Home | History | Annotate | Line # | Download | only in libcurses
getch.c revision 1.37
      1 /*	$NetBSD: getch.c,v 1.37 2002/10/22 12:07:20 blymn Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1981, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 #ifndef lint
     38 #if 0
     39 static char sccsid[] = "@(#)getch.c	8.2 (Berkeley) 5/4/94";
     40 #else
     41 __RCSID("$NetBSD: getch.c,v 1.37 2002/10/22 12:07:20 blymn Exp $");
     42 #endif
     43 #endif					/* not lint */
     44 
     45 #include <string.h>
     46 #include <stdlib.h>
     47 #include <unistd.h>
     48 #include <stdio.h>
     49 #include "curses.h"
     50 #include "curses_private.h"
     51 
     52 #define DEFAULT_DELAY 2			/* default delay for timeout() */
     53 
     54 /*
     55  * Keyboard input handler.  Do this by snarfing
     56  * all the info we can out of the termcap entry for TERM and putting it
     57  * into a set of keymaps.  A keymap is an array the size of all the possible
     58  * single characters we can get, the contents of the array is a structure
     59  * that contains the type of entry this character is (i.e. part/end of a
     60  * multi-char sequence or a plain char) and either a pointer which will point
     61  * to another keymap (in the case of a multi-char sequence) OR the data value
     62  * that this key should return.
     63  *
     64  */
     65 
     66 /* private data structures for holding the key definitions */
     67 typedef struct key_entry key_entry_t;
     68 
     69 struct key_entry {
     70 	short   type;		/* type of key this is */
     71 	bool    enable;         /* true if the key is active */
     72 	union {
     73 		keymap_t *next;	/* next keymap is key is multi-key sequence */
     74 		wchar_t   symbol;	/* key symbol if key is a leaf entry */
     75 	} value;
     76 };
     77 /* Types of key structures we can have */
     78 #define KEYMAP_MULTI  1		/* part of a multi char sequence */
     79 #define KEYMAP_LEAF   2		/* key has a symbol associated with it, either
     80 				 * it is the end of a multi-char sequence or a
     81 				 * single char key that generates a symbol */
     82 
     83 /* allocate this many key_entry structs at once to speed start up must
     84  * be a power of 2.
     85  */
     86 #define KEYMAP_ALLOC_CHUNK 4
     87 
     88 /* The max number of different chars we can receive */
     89 #define MAX_CHAR 256
     90 
     91 /*
     92  * Unused mapping flag.
     93  */
     94 #define MAPPING_UNUSED (0 - MAX_CHAR) /* never been used */
     95 
     96 struct keymap {
     97 	int	count;	       /* count of number of key structs allocated */
     98 	short	mapping[MAX_CHAR]; /* mapping of key to allocated structs */
     99 	key_entry_t **key;     /* dynamic array of keys */
    100 };
    101 
    102 
    103 /* Key buffer */
    104 #define INBUF_SZ 16		/* size of key buffer - must be larger than
    105 				 * longest multi-key sequence */
    106 static wchar_t  inbuf[INBUF_SZ];
    107 static int     start, end, working; /* pointers for manipulating inbuf data */
    108 
    109 #define INC_POINTER(ptr)  do {	\
    110 	(ptr)++;		\
    111 	ptr %= INBUF_SZ;	\
    112 } while(/*CONSTCOND*/0)
    113 
    114 static short	state;		/* state of the inkey function */
