getch.c revision 1.26 1 /* $NetBSD: getch.c,v 1.26 2000/04/27 17:50:01 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1981, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)getch.c 8.2 (Berkeley) 5/4/94";
40 #else
41 __RCSID("$NetBSD: getch.c,v 1.26 2000/04/27 17:50:01 mycroft Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <string.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <stdio.h>
49 #include "curses.h"
50 #include "curses_private.h"
51
52 #define DEFAULT_DELAY 2 /* default delay for timeout() */
53
54 /*
55 * Keyboard input handler. Do this by snarfing
56 * all the info we can out of the termcap entry for TERM and putting it
57 * into a set of keymaps. A keymap is an array the size of all the possible
58 * single characters we can get, the contents of the array is a structure
59 * that contains the type of entry this character is (i.e. part/end of a
60 * multi-char sequence or a plain char) and either a pointer which will point
61 * to another keymap (in the case of a multi-char sequence) OR the data value
62 * that this key should return.
63 *
64 */
65
66 /* private data structures for holding the key definitions */
67 typedef struct keymap keymap_t;
68 typedef struct key_entry key_entry_t;
69
70 struct key_entry {
71 short type; /* type of key this is */
72 union {
73 keymap_t *next; /* next keymap is key is multi-key sequence */
74 wchar_t symbol; /* key symbol if key is a leaf entry */
75 } value;
76 };
77 /* Types of key structures we can have */
78 #define KEYMAP_MULTI 1 /* part of a multi char sequence */
79 #define KEYMAP_LEAF 2 /* key has a symbol associated with it, either
80 * it is the end of a multi-char sequence or a
81 * single char key that generates a symbol */
82
83 /* allocate this many key_entry structs at once to speed start up must
84 * be a power of 2.
85 */
86 #define KEYMAP_ALLOC_CHUNK 4
87
88 /* The max number of different chars we can receive */
89 #define MAX_CHAR 256
90
91 struct keymap {
92 int count; /* count of number of key structs allocated */
93 short mapping[MAX_CHAR]; /* mapping of key to allocated structs */
94 key_entry_t **key; /* dynamic array of keys */
95 };
96
97
98 /* Key buffer */
99 #define INBUF_SZ 16 /* size of key buffer - must be larger than
100 * longest multi-key sequence */
101 static wchar_t inbuf[INBUF_SZ];
102 static int start, end, working; /* pointers for manipulating inbuf data */
103
104 #define INC_POINTER(ptr) do { \
105 (ptr)++; \
106 ptr %= INBUF_SZ; \
107 } while(/*CONSTCOND*/0)
108
109 static short state; /* state of the inkey function */
110
111 #define INKEY_NORM 0 /* no key backlog to process */
112 #define INKEY_ASSEMBLING 1 /* assembling a multi-key sequence */
113 #define INKEY_BACKOUT 2 /* recovering from an unrecognised key */
114 #define INKEY_TIMEOUT 3 /* multi-key sequence timeout */
115
116 /* The termcap data we are interested in and the symbols they map to */
117 struct tcdata {
118 const char *name; /* name of termcap entry */
119 wchar_t symbol; /* the symbol associated with it */
120 };
121
122 static const struct tcdata tc[] = {
123 {"!1", KEY_SSAVE},
124 {"!2", KEY_SSUSPEND},
125 {"!3", KEY_SUNDO},
126 {"#1", KEY_SHELP},
127 {"#2", KEY_SHOME},
128 {"#3", KEY_SIC},
129 {"#4", KEY_SLEFT},
130 {"%0", KEY_REDO},
131 {"%1", KEY_HELP},
132 {"%2", KEY_MARK},
133 {"%3", KEY_MESSAGE},
134 {"%4", KEY_MOVE},
135 {"%5", KEY_NEXT},
136 {"%6", KEY_OPEN},
137 {"%7", KEY_OPTIONS},
138 {"%8", KEY_PREVIOUS},
139 {"%9", KEY_PRINT},
140 {"%a", KEY_SMESSAGE},
141 {"%b", KEY_SMOVE},
142 {"%c", KEY_SNEXT},
143 {"%d", KEY_SOPTIONS},
144 {"%e", KEY_SPREVIOUS},
145 {"%f", KEY_SPRINT},
146 {"%g", KEY_SREDO},
