Home | History | Annotate | Line # | Download | only in libkvm
      1  1.100  christos /*	$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $	*/
      2   1.26   mycroft 
      3   1.26   mycroft /*-
      4   1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5   1.26   mycroft  * All rights reserved.
      6   1.26   mycroft  *
      7   1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8   1.26   mycroft  * by Charles M. Hannum.
      9   1.26   mycroft  *
     10   1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11   1.26   mycroft  * modification, are permitted provided that the following conditions
     12   1.26   mycroft  * are met:
     13   1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14   1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15   1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17   1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18   1.26   mycroft  *
     19   1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     30   1.26   mycroft  */
     31   1.16   thorpej 
     32    1.1       cgd /*-
     33    1.1       cgd  * Copyright (c) 1989, 1992, 1993
     34    1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * This code is derived from software developed by the Computer Systems
     37    1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     38    1.1       cgd  * BG 91-66 and contributed to Berkeley.
     39    1.1       cgd  *
     40    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     41    1.1       cgd  * modification, are permitted provided that the following conditions
     42    1.1       cgd  * are met:
     43    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     44    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     45    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     46    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     47    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     48   1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     49    1.1       cgd  *    may be used to endorse or promote products derived from this software
     50    1.1       cgd  *    without specific prior written permission.
     51    1.1       cgd  *
     52    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62    1.1       cgd  * SUCH DAMAGE.
     63    1.1       cgd  */
     64    1.1       cgd 
     65   1.19     mikel #include <sys/cdefs.h>
     66    1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     67   1.16   thorpej #if 0
     68    1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     69   1.16   thorpej #else
     70  1.100  christos __RCSID("$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $");
     71   1.16   thorpej #endif
     72    1.1       cgd #endif /* LIBC_SCCS and not lint */
     73    1.1       cgd 
     74    1.1       cgd /*
     75    1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     76    1.1       cgd  * users of this code, so we've factored it out into a separate module.
     77    1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     78    1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     79    1.1       cgd  */
     80    1.1       cgd 
     81    1.1       cgd #include <sys/param.h>
     82   1.46   thorpej #include <sys/lwp.h>
     83   1.92  christos #include <sys/wait.h>
     84    1.1       cgd #include <sys/proc.h>
     85    1.1       cgd #include <sys/exec.h>
     86    1.1       cgd #include <sys/stat.h>
     87    1.1       cgd #include <sys/ioctl.h>
     88    1.1       cgd #include <sys/tty.h>
     89   1.62      yamt #include <sys/resourcevar.h>
     90   1.68  christos #include <sys/mutex.h>
     91   1.68  christos #include <sys/specificdata.h>
     92   1.86       jym #include <sys/types.h>
     93   1.66        ad 
     94   1.63      yamt #include <errno.h>
     95    1.7       cgd #include <stdlib.h>
     96   1.52      ross #include <stddef.h>
     97   1.10   mycroft #include <string.h>
     98    1.1       cgd #include <unistd.h>
     99    1.1       cgd #include <nlist.h>
    100    1.1       cgd #include <kvm.h>
    101    1.1       cgd 
    102   1.23       chs #include <uvm/uvm_extern.h>
    103   1.82       mrg #include <uvm/uvm_param.h>
    104   1.29       mrg #include <uvm/uvm_amap.h>
    105   1.88  uebayasi #include <uvm/uvm_page.h>
    106   1.23       chs 
    107    1.1       cgd #include <sys/sysctl.h>
    108    1.1       cgd 
    109    1.1       cgd #include <limits.h>
    110    1.1       cgd #include <db.h>
    111    1.1       cgd #include <paths.h>
    112    1.1       cgd 
    113    1.1       cgd #include "kvm_private.h"
    114    1.1       cgd 
    115   1.34    simonb /*
    116   1.34    simonb  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    117   1.34    simonb  */
    118   1.34    simonb struct miniproc {
    119   1.34    simonb 	struct	vmspace *p_vmspace;
    120   1.34    simonb 	char	p_stat;
    121   1.97  christos 	vaddr_t p_psstrp;
    122   1.34    simonb 	struct	proc *p_paddr;
    123   1.34    simonb 	pid_t	p_pid;
    124   1.34    simonb };
    125   1.34    simonb 
    126   1.34    simonb /*
    127  1.100  christos  * Convert from struct proc and kinfo_proc to miniproc.