    115 
    116 #define INKEY_NORM	 0	/* no key backlog to process */
    117 #define INKEY_ASSEMBLING 1	/* assembling a multi-key sequence */
    118 #define INKEY_BACKOUT	 2	/* recovering from an unrecognised key */
    119 #define INKEY_TIMEOUT	 3	/* multi-key sequence timeout */
    120 
    121 /* The termcap data we are interested in and the symbols they map to */
    122 struct tcdata {
    123 	const char	*name;	/* name of termcap entry */
    124 	wchar_t	symbol;		/* the symbol associated with it */
    125 };
    126 
    127 static const struct tcdata tc[] = {
    128 	{"!1", KEY_SSAVE},
    129 	{"!2", KEY_SSUSPEND},
    130 	{"!3", KEY_SUNDO},
    131 	{"#1", KEY_SHELP},
    132 	{"#2", KEY_SHOME},
    133 	{"#3", KEY_SIC},
    134 	{"#4", KEY_SLEFT},
    135 	{"%0", KEY_REDO},
    136 	{"%1", KEY_HELP},
    137 	{"%2", KEY_MARK},
    138 	{"%3", KEY_MESSAGE},
    139 	{"%4", KEY_MOVE},
    140 	{"%5", KEY_NEXT},
    141 	{"%6", KEY_OPEN},
    142 	{"%7", KEY_OPTIONS},
    143 	{"%8", KEY_PREVIOUS},
    144 	{"%9", KEY_PRINT},
    145 	{"%a", KEY_SMESSAGE},
    146 	{"%b", KEY_SMOVE},
    147 	{"%c", KEY_SNEXT},
    148 	{"%d", KEY_SOPTIONS},
    149 	{"%e", KEY_SPREVIOUS},
    150 	{"%f", KEY_SPRINT},
    151 	{"%g", KEY_SREDO},
    152 	{"%h", KEY_SREPLACE},
    153 	{"%i", KEY_SRIGHT},
    154 	{"%j", KEY_SRSUME},
    155 	{"&0", KEY_SCANCEL},
    156 	{"&1", KEY_REFERENCE},
    157 	{"&2", KEY_REFRESH},
    158 	{"&3", KEY_REPLACE},
    159 	{"&4", KEY_RESTART},
    160 	{"&5", KEY_RESUME},
    161 	{"&6", KEY_SAVE},
    162 	{"&7", KEY_SUSPEND},
    163 	{"&8", KEY_UNDO},
    164 	{"&9", KEY_SBEG},
    165 	{"*0", KEY_SFIND},
    166 	{"*1", KEY_SCOMMAND},
    167 	{"*2", KEY_SCOPY},
    168 	{"*3", KEY_SCREATE},
    169 	{"*4", KEY_SDC},
    170 	{"*5", KEY_SDL},
    171 	{"*6", KEY_SELECT},
    172 	{"*7", KEY_SEND},
    173 	{"*8", KEY_SEOL},
    174 	{"*9", KEY_SEXIT},
    175 	{"@0", KEY_FIND},
    176 	{"@1", KEY_BEG},
    177 	{"@2", KEY_CANCEL},
    178 	{"@3", KEY_CLOSE},
    179 	{"@4", KEY_COMMAND},
    180 	{"@5", KEY_COPY},
    181 	{"@6", KEY_CREATE},
    182 	{"@7", KEY_END},
    183 	{"@8", KEY_ENTER},
    184 	{"@9", KEY_EXIT},
    185 	{"F1", KEY_F(11)},
    186 	{"F2", KEY_F(12)},
    187 	{"F3", KEY_F(13)},
    188 	{"F4", KEY_F(14)},
    189 	{"F5", KEY_F(15)},
    190 	{"F6", KEY_F(16)},
    191 	{"F7", KEY_F(17)},
    192 	{"F8", KEY_F(18)},
    193 	{"F9", KEY_F(19)},
    194 	{"FA", KEY_F(20)},
    195 	{"FB", KEY_F(21)},
    196 	{"FC", KEY_F(22)},
    197 	{"FD", KEY_F(23)},
    198 	{"FE", KEY_F(24)},
    199 	{"FF", KEY_F(25)},
    200 	{"FG", KEY_F(26)},
    201 	{"FH", KEY_F(27)},
    202 	{"FI", KEY_F(28)},
    203 	{"FJ", KEY_F(29)},
    204 	{"FK", KEY_F(30)},
    205 	{"FL", KEY_F(31)},
    206 	{"FM", KEY_F(32)},
    207 	{"FN", KEY_F(33)},
    208 	{"FO", KEY_F(34)},
    209 	{"FP", KEY_F(35)},
    210 	{"FQ", KEY_F(36)},
    211 	{"FR", KEY_F(37)},
    212 	{"FS", KEY_F(38)},
    213 	{"FT", KEY_F(39)},
    214 	{"FU", KEY_F(40)},
    215 	{"FV", KEY_F(41)},
    216 	{"FW", KEY_F(42)},
    217 	{"FX", KEY_F(43)},
    218 	{"FY", KEY_F(44)},
    219 	{"FZ", KEY_F(45)},
    220 	{"Fa", KEY_F(46)},
    221 	{"Fb", KEY_F(47)},
    222 	{"Fc", KEY_F(48)},