147 {"%h", KEY_SREPLACE},
148 {"%i", KEY_SRIGHT},
149 {"%j", KEY_SRSUME},
150 {"&0", KEY_SCANCEL},
151 {"&1", KEY_REFERENCE},
152 {"&2", KEY_REFRESH},
153 {"&3", KEY_REPLACE},
154 {"&4", KEY_RESTART},
155 {"&5", KEY_RESUME},
156 {"&6", KEY_SAVE},
157 {"&7", KEY_SUSPEND},
158 {"&8", KEY_UNDO},
159 {"&9", KEY_SBEG},
160 {"*0", KEY_SFIND},
161 {"*1", KEY_SCOMMAND},
162 {"*2", KEY_SCOPY},
163 {"*3", KEY_SCREATE},
164 {"*4", KEY_SDC},
165 {"*5", KEY_SDL},
166 {"*6", KEY_SELECT},
167 {"*7", KEY_SEND},
168 {"*8", KEY_SEOL},
169 {"*9", KEY_SEXIT},
170 {"@0", KEY_FIND},
171 {"@1", KEY_BEG},
172 {"@2", KEY_CANCEL},
173 {"@3", KEY_CLOSE},
174 {"@4", KEY_COMMAND},
175 {"@5", KEY_COPY},
176 {"@6", KEY_CREATE},
177 {"@7", KEY_END},
178 {"@8", KEY_ENTER},
179 {"@9", KEY_EXIT},
180 {"F1", KEY_F(11)},
181 {"F2", KEY_F(12)},
182 {"F3", KEY_F(13)},
183 {"F4", KEY_F(14)},
184 {"F5", KEY_F(15)},
185 {"F6", KEY_F(16)},
186 {"F7", KEY_F(17)},
187 {"F8", KEY_F(18)},
188 {"F9", KEY_F(19)},
189 {"FA", KEY_F(20)},
190 {"FB", KEY_F(21)},
191 {"FC", KEY_F(22)},
192 {"FD", KEY_F(23)},
193 {"FE", KEY_F(24)},
194 {"FF", KEY_F(25)},
195 {"FG", KEY_F(26)},
196 {"FH", KEY_F(27)},
197 {"FI", KEY_F(28)},
198 {"FJ", KEY_F(29)},
199 {"FK", KEY_F(30)},
200 {"FL", KEY_F(31)},
201 {"FM", KEY_F(32)},
202 {"FN", KEY_F(33)},
203 {"FO", KEY_F(34)},
204 {"FP", KEY_F(35)},
205 {"FQ", KEY_F(36)},
206 {"FR", KEY_F(37)},
207 {"FS", KEY_F(38)},
208 {"FT", KEY_F(39)},
209 {"FU", KEY_F(40)},
210 {"FV", KEY_F(41)},
211 {"FW", KEY_F(42)},
212 {"FX", KEY_F(43)},
213 {"FY", KEY_F(44)},
214 {"FZ", KEY_F(45)},
215 {"Fa", KEY_F(46)},
216 {"Fb", KEY_F(47)},
217 {"Fc", KEY_F(48)},
218 {"Fd", KEY_F(49)},
219 {"Fe", KEY_F(50)},
220 {"Ff", KEY_F(51)},
221 {"Fg", KEY_F(52)},
222 {"Fh", KEY_F(53)},
223 {"Fi", KEY_F(54)},
224 {"Fj", KEY_F(55)},
225 {"Fk", KEY_F(56)},
226 {"Fl", KEY_F(57)},
227 {"Fm", KEY_F(58)},
228 {"Fn", KEY_F(59)},
229 {"Fo", KEY_F(60)},
230 {"Fp", KEY_F(61)},
231 {"Fq", KEY_F(62)},
232 {"Fr", KEY_F(63)},
233 {"K1", KEY_A1},
234 {"K2", KEY_B2},
235 {"K3", KEY_A3},
236 {"K4", KEY_C1},
237 {"K5", KEY_C3},
238 {"Km", KEY_MOUSE},
239 {"k0", KEY_F0},
240 {"k1", KEY_F(1)},
241 {"k2", KEY_F(2)},
242 {"k3", KEY_F(3)},
243 {"k4", KEY_F(4)},
244 {"k5", KEY_F(5)},
245 {"k6", KEY_F(6)},
246 {"k7", KEY_F(7)},
247 {"k8", KEY_F(8)},
248 {"k9", KEY_F(9)},
249 {"k;", KEY_F(10)},
250 {"kA", KEY_IL},
251 {"ka", KEY_CATAB},
252 {"kB", KEY_BTAB},
253 {"kb", KEY_BACKSPACE},
254 {"kC", KEY_CLEAR},
255 {"kD", KEY_DC},
256 {"kd", KEY_DOWN},
257 {"kE", KEY_EOL},
258 {"kF", KEY_SF},
259 {"kH", KEY_LL},
260 {"kh", KEY_HOME},
261 {"kI", KEY_IC},
262 {"kL", KEY_DL},
263 {"kl", KEY_LEFT},
264 {"kM", KEY_EIC},
265 {"kN", KEY_NPAGE},
266 {"kP", KEY_PPAGE},
267 {"kR", KEY_SR},
268 {"kr", KEY_RIGHT},
269 {"kS", KEY_EOS},
270 {"kT", KEY_STAB},
271 {"kt", KEY_CTAB},
272 {"ku", KEY_UP}
273 };
274 /* Number of TC entries .... */
275 static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
276
277 /* The root keymap */
278
279 static keymap_t *base_keymap;
280
281 /* prototypes for private functions */
282 static key_entry_t *add_new_key(keymap_t *current, char chr, int key_type,
283 int symbol);
284 static keymap_t *new_keymap(void); /* create a new keymap */
285 static key_entry_t *new_key(void); /* create a new key entry */
286 static wchar_t inkey(int to, int delay);
287
288 /*
289 * Add a new key entry to the keymap pointed to by current. Entry
290 * contains the character to add to the keymap, type is the type of
291 * entry to add (either multikey or leaf) and symbol is the symbolic
292 * value for a leaf type entry. The function returns a pointer to the
293 * new keymap entry.