    128   1.34    simonb  */
    129   1.34    simonb #define KPTOMINI(kp, p) \
    130   1.48     enami 	do { \
    131   1.34    simonb 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    132   1.34    simonb 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    133   1.34    simonb 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    134   1.34    simonb 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    135  1.100  christos 	} while (0)
    136   1.34    simonb 
    137   1.34    simonb 
    138   1.68  christos /*
    139   1.68  christos  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
    140   1.68  christos  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
    141   1.68  christos  * kvm(3) so dumps can be read properly.
    142   1.68  christos  *
    143   1.68  christos  * Whenever NetBSD starts exporting credentials to userland consistently (using
    144   1.68  christos  * 'struct uucred', or something) this will have to be updated again.
    145   1.68  christos  */
    146   1.68  christos struct kvm_kauth_cred {
    147   1.68  christos 	u_int cr_refcnt;		/* reference count */
    148   1.95  christos #if COHERENCY_UNIT > 4
    149   1.95  christos 	uint8_t cr_pad[COHERENCY_UNIT - 4];
    150   1.95  christos #endif
    151   1.68  christos 	uid_t cr_uid;			/* user id */
    152   1.68  christos 	uid_t cr_euid;			/* effective user id */
    153   1.68  christos 	uid_t cr_svuid;			/* saved effective user id */
    154   1.68  christos 	gid_t cr_gid;			/* group id */
    155   1.68  christos 	gid_t cr_egid;			/* effective group id */
    156   1.68  christos 	gid_t cr_svgid;			/* saved effective group id */
    157   1.68  christos 	u_int cr_ngroups;		/* number of groups */
    158   1.68  christos 	gid_t cr_groups[NGROUPS];	/* group memberships */
    159   1.68  christos 	specificdata_reference cr_sd;	/* specific data */
    160   1.68  christos };
    161   1.68  christos 
    162   1.85       jym static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    163   1.85       jym 		    u_long *);
    164   1.85       jym static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    165   1.85       jym 		    char *, size_t);
    166   1.85       jym 
    167   1.85       jym static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
    168   1.85       jym static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
    169   1.85       jym static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
    170   1.85       jym 		    void (*)(struct ps_strings *, u_long *, int *));
    171   1.85       jym static char	**kvm_doargv2(kvm_t *, pid_t, int, int);
    172   1.85       jym static int	kvm_proclist(kvm_t *, int, int, struct proc *,
    173   1.85       jym 		    struct kinfo_proc *, int);
    174   1.85       jym static int	proc_verify(kvm_t *, u_long, const struct miniproc *);
    175   1.85       jym static void	ps_str_a(struct ps_strings *, u_long *, int *);
    176   1.85       jym static void	ps_str_e(struct ps_strings *, u_long *, int *);
    177    1.2   mycroft 
    178   1.34    simonb 
    179   1.34    simonb static char *
    180   1.85       jym _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
    181    1.1       cgd {
    182   1.21     perry 	u_long addr, head;
    183   1.21     perry 	u_long offset;
    184    1.1       cgd 	struct vm_map_entry vme;
    185   1.23       chs 	struct vm_amap amap;
    186   1.23       chs 	struct vm_anon *anonp, anon;
    187   1.23       chs 	struct vm_page pg;
    188   1.28  christos 	u_long slot;
    189    1.1       cgd 
    190   1.36      tron 	if (kd->swapspc == NULL) {
    191   1.61  christos 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    192   1.36      tron 		if (kd->swapspc == NULL)
    193   1.48     enami 			return (NULL);
    194    1.5   deraadt 	}
    195    1.8   mycroft 
    196    1.1       cgd 	/*
    197    1.1       cgd 	 * Look through the address map for the memory object
    198    1.1       cgd 	 * that corresponds to the given virtual address.
    199    1.1       cgd 	 * The header just has the entire valid range.
