getch.c revision 1.33 1 /* $NetBSD: getch.c,v 1.33 2001/01/10 14:02:32 blymn Exp $ */
2
3 /*
4 * Copyright (c) 1981, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 #ifndef lint
38 #if 0
39 static char sccsid[] = "@(#)getch.c 8.2 (Berkeley) 5/4/94";
40 #else
41 __RCSID("$NetBSD: getch.c,v 1.33 2001/01/10 14:02:32 blymn Exp $");
42 #endif
43 #endif /* not lint */
44
45 #include <string.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #include <stdio.h>
49 #include "curses.h"
50 #include "curses_private.h"
51
52 /* defined in setterm.c */
53 extern struct tinfo *_cursesi_genbuf;
54
55 #define DEFAULT_DELAY 2 /* default delay for timeout() */
56
57 /*
58 * Keyboard input handler. Do this by snarfing
59 * all the info we can out of the termcap entry for TERM and putting it
60 * into a set of keymaps. A keymap is an array the size of all the possible
61 * single characters we can get, the contents of the array is a structure
62 * that contains the type of entry this character is (i.e. part/end of a
63 * multi-char sequence or a plain char) and either a pointer which will point
64 * to another keymap (in the case of a multi-char sequence) OR the data value
65 * that this key should return.
66 *
67 */
68
69 /* private data structures for holding the key definitions */
70 typedef struct keymap keymap_t;
71 typedef struct key_entry key_entry_t;
72
73 struct key_entry {
74 short type; /* type of key this is */
75 union {
76 keymap_t *next; /* next keymap is key is multi-key sequence */
77 wchar_t symbol; /* key symbol if key is a leaf entry */
78 } value;
79 };
80 /* Types of key structures we can have */
81 #define KEYMAP_MULTI 1 /* part of a multi char sequence */
82 #define KEYMAP_LEAF 2 /* key has a symbol associated with it, either
83 * it is the end of a multi-char sequence or a
84 * single char key that generates a symbol */
85
86 /* allocate this many key_entry structs at once to speed start up must
87 * be a power of 2.
88 */
89 #define KEYMAP_ALLOC_CHUNK 4
90
91 /* The max number of different chars we can receive */
92 #define MAX_CHAR 256
93
94 struct keymap {
95 int count; /* count of number of key structs allocated */
96 short mapping[MAX_CHAR]; /* mapping of key to allocated structs */
97 key_entry_t **key; /* dynamic array of keys */
98 };
99
100
101 /* Key buffer */
102 #define INBUF_SZ 16 /* size of key buffer - must be larger than
103 * longest multi-key sequence */
104 static wchar_t inbuf[INBUF_SZ];