294 */
295 static key_entry_t *
296 add_new_key(keymap_t *current, char chr, int key_type, int symbol)
297 {
298 key_entry_t *the_key;
299 int i;
300
301 #ifdef DEBUG
302 __CTRACE("Adding character %s of type %d, symbol 0x%x\n", unctrl(chr),
303 key_type, symbol);
304 #endif
305 if (current->mapping[(unsigned) chr] < 0) {
306 /* first time for this char */
307 current->mapping[(unsigned) chr] = current->count; /* map new entry */
308 /* make sure we have room in the key array first */
309 if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
310 {
311 if ((current->key =
312 realloc(current->key,
313 (current->count) * sizeof(key_entry_t *)
314 + KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
315 fprintf(stderr,
316 "Could not malloc for key entry\n");
317 exit(1);
318 }
319
320 the_key = new_key();
321 for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
322 current->key[current->count + i]
323 = &the_key[i];
324 }
325 }
326
327 /* point at the current key array element to use */
328 the_key = current->key[current->count];
329
330 the_key->type = key_type;
331
332 switch (key_type) {
333 case KEYMAP_MULTI:
334 /* need for next key */
335 #ifdef DEBUG
336 __CTRACE("Creating new keymap\n");
337 #endif
338 the_key->value.next = new_keymap();
339 break;
340
341 case KEYMAP_LEAF:
342 /* the associated symbol for the key */
343 #ifdef DEBUG
344 __CTRACE("Adding leaf key\n");
345 #endif
346 the_key->value.symbol = symbol;
347 break;
348
349 default:
350 fprintf(stderr, "add_new_key: bad type passed\n");
351 exit(1);
352 }
353
354 current->count++;
355 } else {
356 /* the key is already known - just return the address. */
357 #ifdef DEBUG
358 __CTRACE("Keymap already known\n");
359 #endif
360 the_key = current->key[current->mapping[(unsigned) chr]];
361 }
362
363 return the_key;
364 }
365
366 /*
367 * Init_getch - initialise all the pointers & structures needed to make
368 * getch work in keypad mode.
369 *
370 */
371 void
372 __init_getch(char *sp)
373 {
374 static struct tinfo *termcap;
375 char entry[1024], termname[1024], *p;
376 int i, j, length, key_ent;
377 size_t limit;
378 key_entry_t *tmp_key;
379 keymap_t *current;
380 #ifdef DEBUG
381 int k;
382 #endif
383
384 /* init the inkey state variable */
385 state = INKEY_NORM;
386
387 /* init the base keymap */
388 base_keymap = new_keymap();
389
390 /* key input buffer pointers */
391 start = end = working = 0;
392
393 /* now do the termcap snarfing ... */
394 (void) strncpy(termname, sp, (size_t) 1022);
395 termname[1023] = 0;
396
397 if (t_getent(&termcap, termname) > 0) {
398 for (i = 0; i < num_tcs; i++) {
399 p = entry;
400 limit = 1023;
401 if (t_getstr(termcap, tc[i].name, &p, &limit) != NULL) {
402 current = base_keymap; /* always start with
403 * base keymap. */
404 length = (int) strlen(entry);
405 #ifdef DEBUG
406 __CTRACE("Processing termcap entry %s, sequence ",
407 tc[i].name);
408 for (k = 0; k <= length -1; k++)
409 __CTRACE("%s", unctrl(entry[k]));
410 __CTRACE("\n");
411 #endif
412 for (j = 0; j < length - 1; j++) {
413 /* add the entry to the struct */
414 tmp_key = add_new_key(current,
415 entry[j],
416 KEYMAP_MULTI, 0);
417
418 /* index into the key array - it's
419 clearer if we stash this */
420 key_ent = current->mapping[
421 (unsigned) entry[j]];
422
423 current->key[key_ent] = tmp_key;
424
425 /* next key uses this map... */
426 current = current->key[key_ent]->value.next;
427 }
428
429 /* this is the last key in the sequence (it
430 * may have been the only one but that does
431 * not matter) this means it is a leaf key and
432 * should have a symbol associated with it.