    200    1.1       cgd 	 */
    201    1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    202    1.1       cgd 	addr = head;
    203   1.73        ad 	for (;;) {
    204    1.2   mycroft 		if (KREAD(kd, addr, &vme))
    205   1.48     enami 			return (NULL);
    206    1.1       cgd 
    207   1.23       chs 		if (va >= vme.start && va < vme.end &&
    208   1.23       chs 		    vme.aref.ar_amap != NULL)
    209   1.23       chs 			break;
    210   1.23       chs 
    211    1.1       cgd 		addr = (u_long)vme.next;
    212    1.2   mycroft 		if (addr == head)
    213   1.48     enami 			return (NULL);
    214    1.1       cgd 	}
    215    1.2   mycroft 
    216    1.1       cgd 	/*
    217   1.23       chs 	 * we found the map entry, now to find the object...
    218   1.23       chs 	 */
    219   1.23       chs 	if (vme.aref.ar_amap == NULL)
    220   1.48     enami 		return (NULL);
    221   1.23       chs 
    222   1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    223   1.23       chs 	if (KREAD(kd, addr, &amap))
    224   1.48     enami 		return (NULL);
    225   1.23       chs 
    226   1.23       chs 	offset = va - vme.start;
    227   1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    228   1.23       chs 	/* sanity-check slot number */
    229   1.48     enami 	if (slot > amap.am_nslot)
    230   1.48     enami 		return (NULL);
    231   1.23       chs 
    232   1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    233   1.23       chs 	if (KREAD(kd, addr, &anonp))
    234   1.48     enami 		return (NULL);
    235   1.23       chs 
    236   1.23       chs 	addr = (u_long)anonp;
    237   1.23       chs 	if (KREAD(kd, addr, &anon))
    238   1.48     enami 		return (NULL);
    239   1.23       chs 
    240   1.59       jmc 	addr = (u_long)anon.an_page;
    241   1.23       chs 	if (addr) {
    242   1.23       chs 		if (KREAD(kd, addr, &pg))
    243   1.48     enami 			return (NULL);
    244   1.23       chs 
    245   1.76        ad 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    246   1.94        ad 		    (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
    247   1.48     enami 			return (NULL);
    248   1.48     enami 	} else {
    249   1.60      yamt 		if (kd->swfd < 0 ||
    250   1.76        ad 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    251   1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    252   1.48     enami 			return (NULL);
    253   1.23       chs 	}
    254    1.8   mycroft 
    255    1.2   mycroft 	/* Found the page. */
    256    1.6   mycroft 	offset %= kd->nbpg;
    257    1.6   mycroft 	*cnt = kd->nbpg - offset;
    258   1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    259    1.2   mycroft }
    260    1.1       cgd 
    261    1.1       cgd /*
    262   1.65      elad  * Convert credentials located in kernel space address 'cred' and store
    263   1.65      elad  * them in the appropriate members of 'eproc'.
    264   1.65      elad  */
    265   1.65      elad static int
    266   1.65      elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
    267   1.65      elad {
    268   1.68  christos 	struct kvm_kauth_cred kauthcred;
    269   1.67       dsl 	struct ki_pcred *pc = &eproc->e_pcred;
    270   1.67       dsl 	struct ki_ucred *uc = &eproc->e_ucred;
    271   1.65      elad 
    272   1.65      elad 	if (KREAD(kd, cred, &kauthcred) != 0)
    273   1.65      elad 		return (-1);
    274   1.65      elad 
    275   1.65      elad 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
    276   1.65      elad 	pc->p_ruid = kauthcred.cr_uid;
    277   1.65      elad 	pc->p_svuid = kauthcred.cr_svuid;
    278   1.65      elad 	pc->p_rgid = kauthcred.cr_gid;
    279   1.65      elad 	pc->p_svgid = kauthcred.cr_svgid;
    280   1.65      elad 	pc->p_refcnt = kauthcred.cr_refcnt;
    281   1.67       dsl 	pc->p_pad = NULL;
    282   1.65      elad 
    283   1.65      elad 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
    284   1.65      elad 	uc->cr_ref = kauthcred.cr_refcnt;
    285   1.65      elad 	uc->cr_uid = kauthcred.cr_euid;
    286   1.65      elad 	uc->cr_gid = kauthcred.cr_egid;
    287   1.71  christos 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
    288   1.65      elad 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
    289   1.65      elad 	memcpy(uc->cr_groups, kauthcred.cr_groups,
    290   1.65      elad 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
    291   1.65      elad 
    292   1.65      elad 	return (0);
    293   1.65      elad }
    294   1.65      elad 
    295   1.65      elad /*
    296    1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    297    1.1       cgd  * at most maxcnt procs.