    223 	{"Fd", KEY_F(49)},
    224 	{"Fe", KEY_F(50)},
    225 	{"Ff", KEY_F(51)},
    226 	{"Fg", KEY_F(52)},
    227 	{"Fh", KEY_F(53)},
    228 	{"Fi", KEY_F(54)},
    229 	{"Fj", KEY_F(55)},
    230 	{"Fk", KEY_F(56)},
    231 	{"Fl", KEY_F(57)},
    232 	{"Fm", KEY_F(58)},
    233 	{"Fn", KEY_F(59)},
    234 	{"Fo", KEY_F(60)},
    235 	{"Fp", KEY_F(61)},
    236 	{"Fq", KEY_F(62)},
    237 	{"Fr", KEY_F(63)},
    238 	{"K1", KEY_A1},
    239 	{"K2", KEY_B2},
    240 	{"K3", KEY_A3},
    241 	{"K4", KEY_C1},
    242 	{"K5", KEY_C3},
    243 	{"Km", KEY_MOUSE},
    244 	{"k0", KEY_F0},
    245 	{"k1", KEY_F(1)},
    246 	{"k2", KEY_F(2)},
    247 	{"k3", KEY_F(3)},
    248 	{"k4", KEY_F(4)},
    249 	{"k5", KEY_F(5)},
    250 	{"k6", KEY_F(6)},
    251 	{"k7", KEY_F(7)},
    252 	{"k8", KEY_F(8)},
    253 	{"k9", KEY_F(9)},
    254 	{"k;", KEY_F(10)},
    255 	{"kA", KEY_IL},
    256 	{"ka", KEY_CATAB},
    257 	{"kB", KEY_BTAB},
    258 	{"kb", KEY_BACKSPACE},
    259 	{"kC", KEY_CLEAR},
    260 	{"kD", KEY_DC},
    261 	{"kd", KEY_DOWN},
    262 	{"kE", KEY_EOL},
    263 	{"kF", KEY_SF},
    264 	{"kH", KEY_LL},
    265 	{"kh", KEY_HOME},
    266 	{"kI", KEY_IC},
    267 	{"kL", KEY_DL},
    268 	{"kl", KEY_LEFT},
    269 	{"kM", KEY_EIC},
    270 	{"kN", KEY_NPAGE},
    271 	{"kP", KEY_PPAGE},
    272 	{"kR", KEY_SR},
    273 	{"kr", KEY_RIGHT},
    274 	{"kS", KEY_EOS},
    275 	{"kT", KEY_STAB},
    276 	{"kt", KEY_CTAB},
    277 	{"ku", KEY_UP}
    278 };
    279 /* Number of TC entries .... */
    280 static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
    281 
    282 /* prototypes for private functions */
    283 static void add_key_sequence(SCREEN *screen, char *sequence, int key_type);
    284 static key_entry_t *add_new_key(keymap_t *current, char chr, int key_type,
    285 				int symbol);
    286 static void delete_key_sequence(keymap_t *current, int key_type);
    287 static void do_keyok(keymap_t *current, int key_type, bool flag, int *retval);
    288 static keymap_t		*new_keymap(void);	/* create a new keymap */
    289 static key_entry_t	*new_key(void);		/* create a new key entry */
    290 static wchar_t		inkey(int to, int delay);
    291 
    292 /*
    293  * Free the storage associated with the given keymap
    294  */
    295 void
    296 _cursesi_free_keymap(keymap_t *map)
    297 {
    298 	int i;
    299 
    300 	  /* check for, and free, child keymaps */
    301 	for (i = 0; i < MAX_CHAR; i++) {
    302 		if (map->mapping[i] >= 0) {
    303 			if (map->key[map->mapping[i]]->type == KEYMAP_MULTI)
    304 				_cursesi_free_keymap(
    305 					map->key[map->mapping[i]]->value.next);
    306 		}
    307 	}
    308 
    309 	  /* now free any allocated keymap structs */
    310 	for (i = 0; i < map->count; i += KEYMAP_ALLOC_CHUNK) {
    311 		free(map->key[i]);
    312 	}
    313 
    314 	free(map->key);
    315 	free(map);
    316 }
    317 
    318 
    319 /*
    320  * Add a new key entry to the keymap pointed to by current.  Entry
    321  * contains the character to add to the keymap, type is the type of
    322  * entry to add (either multikey or leaf) and symbol is the symbolic
    323  * value for a leaf type entry.  The function returns a pointer to the
    324  * new keymap entry.