105 static int start, end, working; /* pointers for manipulating inbuf data */
106
107 #define INC_POINTER(ptr) do { \
108 (ptr)++; \
109 ptr %= INBUF_SZ; \
110 } while(/*CONSTCOND*/0)
111
112 static short state; /* state of the inkey function */
113
114 #define INKEY_NORM 0 /* no key backlog to process */
115 #define INKEY_ASSEMBLING 1 /* assembling a multi-key sequence */
116 #define INKEY_BACKOUT 2 /* recovering from an unrecognised key */
117 #define INKEY_TIMEOUT 3 /* multi-key sequence timeout */
118
119 /* The termcap data we are interested in and the symbols they map to */
120 struct tcdata {
121 const char *name; /* name of termcap entry */
122 wchar_t symbol; /* the symbol associated with it */
123 };
124
125 static const struct tcdata tc[] = {
126 {"!1", KEY_SSAVE},
127 {"!2", KEY_SSUSPEND},
128 {"!3", KEY_SUNDO},
129 {"#1", KEY_SHELP},
130 {"#2", KEY_SHOME},
131 {"#3", KEY_SIC},
132 {"#4", KEY_SLEFT},
133 {"%0", KEY_REDO},
134 {"%1", KEY_HELP},
135 {"%2", KEY_MARK},
136 {"%3", KEY_MESSAGE},
137 {"%4", KEY_MOVE},
138 {"%5", KEY_NEXT},
139 {"%6", KEY_OPEN},
140 {"%7", KEY_OPTIONS},
141 {"%8", KEY_PREVIOUS},
142 {"%9", KEY_PRINT},
143 {"%a", KEY_SMESSAGE},
144 {"%b", KEY_SMOVE},
145 {"%c", KEY_SNEXT},
146 {"%d", KEY_SOPTIONS},
147 {"%e", KEY_SPREVIOUS},
148 {"%f", KEY_SPRINT},
149 {"%g", KEY_SREDO},
150 {"%h", KEY_SREPLACE},
151 {"%i", KEY_SRIGHT},
152 {"%j", KEY_SRSUME},
153 {"&0", KEY_SCANCEL},
154 {"&1", KEY_REFERENCE},
155 {"&2", KEY_REFRESH},
156 {"&3", KEY_REPLACE},
157 {"&4", KEY_RESTART},
158 {"&5", KEY_RESUME},
159 {"&6", KEY_SAVE},
160 {"&7", KEY_SUSPEND},
161 {"&8", KEY_UNDO},
162 {"&9", KEY_SBEG},
163 {"*0", KEY_SFIND},
164 {"*1", KEY_SCOMMAND},
165 {"*2", KEY_SCOPY},
166 {"*3", KEY_SCREATE},
167 {"*4", KEY_SDC},
168 {"*5", KEY_SDL},
169 {"*6", KEY_SELECT},
170 {"*7", KEY_SEND},
171 {"*8", KEY_SEOL},
172 {"*9", KEY_SEXIT},
173 {"@0", KEY_FIND},
174 {"@1", KEY_BEG},
175 {"@2", KEY_CANCEL},
176 {"@3", KEY_CLOSE},
177 {"@4", KEY_COMMAND},
178 {"@5", KEY_COPY},
179 {"@6", KEY_CREATE},
180 {"@7", KEY_END},
181 {"@8", KEY_ENTER},
182 {"@9", KEY_EXIT},
183 {"F1", KEY_F(11)},
184 {"F2", KEY_F(12)},
185 {"F3", KEY_F(13)},
186 {"F4", KEY_F(14)},
187 {"F5", KEY_F(15)},
188 {"F6", KEY_F(16)},
189 {"F7", KEY_F(17)},
190 {"F8", KEY_F(18)},
191 {"F9", KEY_F(19)},
192 {"FA", KEY_F(20)},
193 {"FB", KEY_F(21)},
194 {"FC", KEY_F(22)},
195 {"FD", KEY_F(23)},
196 {"FE", KEY_F(24)},
197 {"FF", KEY_F(25)},
198 {"FG", KEY_F(26)},
199 {"FH", KEY_F(27)},
200 {"FI", KEY_F(28)},