    298    1.1       cgd  */
    299    1.1       cgd static int
    300   1.85       jym kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
    301   1.85       jym 	     struct kinfo_proc *bp, int maxcnt)
    302    1.1       cgd {
    303   1.21     perry 	int cnt = 0;
    304   1.46   thorpej 	int nlwps;
    305   1.46   thorpej 	struct kinfo_lwp *kl;
    306    1.1       cgd 	struct eproc eproc;
    307    1.1       cgd 	struct pgrp pgrp;
    308    1.1       cgd 	struct session sess;
    309    1.1       cgd 	struct tty tty;
    310    1.1       cgd 	struct proc proc;
    311    1.1       cgd 
    312    1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    313    1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    314   1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    315    1.1       cgd 			return (-1);
    316    1.1       cgd 		}
    317   1.65      elad 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
    318   1.65      elad 			_kvm_err(kd, kd->program,
    319   1.65      elad 			    "can't read proc credentials at %p", p);
    320   1.65      elad 			return (-1);
    321   1.65      elad 		}
    322    1.1       cgd 
    323   1.48     enami 		switch (what) {
    324   1.31    simonb 
    325    1.1       cgd 		case KERN_PROC_PID:
    326    1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    327    1.1       cgd 				continue;
    328    1.1       cgd 			break;
    329    1.1       cgd 
    330    1.1       cgd 		case KERN_PROC_UID:
    331    1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    332    1.1       cgd 				continue;
    333    1.1       cgd 			break;
    334    1.1       cgd 
    335    1.1       cgd 		case KERN_PROC_RUID:
    336    1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    337    1.1       cgd 				continue;
    338    1.1       cgd 			break;
    339    1.1       cgd 		}
    340    1.1       cgd 		/*
    341    1.1       cgd 		 * We're going to add another proc to the set.  If this
    342    1.1       cgd 		 * will overflow the buffer, assume the reason is because
    343    1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    344    1.1       cgd 		 */
    345    1.1       cgd 		if (cnt >= maxcnt) {
    346    1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    347    1.1       cgd 			return (-1);
    348    1.1       cgd 		}
    349    1.1       cgd 		/*
    350    1.1       cgd 		 * gather eproc
    351    1.1       cgd 		 */
    352    1.1       cgd 		eproc.e_paddr = p;
    353    1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    354   1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    355   1.48     enami 			    proc.p_pgrp);
    356    1.1       cgd 			return (-1);
    357    1.1       cgd 		}
    358    1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    359    1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    360    1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    361    1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    362   1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read session at %p",
    363   1.48     enami 			    pgrp.pg_session);
    364    1.1       cgd 			return (-1);
    365    1.1       cgd 		}
    366   1.66        ad 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
    367    1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    368    1.1       cgd 				_kvm_err(kd, kd->program,
    369   1.48     enami 				    "can't read tty at %p", sess.s_ttyp);
    370    1.1       cgd 				return (-1);
    371    1.1       cgd 			}
    372   1.81  christos 			eproc.e_tdev = (uint32_t)tty.t_dev;
    373    1.1       cgd 			eproc.e_tsess = tty.t_session;
    374    1.1       cgd 			if (tty.t_pgrp != NULL) {
    375    1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    376    1.1       cgd 					_kvm_err(kd, kd->program,
    377   1.48     enami 					    "can't read tpgrp at %p",
    378   1.48     enami 					    tty.t_pgrp);
    379    1.1       cgd 					return (-1);
    380    1.1       cgd 				}
    381    1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    382    1.1       cgd 			} else
    383    1.1       cgd 				eproc.e_tpgid = -1;
    384    1.1       cgd 		} else
    385   1.81  christos 			eproc.e_tdev = (uint32_t)NODEV;
    386    1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    387   1.33    simonb 		eproc.e_sid = sess.s_sid;
    388    1.1       cgd 		if (sess.s_leader == p)
    389    1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    390   1.48     enami 		/*
    391   1.48     enami 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    392   1.55       wiz 		 * from the first available LWP.