    325  */
    326 static key_entry_t *
    327 add_new_key(keymap_t *current, char chr, int key_type, int symbol)
    328 {
    329 	key_entry_t *the_key;
    330         int i, ki;
    331 
    332 #ifdef DEBUG
    333 	__CTRACE("Adding character %s of type %d, symbol 0x%x\n", unctrl(chr),
    334 		 key_type, symbol);
    335 #endif
    336 	if (current->mapping[(unsigned char) chr] < 0) {
    337 		if (current->mapping[(unsigned char) chr] == MAPPING_UNUSED) {
    338 			  /* first time for this char */
    339 			current->mapping[(unsigned char) chr] =
    340 				current->count;	/* map new entry */
    341 			ki = current->count;
    342 
    343 			  /* make sure we have room in the key array first */
    344 			if ((current->count & (KEYMAP_ALLOC_CHUNK - 1)) == 0)
    345 			{
    346 				if ((current->key =
    347 				     realloc(current->key,
    348 					     ki * sizeof(key_entry_t *)
    349 					     + KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t *))) == NULL) {
    350 					fprintf(stderr,
    351 					  "Could not malloc for key entry\n");
    352 					exit(1);
    353 				}
    354 
    355 				the_key = new_key();
    356 				for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
    357 					current->key[ki + i] = &the_key[i];
    358 				}
    359 			}
    360                 } else {
    361 			  /* the mapping was used but freed, reuse it */
    362 			ki = - current->mapping[(unsigned char) chr];
    363 			current->mapping[(unsigned char) chr] = ki;
    364 		}
    365 
    366 		current->count++;
    367 
    368 		  /* point at the current key array element to use */
    369 		the_key = current->key[ki];
    370 
    371 		the_key->type = key_type;
    372 
    373 		switch (key_type) {
    374 		  case KEYMAP_MULTI:
    375 			    /* need for next key */
    376 #ifdef DEBUG
    377 			  __CTRACE("Creating new keymap\n");
    378 #endif
    379 			  the_key->value.next = new_keymap();
    380 			  the_key->enable = TRUE;
    381 			  break;
    382 
    383 		  case KEYMAP_LEAF:
    384 				/* the associated symbol for the key */
    385 #ifdef DEBUG
    386 			  __CTRACE("Adding leaf key\n");
    387 #endif
    388 			  the_key->value.symbol = symbol;
    389 			  the_key->enable = TRUE;
    390 			  break;
    391 
    392 		  default:
    393 			  fprintf(stderr, "add_new_key: bad type passed\n");
    394 			  exit(1);
    395 		}
    396 	} else {
    397 		  /* the key is already known - just return the address. */
    398 #ifdef DEBUG
    399 		__CTRACE("Keymap already known\n");
    400 #endif
    401 		the_key = current->key[current->mapping[(unsigned char) chr]];
    402 	}
    403 
    404         return the_key;
    405 }
    406 
    407 /*
    408  * Delete the given key symbol from the key mappings for the screen.
    409  *
    410  */
    411 void
    412 delete_key_sequence(keymap_t *current, int key_type)
    413 {
    414 	key_entry_t *key;
    415 	int i;
    416 
    417 	  /*
    418 	   * we need to iterate over all the keys as there may be
    419 	   * multiple instances of the leaf symbol.