201 {"FJ", KEY_F(29)},
202 {"FK", KEY_F(30)},
203 {"FL", KEY_F(31)},
204 {"FM", KEY_F(32)},
205 {"FN", KEY_F(33)},
206 {"FO", KEY_F(34)},
207 {"FP", KEY_F(35)},
208 {"FQ", KEY_F(36)},
209 {"FR", KEY_F(37)},
210 {"FS", KEY_F(38)},
211 {"FT", KEY_F(39)},
212 {"FU", KEY_F(40)},
213 {"FV", KEY_F(41)},
214 {"FW", KEY_F(42)},
215 {"FX", KEY_F(43)},
216 {"FY", KEY_F(44)},
217 {"FZ", KEY_F(45)},
218 {"Fa", KEY_F(46)},
219 {"Fb", KEY_F(47)},
220 {"Fc", KEY_F(48)},
221 {"Fd", KEY_F(49)},
222 {"Fe", KEY_F(50)},
223 {"Ff", KEY_F(51)},
224 {"Fg", KEY_F(52)},
225 {"Fh", KEY_F(53)},
226 {"Fi", KEY_F(54)},
227 {"Fj", KEY_F(55)},
228 {"Fk", KEY_F(56)},
229 {"Fl", KEY_F(57)},
230 {"Fm", KEY_F(58)},
231 {"Fn", KEY_F(59)},
232 {"Fo", KEY_F(60)},
233 {"Fp", KEY_F(61)},
234 {"Fq", KEY_F(62)},
235 {"Fr", KEY_F(63)},
236 {"K1", KEY_A1},
237 {"K2", KEY_B2},
238 {"K3", KEY_A3},
239 {"K4", KEY_C1},
240 {"K5", KEY_C3},
241 {"Km", KEY_MOUSE},
242 {"k0", KEY_F0},
243 {"k1", KEY_F(1)},
244 {"k2", KEY_F(2)},
245 {"k3", KEY_F(3)},
246 {"k4", KEY_F(4)},
247 {"k5", KEY_F(5)},
248 {"k6", KEY_F(6)},
249 {"k7", KEY_F(7)},
250 {"k8", KEY_F(8)},
251 {"k9", KEY_F(9)},
252 {"k;", KEY_F(10)},
253 {"kA", KEY_IL},
254 {"ka", KEY_CATAB},
255 {"kB", KEY_BTAB},
256 {"kb", KEY_BACKSPACE},
257 {"kC", KEY_CLEAR},
258 {"kD", KEY_DC},
259 {"kd", KEY_DOWN},
260 {"kE", KEY_EOL},
261 {"kF", KEY_SF},
262 {"kH", KEY_LL},
263 {"kh", KEY_HOME},
264 {"kI", KEY_IC},
265 {"kL", KEY_DL},
266 {"kl", KEY_LEFT},
267 {"kM", KEY_EIC},
268 {"kN", KEY_NPAGE},
269 {"kP", KEY_PPAGE},
270 {"kR", KEY_SR},
271 {"kr", KEY_RIGHT},
272 {"kS", KEY_EOS},
273 {"kT", KEY_STAB},
274 {"kt", KEY_CTAB},
275 {"ku", KEY_UP}
276 };
277 /* Number of TC entries .... */
278 static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
279
280 /* The root keymap */
281
282 static keymap_t *base_keymap;
283
284 /* prototypes for private functions */
285 static key_entry_t *add_new_key(keymap_t *current, char chr, int key_type,
286 int symbol);
287 static keymap_t *new_keymap(void); /* create a new keymap */
288 static key_entry_t *new_key(void); /* create a new key entry */
289 static wchar_t inkey(int to, int delay);
290
291 /*
292 * Add a new key entry to the keymap pointed to by current. Entry
293 * contains the character to add to the keymap, type is the type of
294 * entry to add (either multikey or leaf) and symbol is the symbolic
295 * value for a leaf type entry. The function returns a pointer to the
296 * new keymap entry.