    393   1.46   thorpej 		 */
    394   1.47  christos 		kl = kvm_getlwps(kd, proc.p_pid,
    395   1.57    atatat 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    396   1.46   thorpej 		    sizeof(struct kinfo_lwp), &nlwps);
    397   1.46   thorpej 		if (kl) {
    398   1.46   thorpej 			if (nlwps > 0) {
    399   1.46   thorpej 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    400   1.46   thorpej 			}
    401   1.46   thorpej 		}
    402   1.34    simonb 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    403   1.34    simonb 		    sizeof(eproc.e_vm));
    404    1.9        pk 
    405    1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    406    1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    407    1.1       cgd 
    408    1.1       cgd 		switch (what) {
    409    1.1       cgd 
    410    1.1       cgd 		case KERN_PROC_PGRP:
    411    1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    412    1.1       cgd 				continue;
    413    1.1       cgd 			break;
    414    1.1       cgd 
    415    1.1       cgd 		case KERN_PROC_TTY:
    416   1.66        ad 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
    417   1.48     enami 			    eproc.e_tdev != (dev_t)arg)
    418    1.1       cgd 				continue;
    419    1.1       cgd 			break;
    420    1.1       cgd 		}
    421   1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    422   1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    423    1.1       cgd 		++bp;
    424    1.1       cgd 		++cnt;
    425    1.1       cgd 	}
    426    1.1       cgd 	return (cnt);
    427    1.1       cgd }
    428    1.1       cgd 
    429    1.1       cgd /*
    430    1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    431    1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    432    1.1       cgd  */
    433    1.1       cgd static int
    434   1.85       jym kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
    435   1.85       jym 	      u_long a_zombproc, int maxcnt)
    436    1.1       cgd {
    437   1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    438   1.53  christos 	int acnt, zcnt;
    439    1.1       cgd 	struct proc *p;
    440    1.1       cgd 
    441    1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    442    1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    443    1.1       cgd 		return (-1);
    444    1.1       cgd 	}
    445    1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    446    1.1       cgd 	if (acnt < 0)
    447    1.1       cgd 		return (acnt);
    448    1.1       cgd 
    449    1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    450    1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    451    1.1       cgd 		return (-1);
    452    1.1       cgd 	}
    453   1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    454   1.53  christos 	    maxcnt - acnt);
    455    1.1       cgd 	if (zcnt < 0)
    456    1.1       cgd 		zcnt = 0;
    457    1.1       cgd 
    458    1.1       cgd 	return (acnt + zcnt);
    459    1.1       cgd }
    460    1.1       cgd 
    461   1.34    simonb struct kinfo_proc2 *
    462   1.85       jym kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
    463   1.34    simonb {
    464   1.34    simonb 	size_t size;
    465   1.34    simonb 	int mib[6], st, nprocs;
    466   1.46   thorpej 	struct pstats pstats;
    467   1.34    simonb 
    468   1.34    simonb 	if (ISSYSCTL(kd)) {
    469   1.34    simonb 		size = 0;
    470   1.34    simonb 		mib[0] = CTL_KERN;
    471   1.34    simonb 		mib[1] = KERN_PROC2;
    472   1.34    simonb 		mib[2] = op;
    473   1.34    simonb 		mib[3] = arg;
    474   1.52      ross 		mib[4] = (int)esize;
    475   1.63      yamt again:
    476   1.34    simonb 		mib[5] = 0;
    477   1.52      ross 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    478   1.34    simonb 		if (st == -1) {
    479   1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    480   1.48     enami 			return (NULL);
    481   1.34    simonb 		}
    482   1.34    simonb 
    483   1.52      ross 		mib[5] = (int) (size / esize);
    484   1.61  christos 		KVM_ALLOC(kd, procbase2, size);
    485   1.52      ross 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    486   1.34    simonb 		if (st == -1) {
    487   1.63      yamt 			if (errno == ENOMEM) {
    488   1.63      yamt 				goto again;
    489   1.63      yamt 			}
    490   1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    491   1.48     enami 			return (NULL);
    492   1.34    simonb 		}
    493   1.52      ross 		nprocs = (int) (size / esize);
    494   1.34    simonb 	} else {
    495   1.34    simonb 		char *kp2c;
    496   1.34    simonb 		struct kinfo_proc *kp;