    420 	   */
    421 	for (i = 0; i < MAX_CHAR; i++) {
    422 		if (current->mapping[i] < 0)
    423 			continue; /* no mapping for the key, next! */
    424 
    425 		key = current->key[current->mapping[i]];
    426 
    427 		if (key->type == KEYMAP_MULTI) {
    428 			  /* have not found the leaf, recurse down */
    429 			delete_key_sequence(key->value.next, key_type);
    430 			  /* if we deleted the last key in the map, free */
    431 			if (key->value.next->count == 0)
    432 				_cursesi_free_keymap(key->value.next);
    433 		} else if ((key->type == KEYMAP_LEAF)
    434 			   && (key->value.symbol == key_type)) {
    435 			  /*
    436 			   * delete the mapping by negating the current
    437 			   * index - this "holds" the position in the
    438 			   * allocation just in case we later re-add
    439 			   * the key for that mapping.
    440 			   */
    441 			current->mapping[i] = - current->mapping[i];
    442 			current->count--;
    443 		}
    444 	}
    445 }
    446 
    447 /*
    448  * Add the sequence of characters given in sequence as the key mapping
    449  * for the given key symbol.
    450  */
    451 void
    452 add_key_sequence(SCREEN *screen, char *sequence, int key_type)
    453 {
    454 	key_entry_t *tmp_key;
    455 	keymap_t *current;
    456 	int length, j, key_ent;
    457 
    458 	current = screen->base_keymap;	/* always start with
    459 					 * base keymap. */
    460 	length = (int) strlen(sequence);
    461 
    462 	for (j = 0; j < length - 1; j++) {
    463 		  /* add the entry to the struct */
    464 		tmp_key = add_new_key(current, sequence[j], KEYMAP_MULTI, 0);
    465 
    466 		  /* index into the key array - it's
    467 		     clearer if we stash this */
    468 		key_ent = current->mapping[(unsigned char) sequence[j]];
    469 
    470 		current->key[key_ent] = tmp_key;
    471 
    472 		  /* next key uses this map... */
    473 		current = current->key[key_ent]->value.next;
    474 	}
    475 
    476 	/*
    477 	 * This is the last key in the sequence (it may have been the
    478 	 * only one but that does not matter) this means it is a leaf
    479 	 * key and should have a symbol associated with it.
    480 	 */
    481 	tmp_key = add_new_key(current, sequence[length - 1], KEYMAP_LEAF,
    482 			      key_type);
    483 	current->key[current->mapping[(int)sequence[length - 1]]] = tmp_key;
    484 }
    485 
    486 /*
    487  * Init_getch - initialise all the pointers & structures needed to make
    488  * getch work in keypad mode.
    489  *
    490  */
    491 void
    492 __init_getch(SCREEN *screen)
    493 {
    494 	char entry[1024], *p;
    495 	int     i;
    496 	size_t limit;
    497 #ifdef DEBUG
    498 	int k, length;
    499 #endif
    500 
    501 	/* init the inkey state variable */
    502 	state = INKEY_NORM;
    503 
    504 	/* init the base keymap */
    505 	screen->base_keymap = new_keymap();
    506 
    507 	/* key input buffer pointers */
    508 	start = end = working = 0;
    509 
    510 	/* now do the termcap snarfing ... */
    511 
    512 	for (i = 0; i < num_tcs; i++) {
    513 		p = entry;
    514 		limit = 1023;
    515 		if (t_getstr(screen->cursesi_genbuf, tc[i].name,
    516 			     &p, &limit) != NULL) {
    517 #ifdef DEBUG
    518 			__CTRACE("Processing termcap entry %s, sequence ",
    519 				 tc[i].name);
    520 			length = (int) strlen(entry);
    521 			for (k = 0; k <= length -1; k++)
    522 				__CTRACE("%s", unctrl(entry[k]));
    523 			__CTRACE("\n");
    524 #endif
    525 			add_key_sequence(screen, entry, tc[i].symbol);
    526 		}
    527 
    528 	}
    529 }
    530 
    531 
    532 /*
    533  * new_keymap - allocates & initialises a new keymap structure.  This
    534  * function returns a pointer to the new keymap.