297 */
298 static key_entry_t *
299 add_new_key(keymap_t *current, char chr, int key_type, int symbol)
300 {
301 key_entry_t *the_key;
302 int i;
303
304 #ifdef DEBUG
305 __CTRACE("Adding character %s of type %d, symbol 0x%x\n", unctrl(chr),
306 key_type, symbol);
307 #endif
308 if (current->mapping[(unsigned char) chr] < 0) {
309 /* first time for this char */
310 current->mapping[(unsigned char) chr] = current->count; /* map new entry */
311 /* make sure we have room in the key array first */
312 if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
313 {
314 if ((current->key =
315 realloc(current->key,
316 (current->count) * sizeof(key_entry_t *)
317 + KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
318 fprintf(stderr,
319 "Could not malloc for key entry\n");
320 exit(1);
321 }
322
323 the_key = new_key();
324 for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
325 current->key[current->count + i]
326 = &the_key[i];
327 }
328 }
329
330 /* point at the current key array element to use */
331 the_key = current->key[current->count];
332
333 the_key->type = key_type;
334
335 switch (key_type) {
336 case KEYMAP_MULTI:
337 /* need for next key */
338 #ifdef DEBUG
339 __CTRACE("Creating new keymap\n");
340 #endif
341 the_key->value.next = new_keymap();
342 break;
343
344 case KEYMAP_LEAF:
345 /* the associated symbol for the key */
346 #ifdef DEBUG
347 __CTRACE("Adding leaf key\n");
348 #endif
349 the_key->value.symbol = symbol;
350 break;
351
352 default:
353 fprintf(stderr, "add_new_key: bad type passed\n");
354 exit(1);
355 }
356
357 current->count++;
358 } else {
359 /* the key is already known - just return the address. */
360 #ifdef DEBUG
361 __CTRACE("Keymap already known\n");
362 #endif
363 the_key = current->key[current->mapping[(unsigned char) chr]];
364 }
365
366 return the_key;
367 }
368
369 /*
370 * Init_getch - initialise all the pointers & structures needed to make
371 * getch work in keypad mode.
372 *
373 */
374 void
375 __init_getch(void)
376 {
377 char entry[1024], *p;
378 int i, j, length, key_ent;
379 size_t limit;
380 key_entry_t *tmp_key;
381 keymap_t *current;
382 char *cp;
383 #ifdef DEBUG
384 int k;
385 #endif
386
387 /* init the inkey state variable */
388 state = INKEY_NORM;
389
390 /* init the base keymap */
391 base_keymap = new_keymap();
392
393 /* key input buffer pointers */
394 start = end = working = 0;
395
396 /* now do the termcap snarfing ... */
397 for (i = 0; i < num_tcs; i++) {
398 p = entry;
399 limit = 1023;
400 cp = t_getstr(_cursesi_genbuf, tc[i].name, &p, &limit);
401 if (cp != NULL) {
402 free(cp);
403 current = base_keymap; /* always start with
404 * base keymap. */
405 length = (int) strlen(entry);
406 #ifdef DEBUG
407 __CTRACE("Processing termcap entry %s, sequence ",
408 tc[i].name);
409 for (k = 0; k <= length -1; k++)
410 __CTRACE("%s", unctrl(entry[k]));
411 __CTRACE("\n");
412 #endif
413 for (j = 0; j < length - 1; j++) {
414 /* add the entry to the struct */
415 tmp_key = add_new_key(current,
416 entry[j],
417 KEYMAP_MULTI, 0);
418
419 /* index into the key array - it's
420 clearer if we stash this */
421 key_ent = current->mapping[
422 (unsigned char) entry[j]];
423
424 current->key[key_ent] = tmp_key;
425
426 /* next key uses this map... */
427 current = current->key[key_ent]->value.next;
428 }
429
430 /* this is the last key in the sequence (it
431 * may have been the only one but that does
432 * not matter) this means it is a leaf key and
433 * should have a symbol associated with it.
434 */
435 tmp_key = add_new_key(current,
436 entry[length - 1],
437 KEYMAP_LEAF,
438 tc[i].symbol);
439 current->key[
440 current->mapping[(int)entry[length - 1]]] =
441 tmp_key;
442 }
443 }
444 }
445
446
447 /*
448 * new_keymap - allocates & initialises a new keymap structure. This
449 * function returns a pointer to the new keymap.
450 *
451 */
452 static keymap_t *
453 new_keymap(void)
454 {
455 int i;
456 keymap_t *new_map;
457
458 if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
459 perror("Inkey: Cannot allocate new keymap");
460 exit(2);
461 }
462
463 /* Initialise the new map */
464 new_map->count = 0;
465 for (i = 0; i < MAX_CHAR; i++) {
466 new_map->mapping[i] = -1; /* no mapping for char */
467 }
468
469 /* key array will be allocated when first key is added */
470 new_map->key = NULL;
471
472 return new_map;
473 }
474
475 /*
476 * new_key - allocates & initialises a new key entry. This function returns
477 * a pointer to the newly allocated key entry.