    497   1.34    simonb 		struct kinfo_proc2 kp2, *kp2p;
    498   1.46   thorpej 		struct kinfo_lwp *kl;
    499   1.46   thorpej 		int i, nlwps;
    500   1.34    simonb 
    501   1.34    simonb 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    502   1.34    simonb 		if (kp == NULL)
    503   1.48     enami 			return (NULL);
    504   1.34    simonb 
    505   1.61  christos 		size = nprocs * esize;
    506   1.61  christos 		KVM_ALLOC(kd, procbase2, size);
    507   1.39  christos 		kp2c = (char *)(void *)kd->procbase2;
    508   1.34    simonb 		kp2p = &kp2;
    509   1.34    simonb 		for (i = 0; i < nprocs; i++, kp++) {
    510   1.75      yamt 			struct timeval tv;
    511   1.75      yamt 
    512   1.48     enami 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    513   1.57    atatat 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    514   1.46   thorpej 			    sizeof(struct kinfo_lwp), &nlwps);
    515   1.64       chs 
    516   1.79    cegger 			if (kl == NULL) {
    517   1.79    cegger 				_kvm_syserr(kd, NULL,
    518   1.79    cegger 					"kvm_getlwps() failed on process %u\n",
    519   1.79    cegger 					kp->kp_proc.p_pid);
    520   1.79    cegger 				if (nlwps == 0)
    521   1.79    cegger 					return NULL;
    522   1.79    cegger 				else
    523   1.79    cegger 					continue;
    524   1.79    cegger 			}
    525   1.79    cegger 
    526   1.46   thorpej 			/* We use kl[0] as the "representative" LWP */
    527   1.34    simonb 			memset(kp2p, 0, sizeof(kp2));
    528   1.46   thorpej 			kp2p->p_forw = kl[0].l_forw;
    529   1.46   thorpej 			kp2p->p_back = kl[0].l_back;
    530   1.57    atatat 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    531   1.46   thorpej 			kp2p->p_addr = kl[0].l_addr;
    532   1.57    atatat 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    533   1.57    atatat 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    534   1.57    atatat 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    535   1.57    atatat 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    536   1.57    atatat 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    537   1.57    atatat 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    538   1.57    atatat 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    539   1.34    simonb 			kp2p->p_tsess = 0;
    540   1.69       dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
    541   1.69       dsl 			kp2p->p_ru = 0;
    542   1.69       dsl #else
    543   1.69       dsl 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
    544   1.69       dsl #endif
    545   1.34    simonb 
    546   1.34    simonb 			kp2p->p_eflag = 0;
    547   1.34    simonb 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    548   1.34    simonb 			kp2p->p_flag = kp->kp_proc.p_flag;
    549   1.34    simonb 
    550   1.34    simonb 			kp2p->p_pid = kp->kp_proc.p_pid;
    551   1.34    simonb 
    552   1.34    simonb 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    553   1.34    simonb 			kp2p->p_sid = kp->kp_eproc.e_sid;
    554   1.34    simonb 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    555   1.34    simonb 
    556   1.51       dsl 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    557   1.34    simonb 
    558   1.34    simonb 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    559   1.34    simonb 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    560   1.50    atatat 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    561   1.34    simonb 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    562   1.34    simonb 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    563   1.50    atatat 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    564   1.34    simonb 
    565   1.39  christos 			/*CONSTCOND*/
    566   1.34    simonb 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    567   1.48     enami 			    MIN(sizeof(kp2p->p_groups),
    568   1.48     enami 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    569   1.34    simonb 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    570   1.34    simonb 
    571   1.34    simonb 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    572   1.34    simonb 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    573   1.34    simonb 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    574   1.57    atatat 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    575   1.34    simonb 
    576   1.74        ad 			kp2p->p_estcpu = 0;
    577   1.75      yamt 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
    578   1.75      yamt 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