    535  *
    536  */
    537 static keymap_t *
    538 new_keymap(void)
    539 {
    540 	int     i;
    541 	keymap_t *new_map;
    542 
    543 	if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
    544 		perror("Inkey: Cannot allocate new keymap");
    545 		exit(2);
    546 	}
    547 
    548 	/* Initialise the new map */
    549 	new_map->count = 0;
    550 	for (i = 0; i < MAX_CHAR; i++) {
    551 		new_map->mapping[i] = MAPPING_UNUSED; /* no mapping for char */
    552 	}
    553 
    554 	/* key array will be allocated when first key is added */
    555 	new_map->key = NULL;
    556 
    557 	return new_map;
    558 }
    559 
    560 /*
    561  * new_key - allocates & initialises a new key entry.  This function returns
    562  * a pointer to the newly allocated key entry.
    563  *
    564  */
    565 static key_entry_t *
    566 new_key(void)
    567 {
    568 	key_entry_t *new_one;
    569 	int i;
    570 
    571 	if ((new_one = malloc(KEYMAP_ALLOC_CHUNK * sizeof(key_entry_t)))
    572 	    == NULL) {
    573 		perror("inkey: Cannot allocate new key entry chunk");
    574 		exit(2);
    575 	}
    576 
    577 	for (i = 0; i < KEYMAP_ALLOC_CHUNK; i++) {
    578 		new_one[i].type = 0;
    579 		new_one[i].value.next = NULL;
    580 	}
    581 
    582 	return new_one;
    583 }
    584 
    585 /*
    586  * inkey - do the work to process keyboard input, check for multi-key
    587  * sequences and return the appropriate symbol if we get a match.
    588  *
    589  */
    590 
    591 wchar_t
    592 inkey(int to, int delay)
    593 {
    594 	wchar_t		 k;
    595 	int              c, mapping;
    596 	keymap_t	*current = _cursesi_screen->base_keymap;
    597 	FILE            *infd = _cursesi_screen->infd;
    598 
    599 	k = 0;		/* XXX gcc -Wuninitialized */
    600 
    601 	for (;;) {		/* loop until we get a complete key sequence */
    602 reread:
    603 		if (state == INKEY_NORM) {
    604 			if (delay && __timeout(delay) == ERR)
    605 				return ERR;
    606 			if ((c = getchar()) == EOF) {
    607 				clearerr(infd);
    608 				return ERR;
    609 			}
    610 
    611 			if (delay && (__notimeout() == ERR))
    612 				return ERR;
    613 
    614 			k = (wchar_t) c;
    615 #ifdef DEBUG
    616 			__CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
    617 #endif
    618 
    619 			working = start;
    620 			inbuf[working] = k;
    621 			INC_POINTER(working);
    622 			end = working;
    623 			state = INKEY_ASSEMBLING;	/* go to the assembling
    624 							 * state now */
    625 		} else if (state == INKEY_BACKOUT) {
    626 			k = inbuf[working];
    627 			INC_POINTER(working);
    628 			if (working == end) {	/* see if we have run
    629 						 * out of keys in the
    630 						 * backlog */
    631 
    632 				/* if we have then switch to
    633 				   assembling */
    634 				state = INKEY_ASSEMBLING;
    635 			}
    636 		} else if (state == INKEY_ASSEMBLING) {
    637 			/* assembling a key sequence */
    638 			if (delay) {
    639 				if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
    640 						return ERR;
    641 			} else {
    642 				if (to && (__timeout(DEFAULT_DELAY) == ERR))
    643 					return ERR;
    644 			}
    645 
    646 			c = getchar();
    647 			if (ferror(infd)) {
    648 				clearerr(infd);
    649 				return ERR;
    650 			}
    651 
    652 			if ((to || delay) && (__notimeout() == ERR))
    653 					return ERR;
    654 
    655 			k = (wchar_t) c;
    656 #ifdef DEBUG
    657 			__CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
    658 #endif
    659 			if (feof(infd)) {	/* inter-char timeout,
    660 						 * start backing out */
    661 				clearerr(infd);
    662 				if (start == end)
    663 					/* no chars in the buffer, restart */
    664 					goto reread;
    665 
    666 				k = inbuf[start];
    667 				state = INKEY_TIMEOUT;
    668 			} else {
    669 				inbuf[working] = k;
    670 				INC_POINTER(working);
    671 				end = working;
    672 			}
    673 		} else {
    674 			fprintf(stderr, "Inkey state screwed - exiting!!!");