478 *
479 */
480 static key_entry_t *
481 new_key(void)
482 {
483 key_entry_t *new_one;
484 int i;
485
486 if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
487 == NULL) {
488 perror("inkey: Cannot allocate new key entry chunk");
489 exit(2);
490 }
491
492 for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
493 new_one[i].type = 0;
494 new_one[i].value.next = NULL;
495 }
496
497 return new_one;
498 }
499
500 /*
501 * inkey - do the work to process keyboard input, check for multi-key
502 * sequences and return the appropriate symbol if we get a match.
503 *
504 */
505
506 wchar_t
507 inkey(int to, int delay)
508 {
509 wchar_t k;
510 int c;
511 keymap_t *current = base_keymap;
512
513 k = 0; /* XXX gcc -Wuninitialized */
514
515 for (;;) { /* loop until we get a complete key sequence */
516 reread:
517 if (state == INKEY_NORM) {
518 if (delay && __timeout(delay) == ERR)
519 return ERR;
520 if ((c = getchar()) == EOF) {
521 clearerr(stdin);
522 return ERR;
523 }
524
525 if (delay && (__notimeout() == ERR))
526 return ERR;
527
528 k = (wchar_t) c;
529 #ifdef DEBUG
530 __CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
531 #endif
532
533 working = start;
534 inbuf[working] = k;
535 INC_POINTER(working);
536 end = working;
537 state = INKEY_ASSEMBLING; /* go to the assembling
538 * state now */
539 } else if (state == INKEY_BACKOUT) {
540 k = inbuf[working];
541 INC_POINTER(working);
542 if (working == end) { /* see if we have run
543 * out of keys in the
544 * backlog */
545
546 /* if we have then switch to
547 assembling */
548 state = INKEY_ASSEMBLING;
549 }
550 } else if (state == INKEY_ASSEMBLING) {
551 /* assembling a key sequence */
552 if (delay) {
553 if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
554 return ERR;
555 } else {
556 if (to && (__timeout(DEFAULT_DELAY) == ERR))
557 return ERR;
558 }
559
560 c = getchar();
561 if (ferror(stdin)) {
562 clearerr(stdin);
563 return ERR;
564 }
565
566 if ((to || delay) && (__notimeout() == ERR))
567 return ERR;
568
569 k = (wchar_t) c;
570 #ifdef DEBUG
571 __CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
572 #endif
573 if (feof(stdin)) { /* inter-char timeout,
574 * start backing out */
575 clearerr(stdin);
576 if (start == end)
577 /* no chars in the buffer, restart */
578 goto reread;
579
580 k = inbuf[start];
581 state = INKEY_TIMEOUT;
582 } else {
583 inbuf[working] = k;
584 INC_POINTER(working);
585 end = working;
586 }
587 } else {
588 fprintf(stderr, "Inkey state screwed - exiting!!!");
589 exit(2);
590 }
591
592 /* Check key has no special meaning and we have not timed out */
593 if ((state == INKEY_TIMEOUT) || (current->mapping[k] < 0)) {
594 /* return the first key we know about */
595 k = inbuf[start];
596
597 INC_POINTER(start);
598 working = start;
599
600 if (start == end) { /* only one char processed */
601 state = INKEY_NORM;
602 } else {/* otherwise we must have more than one char
603 * to backout */
604 state = INKEY_BACKOUT;
605 }
606 return k;
607 } else { /* must be part of a multikey sequence */
608 /* check for completed key sequence */
609 if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
610 start = working; /* eat the key sequence
611 * in inbuf */
612
613 /* check if inbuf empty now */
614 if (start == end) {
615 /* if it is go back to normal */
616 state = INKEY_NORM;
617 } else {
618 /* otherwise go to backout state */
619 state = INKEY_BACKOUT;
620 }
621
622 /* return the symbol */
623 return current->key[current->mapping[k]]->value.symbol;
624
625 } else {
626 /*
627 * Step on to next part of the multi-key
628 * sequence.