433 */
434 tmp_key = add_new_key(current,
435 entry[length - 1],
436 KEYMAP_LEAF,
437 tc[i].symbol);
438 current->key[
439 current->mapping[(int)entry[length - 1]]] =
440 tmp_key;
441 }
442 }
443 }
444 }
445
446
447 /*
448 * new_keymap - allocates & initialises a new keymap structure. This
449 * function returns a pointer to the new keymap.
450 *
451 */
452 static keymap_t *
453 new_keymap(void)
454 {
455 int i;
456 keymap_t *new_map;
457
458 if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
459 perror("Inkey: Cannot allocate new keymap");
460 exit(2);
461 }
462
463 /* Initialise the new map */
464 new_map->count = 0;
465 for (i = 0; i < MAX_CHAR; i++) {
466 new_map->mapping[i] = -1; /* no mapping for char */
467 }
468
469 /* key array will be allocated when first key is added */
470 new_map->key = NULL;
471
472 return new_map;
473 }
474
475 /*
476 * new_key - allocates & initialises a new key entry. This function returns
477 * a pointer to the newly allocated key entry.
478 *
479 */
480 static key_entry_t *
481 new_key(void)
482 {
483 key_entry_t *new_one;
484 int i;
485
486 if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
487 == NULL) {
488 perror("inkey: Cannot allocate new key entry chunk");
489 exit(2);
490 }
491
492 for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
493 new_one[i].type = 0;
494 new_one[i].value.next = NULL;
495 }
496
497 return new_one;
498 }
499
500 /*
501 * inkey - do the work to process keyboard input, check for multi-key
502 * sequences and return the appropriate symbol if we get a match.
503 *
504 */
505
506 wchar_t
507 inkey(int to, int delay)
508 {
509 wchar_t k;
510 int c;
511 keymap_t *current = base_keymap;
512
513 k = 0; /* XXX gcc -Wuninitialized */
514
515 for (;;) { /* loop until we get a complete key sequence */
516 reread:
517 if (state == INKEY_NORM) {
518 if (delay && __timeout(delay) == ERR)
519 return ERR;
520 if ((c = getchar()) == EOF) {
521 clearerr(stdin);
522 return ERR;
523 }
524
525 if (delay && (__notimeout() == ERR))
526 return ERR;
527
528 k = (wchar_t) c;
529 #ifdef DEBUG
530 __CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
531 #endif
532
533 working = start;
534 inbuf[working] = k;
535 INC_POINTER(working);
536 end = working;
537 state = INKEY_ASSEMBLING; /* go to the assembling
538 * state now */
539 } else if (state == INKEY_BACKOUT) {
540 k = inbuf[working];
541 INC_POINTER(working);
542 if (working == end) { /* see if we have run
543 * out of keys in the
544 * backlog */
545
546 /* if we have then switch to
547 assembling */
548 state = INKEY_ASSEMBLING;
549 }
550 } else if (state == INKEY_ASSEMBLING) {
551 /* assembling a key sequence */
552 if (delay) {
553 if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
554 return ERR;
555 } else {
556 if (to && (__timeout(DEFAULT_DELAY) == ERR))
557 return ERR;
558 }
559
560 c = getchar();
561 if (ferror(stdin)) {
562 clearerr(stdin);
563 return ERR;
564 }
565
566 if ((to || delay) && (__notimeout() == ERR))
567 return ERR;
568
569 k = (wchar_t) c;
570 #ifdef DEBUG
571 __CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
572 #endif
573 if (feof(stdin)) { /* inter-char timeout,
574 * start backing out */
575 clearerr(stdin);
576 if (start == end)
577 /* no chars in the buffer, restart */
578 goto reread;
579
580 k = inbuf[start];
581 state = INKEY_TIMEOUT;
582 } else {
583 inbuf[working] = k;
584 INC_POINTER(working);
585 end = working;
586 }
587 } else {
588 fprintf(stderr, "Inkey state screwed - exiting!!!");
589 exit(2);
590 }
591
592 /* Check key has no special meaning and we have not timed out */
593 if ((state == INKEY_TIMEOUT) || (current->mapping[k] < 0)) {
594 /* return the first key we know about */
595 k = inbuf[start];
596
597 INC_POINTER(start);
598 working = start;
599
600 if (start == end) { /* only one char processed */
601 state = INKEY_NORM;
602 } else {/* otherwise we must have more than one char
603 * to backout */
604 state = INKEY_BACKOUT;
605 }
606 return k;
607 } else { /* must be part of a multikey sequence */
608 /* check for completed key sequence */
609 if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
610 start = working; /* eat the key sequence
611 * in inbuf */
612
613 /* check if inbuf empty now */
614 if (start == end) {
615 /* if it is go back to normal */
616 state = INKEY_NORM;
617 } else {
618 /* otherwise go to backout state */
619 state = INKEY_BACKOUT;
620 }
621
622 /* return the symbol */
623 return current->key[current->mapping[k]]->value.symbol;
624
625 } else {
626 /*
627 * Step on to next part of the multi-key
628 * sequence.