    675 			exit(2);
    676 		}
    677 
    678 		  /*
    679 		   * Check key has no special meaning and we have not
    680 		   * timed out and the key has not been disabled
    681 		   */
    682 		mapping = current->mapping[k];
    683 		if (((state == INKEY_TIMEOUT) || (mapping < 0))
    684 			|| ((current->key[mapping]->type == KEYMAP_LEAF)
    685 			    && (current->key[mapping]->enable == FALSE))) {
    686 			/* return the first key we know about */
    687 			k = inbuf[start];
    688 
    689 			INC_POINTER(start);
    690 			working = start;
    691 
    692 			if (start == end) {	/* only one char processed */
    693 				state = INKEY_NORM;
    694 			} else {/* otherwise we must have more than one char
    695 				 * to backout */
    696 				state = INKEY_BACKOUT;
    697 			}
    698 			return k;
    699 		} else {	/* must be part of a multikey sequence */
    700 			/* check for completed key sequence */
    701 			if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
    702 				start = working;	/* eat the key sequence
    703 							 * in inbuf */
    704 
    705 				/* check if inbuf empty now */
    706 				if (start == end) {
    707 					/* if it is go back to normal */
    708 					state = INKEY_NORM;
    709 				} else {
    710 					/* otherwise go to backout state */
    711 					state = INKEY_BACKOUT;
    712 				}
    713 
    714 				/* return the symbol */
    715 				return current->key[current->mapping[k]]->value.symbol;
    716 
    717 			} else {
    718 				/*
    719 				 * Step on to next part of the multi-key
    720 				 * sequence.
    721 				 */
    722 				current = current->key[current->mapping[k]]->value.next;
    723 			}
    724 		}
    725 	}
    726 }
    727 
    728 #ifndef _CURSES_USE_MACROS
    729 /*
    730  * getch --
    731  *	Read in a character from stdscr.
    732  */
    733 int
    734 getch(void)
    735 {
    736 	return wgetch(stdscr);
    737 }
    738 
    739 /*
    740  * mvgetch --
    741  *      Read in a character from stdscr at the given location.
    742  */
    743 int
    744 mvgetch(int y, int x)
    745 {
    746 	return mvwgetch(stdscr, y, x);
    747 }
    748 
    749 /*
    750  * mvwgetch --
    751  *      Read in a character from stdscr at the given location in the
    752  *      given window.
    753  */
    754 int
    755 mvwgetch(WINDOW *win, int y, int x)
    756 {
    757 	if (wmove(win, y, x) == ERR)
    758 		return ERR;
    759 
    760 	return wgetch(win);
    761 }
    762 
    763 #endif
    764 
    765 /*
    766  * keyok --
    767  *      Set the enable flag for a keysym, if the flag is false then
    768  * getch will not return this keysym even if the matching key sequence
    769  * is seen.
    770  */
    771 int
    772 keyok(int key_type, bool flag)
    773 {
    774 	int result = ERR;
    775 
    776 	do_keyok(_cursesi_screen->base_keymap, key_type, flag, &result);
    777 	return result;
    778 }
    779 
    780 /*
    781  * do_keyok --
    782  *       Does the actual work for keyok, we need to recurse through the
    783  * keymaps finding the passed key symbol.
    784  */
    785 void
    786 do_keyok(keymap_t *current, int key_type, bool flag, int *retval)
    787 {
    788 	key_entry_t *key;
    789 	int i;
    790 
    791 	  /*
    792 	   * we need to iterate over all the keys as there may be
    793 	   * multiple instances of the leaf symbol.
    794 	   */
    795 	for (i = 0; i < MAX_CHAR; i++) {
    796 		if (current->mapping[i] < 0)
    797 			continue; /* no mapping for the key, next! */
    798 
    799 		key = current->key[current->mapping[i]];
    800 
    801 		if (key->type == KEYMAP_MULTI)
    802 			do_keyok(key->value.next, key_type, flag, retval);
    803 		else if ((key->type == KEYMAP_LEAF)
    804 			 && (key->value.symbol == key_type)) {
    805 			key->enable = flag;
    806 			*retval = OK; /* we found at least one instance, ok */
    807 		}
    808 	}
    809 }
    810 
    811 /*
    812  * define_key --
    813  *      Add a custom mapping of a key sequence to key symbol.
