2);
474 }
475
476 /* Check key has no special meaning and we have not timed out */
477 if ((state == INKEY_TIMEOUT) || (current->mapping[k] < 0)) {
478 /* return the first key we know about */
479 k = inbuf[start];
480
481 INC_POINTER(start);
482 working = start;
483
484 if (start == end) { /* only one char processed */
485 state = INKEY_NORM;
486 } else {/* otherwise we must have more than one char
487 * to backout */
488 state = INKEY_BACKOUT;
489 }
490 return k;
491 } else { /* must be part of a multikey sequence */
492 /* check for completed key sequence */
493 if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
494 start = working; /* eat the key sequence
495 * in inbuf */
496
497 /* check if inbuf empty now */
498 if (start == end) {
499 /* if it is go back to normal */
500 state = INKEY_NORM;
501 } else {
502 /* otherwise go to backout state */
503 state = INKEY_BACKOUT;
504 }
505
506 /* return the symbol */
507 return current->key[current->mapping[k]]->value.symbol;
508
509 } else {
510 /*
511 * Step on to next part of the multi-key
512 * sequence.
513 */
514 current = current->key[current->mapping[k]]->value.next;
515 }
516 }
517 }
518 }
519
520 #ifndef _CURSES_USE_MACROS
521 /*
522 * getch --
523 * Read in a character from stdscr.
524 */
525 int
526 getch(void)
527 {
528 return wgetch(stdscr);
529 }
530
531 /*
532 * mvgetch --
533 * Read in a character from stdscr at the given location.
534 */
535 int
536 mvgetch(int y, int x)
537 {
538 return mvwgetch(stdscr, y, x);
539 }
540
541 /*
542 * mvwgetch --
543 * Read in a character from stdscr at the given location in the
544 * given window.
545 */
546 int
547 mvwgetch(WINDOW *win, int y, int x)
548 {
549 if (wmove(win, y, x) == ERR)
550 return ERR;
551
552 return wgetch(win);
553 }
554
555 #endif
556
557 /*
558 * wgetch --
559 * Read in a character from the window.
560 */
561 int
562 wgetch(WINDOW *win)
563 {
564 int inp, weset;
565 char c;
566
567 if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
568 && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
569 && __echoit)
570 return (ERR);
571 #ifdef DEBUG
572 __CTRACE("wgetch: __echoit = %d, __rawmode = %d, flags = %0.2o\n",
573 __echoit, __rawmode, win->flags);
574 #endif
575 if (__echoit && !__rawmode) {
576 cbreak();
577 weset = 1;
578 } else
579 weset = 0;
580
581 __save_termios();
582
583 if (win->flags & __KEYPAD) {
584 switch (win->delay)
585 {
586 case -1:
587 inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
588 break;
589 case 0:
590 if (__nodelay() == ERR) {
591 __restore_termios();
592 return ERR;
593 }
594 inp = inkey(0, 0);
595 break;
596 default:
597 inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
598 break;
599 }
600 } else {
601 switch (win->delay)
602 {
603 case -1:
604 break;
605 case 0:
606 if (__nodelay() == ERR) {
607 __restore_termios();
608 return ERR;
609 }
610 break;
611 default:
612 if (__timeout(win->delay) == ERR) {
613 __restore_termios();
614 return ERR;
615 }
616 break;
617 }
618
619 c = getchar();
620 if (feof(stdin)) {
621 clearerr(stdin);
622 __restore_termios();
623 return ERR; /* we have timed out */
624 }
625
626 if (ferror(stdin)) {
627 clearerr(stdin);
628 inp = ERR;
629 } else {
630 inp = (unsigned int) c;
631 }
632 }
633 #ifdef DEBUG
634 if (inp > 255)
635 /* we have a key symbol - treat it differently */
636 /* XXXX perhaps __unctrl should be expanded to include
637 * XXXX the keysyms in the table....
638 */
639 __CTRACE("wgetch assembled keysym 0x%x\n", inp);
640 else
641 __CTRACE("wgetch got '%s'\n", unctrl(inp));
642 #endif
643 if (win->delay > -1) {
644 if (__delay() == ERR) {
645 __restore_termios();
646 return ERR;
647 }
648 }
649
650 __restore_termios();
651 if (__echoit) {
652 waddch(win, (chtype) inp);
653 }
654 if (weset)
655 nocbreak();
656
657 wrefresh(win);
658 return ((inp < 0) || (inp == ERR) ? ERR : inp);
659 }
660
661 /*
662 * ungetch --
663 * Put the character back into the input queue.
664 */
665 int
666 ungetch(int c)
667 {
668 return ((ungetc(c, stdin) == EOF) ? ERR : OK);
669 }
670