629 */
630 current = current->key[current->mapping[k]]->value.next;
631 }
632 }
633 }
634 }
635
636 #ifndef _CURSES_USE_MACROS
637 /*
638 * getch --
639 * Read in a character from stdscr.
640 */
641 int
642 getch(void)
643 {
644 return wgetch(stdscr);
645 }
646
647 /*
648 * mvgetch --
649 * Read in a character from stdscr at the given location.
650 */
651 int
652 mvgetch(int y, int x)
653 {
654 return mvwgetch(stdscr, y, x);
655 }
656
657 /*
658 * mvwgetch --
659 * Read in a character from stdscr at the given location in the
660 * given window.
661 */
662 int
663 mvwgetch(WINDOW *win, int y, int x)
664 {
665 if (wmove(win, y, x) == ERR)
666 return ERR;
667
668 return wgetch(win);
669 }
670
671 #endif
672
673 /*
674 * wgetch --
675 * Read in a character from the window.
676 */
677 int
678 wgetch(WINDOW *win)
679 {
680 int inp, weset;
681 int c;
682
683 if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
684 && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
685 && __echoit)
686 return (ERR);
687
688 if (is_wintouched(win))
689 wrefresh(win);
690 #ifdef DEBUG
691 __CTRACE("wgetch: __echoit = %d, __rawmode = %d, flags = %0.2o\n",
692 __echoit, __rawmode, win->flags);
693 #endif
694 if (__echoit && !__rawmode) {
695 cbreak();
696 weset = 1;
697 } else
698 weset = 0;
699
700 __save_termios();
701
702 if (win->flags & __KEYPAD) {
703 switch (win->delay)
704 {
705 case -1:
706 inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
707 break;
708 case 0:
709 if (__nodelay() == ERR) {
710 __restore_termios();
711 return ERR;
712 }
713 inp = inkey(0, 0);
714 break;
715 default:
716 inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
717 break;
718 }
719 } else {
720 switch (win->delay)
721 {
722 case -1:
723 break;
724 case 0:
725 if (__nodelay() == ERR) {
726 __restore_termios();
727 return ERR;
728 }
729 break;
730 default:
731 if (__timeout(win->delay) == ERR) {
732 __restore_termios();
733 return ERR;
734 }
735 break;
736 }
737
738 c = getchar();
739 if (feof(stdin)) {
740 clearerr(stdin);
741 __restore_termios();
742 return ERR; /* we have timed out */
743 }
744
745 if (ferror(stdin)) {
746 clearerr(stdin);
747 inp = ERR;
748 } else {
749 inp = c;
750 }
751 }
752 #ifdef DEBUG
753 if (inp > 255)
754 /* we have a key symbol - treat it differently */
755 /* XXXX perhaps __unctrl should be expanded to include
756 * XXXX the keysyms in the table....
757 */
758 __CTRACE("wgetch assembled keysym 0x%x\n", inp);
759 else
760 __CTRACE("wgetch got '%s'\n", unctrl(inp));
761 #endif
762 if (win->delay > -1) {
763 if (__delay() == ERR) {
764 __restore_termios();
765 return ERR;
766 }
767 }
768
769 __restore_termios();
770
771 if (__echoit)
772 waddch(win, (chtype) inp);
773
774 if (weset)
775 nocbreak();
776
777 return ((inp < 0) || (inp == ERR) ? ERR : inp);
778 }
779
780 /*
781 * ungetch --
782 * Put the character back into the input queue.
783 */
784 int
785 ungetch(int c)
786 {
787 return ((ungetc(c, stdin) == EOF) ? ERR : OK);
788 }
789