    814  *
    815  */
    816 int
    817 define_key(char *sequence, int symbol)
    818 {
    819 
    820 	if (symbol <= 0)
    821 		return ERR;
    822 
    823 	if (sequence == NULL)
    824 		delete_key_sequence(_cursesi_screen->base_keymap, symbol);
    825 	else
    826 		add_key_sequence(_cursesi_screen, sequence, symbol);
    827 
    828 	return OK;
    829 }
    830 
    831 /*
    832  * wgetch --
    833  *	Read in a character from the window.
    834  */
    835 int
    836 wgetch(WINDOW *win)
    837 {
    838 	int inp, weset;
    839 	int c;
    840 	FILE *infd = _cursesi_screen->infd;
    841 
    842 	if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
    843 	    && win->curx == win->maxx - 1 && win->cury == win->maxy - 1
    844 	    && __echoit)
    845 		return (ERR);
    846 
    847 	if (is_wintouched(win))
    848 		wrefresh(win);
    849 #ifdef DEBUG
    850 	__CTRACE("wgetch: __echoit = %d, __rawmode = %d, flags = %0.2o\n",
    851 	    __echoit, __rawmode, win->flags);
    852 #endif
    853 	if (__echoit && !__rawmode) {
    854 		cbreak();
    855 		weset = 1;
    856 	} else
    857 		weset = 0;
    858 
    859 	__save_termios();
    860 
    861 	if (win->flags & __KEYPAD) {
    862 		switch (win->delay)
    863 		{
    864 		case -1:
    865 			inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
    866 			break;
    867 		case 0:
    868 			if (__nodelay() == ERR) {
    869 				__restore_termios();
    870 				return ERR;
    871 			}
    872 			inp = inkey(0, 0);
    873 			break;
    874 		default:
    875 			inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
    876 			break;
    877 		}
    878 	} else {
    879 		switch (win->delay)
    880 		{
    881 		case -1:
    882 			break;
    883 		case 0:
    884 			if (__nodelay() == ERR) {
    885 				__restore_termios();
    886 				return ERR;
    887 			}
    888 			break;
    889 		default:
    890 			if (__timeout(win->delay) == ERR) {
    891 				__restore_termios();
    892 				return ERR;
    893 			}
    894 			break;
    895 		}
    896 
    897 		c = getchar();
    898 		if (feof(infd)) {
    899 			clearerr(infd);
    900 			__restore_termios();
    901 			return ERR;	/* we have timed out */
    902 		}
    903 
    904 		if (ferror(infd)) {
    905 			clearerr(infd);
    906 			inp = ERR;
    907 		} else {
    908 			inp = c;
    909 		}
    910 	}
    911 #ifdef DEBUG
    912 	if (inp > 255)
    913 		  /* we have a key symbol - treat it differently */
    914 		  /* XXXX perhaps __unctrl should be expanded to include
    915 		   * XXXX the keysyms in the table....
    916 		   */
    917 		__CTRACE("wgetch assembled keysym 0x%x\n", inp);
    918 	else
    919 		__CTRACE("wgetch got '%s'\n", unctrl(inp));
    920 #endif
    921 	if (win->delay > -1) {
    922 		if (__delay() == ERR) {
    923 			__restore_termios();
    924 			return ERR;
    925 		}
    926 	}
    927 
    928 	__restore_termios();
    929 
    930 	if (__echoit)
    931 		waddch(win, (chtype) inp);
    932 
    933 	if (weset)
    934 		nocbreak();
    935 
    936 	return ((inp < 0) || (inp == ERR) ? ERR : inp);
    937 }
    938 
    939 /*
    940  * ungetch --
    941  *     Put the character back into the input queue.
    942  */
    943 int
    944 ungetch(int c)
    945 {
    946 	return ((ungetc(c, _cursesi_screen->infd) == EOF) ? ERR : OK);
    947 }
    948