629 */
630 current = current->key[current->mapping[k]]->value.next;
631 }
632 }
633 }
634 }
635
636 #ifndef _CURSES_USE_MACROS
637 /*
638 * getch --
639 * Read in a character from stdscr.
640 */
641 int
642 getch(void)
643 {
644 return wgetch(stdscr);
645 }
646
647 /*
648 * mvgetch --
649 * Read in a character from stdscr at the given location.
650 */
651 int
652 mvgetch(int y, int x)
653 {
654 return mvwgetch(stdscr, y, x);
655 }
656
657 /*
658 * mvwgetch --
659 * Read in a character from stdscr at the given location in the
660 * given window.
661 */
662 int
663 mvwgetch(WINDOW *win, int y, int x)
664 {
665 if (wmove(win, y, x) == ERR)
666 return ERR;
667
668 return wgetch(win);
669 }
670
671 #endif
672
673 /*
674 * wgetch --
675 * Read in a character from the window.
676 */
677 int
678 wgetch(WINDOW *win)
679 {
680 int inp, weset;
681 char c;
682
683 if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
684 && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
685 && __echoit)
686 return (ERR);
687
688 wrefresh(win);
689 #ifdef DEBUG
690 __CTRACE("wgetch: __echoit = %d, __rawmode = %d, flags = %0.2o\n",
691 __echoit, __rawmode, win->flags);
692 #endif
693 if (__echoit && !__rawmode) {
694 cbreak();
695 weset = 1;
696 } else
697 weset = 0;
698
699 __save_termios();
700
701 if (win->flags & __KEYPAD) {
702 switch (win->delay)
703 {
704 case -1:
705 inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
706 break;
707 case 0:
708 if (__nodelay() == ERR) {
709 __restore_termios();
710 return ERR;
711 }
712 inp = inkey(0, 0);
713 break;
714 default:
715 inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
716 break;
717 }
718 } else {
719 switch (win->delay)
720 {
721 case -1:
722 break;
723 case 0:
724 if (__nodelay() == ERR) {
725 __restore_termios();
726 return ERR;
727 }
728 break;
729 default:
730 if (__timeout(win->delay) == ERR) {
731 __restore_termios();
732 return ERR;
733 }
734 break;
735 }
736
737 c = getchar();
738 if (feof(stdin)) {
739 clearerr(stdin);
740 __restore_termios();
741 return ERR; /* we have timed out */
742 }
743
744 if (ferror(stdin)) {
745 clearerr(stdin);
746 inp = ERR;
747 } else {
748 inp = (unsigned int) c;
749 }
750 }
751 #ifdef DEBUG
752 if (inp > 255)
753 /* we have a key symbol - treat it differently */
754 /* XXXX perhaps __unctrl should be expanded to include
755 * XXXX the keysyms in the table....
756 */
757 __CTRACE("wgetch assembled keysym 0x%x\n", inp);
758 else
759 __CTRACE("wgetch got '%s'\n", unctrl(inp));
760 #endif
761 if (win->delay > -1) {
762 if (__delay() == ERR) {
763 __restore_termios();
764 return ERR;
765 }
766 }
767
768 __restore_termios();
769 if (__echoit)
770 waddch(win, (chtype) inp);
771 if (weset)
772 nocbreak();
773
774 return ((inp < 0) || (inp == ERR) ? ERR : inp);
775 }
776
777 /*
778 * ungetch --
779 * Put the character back into the input queue.
780 */
781 int
782 ungetch(int c)
783 {
784 return ((ungetc(c, stdin) == EOF) ? ERR : OK);
785 }
786