    579   1.75      yamt 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
    580   1.70  christos 			kp2p->p_cpticks = kl[0].l_cpticks;
    581   1.34    simonb 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    582   1.46   thorpej 			kp2p->p_swtime = kl[0].l_swtime;
    583   1.46   thorpej 			kp2p->p_slptime = kl[0].l_slptime;
    584   1.35   thorpej #if 0 /* XXX thorpej */
    585   1.34    simonb 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    586   1.35   thorpej #else
    587   1.35   thorpej 			kp2p->p_schedflags = 0;
    588   1.35   thorpej #endif
    589   1.34    simonb 
    590   1.34    simonb 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    591   1.34    simonb 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    592   1.34    simonb 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    593   1.34    simonb 
    594   1.57    atatat 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    595   1.34    simonb 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    596   1.34    simonb 
    597   1.46   thorpej 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    598   1.34    simonb 
    599   1.48     enami 			memcpy(&kp2p->p_siglist,
    600   1.66        ad 			    &kp->kp_proc.p_sigpend.sp_set,
    601   1.48     enami 			    sizeof(ki_sigset_t));
    602   1.66        ad 			memset(&kp2p->p_sigmask, 0,
    603   1.48     enami 			    sizeof(ki_sigset_t));
    604   1.48     enami 			memcpy(&kp2p->p_sigignore,
    605   1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    606   1.48     enami 			    sizeof(ki_sigset_t));
    607   1.48     enami 			memcpy(&kp2p->p_sigcatch,
    608   1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    609   1.48     enami 			    sizeof(ki_sigset_t));
    610   1.34    simonb 
    611   1.64       chs 			kp2p->p_stat = kl[0].l_stat;
    612   1.46   thorpej 			kp2p->p_priority = kl[0].l_priority;
    613   1.74        ad 			kp2p->p_usrpri = kl[0].l_priority;
    614   1.34    simonb 			kp2p->p_nice = kp->kp_proc.p_nice;
    615   1.34    simonb 
    616   1.91  christos 			kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
    617   1.34    simonb 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    618   1.34    simonb 
    619   1.39  christos 			/*CONSTCOND*/
    620   1.34    simonb 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    621   1.48     enami 			    MIN(sizeof(kp2p->p_comm),
    622   1.48     enami 			    sizeof(kp->kp_proc.p_comm)));
    623   1.34    simonb 
    624   1.48     enami 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    625   1.48     enami 			    sizeof(kp2p->p_wmesg));
    626   1.46   thorpej 			kp2p->p_wchan = kl[0].l_wchan;
    627   1.48     enami 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    628   1.48     enami 			    sizeof(kp2p->p_login));
    629   1.34    simonb 
    630   1.34    simonb 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    631   1.34    simonb 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    632   1.34    simonb 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    633   1.34    simonb 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    634   1.89    martin 			kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
    635   1.89    martin 			    / kd->nbpg;
    636   1.82       mrg 			/* Adjust mapped size */
    637   1.82       mrg 			kp2p->p_vm_msize =
    638   1.82       mrg 			    (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
    639   1.82       mrg 			    kp->kp_eproc.e_vm.vm_issize +
    640   1.82       mrg 			    kp->kp_eproc.e_vm.vm_ssize;
    641   1.34    simonb 
    642   1.39  christos 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    643   1.34    simonb 
    644   1.46   thorpej 			kp2p->p_realflag = kp->kp_proc.p_flag;
    645   1.46   thorpej 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    646   1.46   thorpej 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    647   1.46   thorpej 			kp2p->p_realstat = kp->kp_proc.p_stat;
    648   1.46   thorpej 
    649   1.48     enami 			if (P_ZOMBIE(&kp->kp_proc) ||
    650   1.46   thorpej 			    kp->kp_proc.p_stats == NULL ||
    651   1.48     enami 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    652   1.34    simonb 				kp2p->p_uvalid = 0;
    653   1.34    simonb 			} else {
    654   1.34    simonb 				kp2p->p_uvalid = 1;
    655   1.34    simonb 
    656   1.39  christos 				kp2p->p_ustart_sec = (u_int32_t)
    657   1.46   thorpej 				    pstats.p_start.tv_sec;
    658   1.39  christos 				kp2p->p_ustart_usec = (u_int32_t)
    659   1.46   thorpej 				    pstats.p_start.tv_usec;
    660   1.39  christos 
    661   1.39  christos 				kp2p->p_uutime_sec = (u_int32_t)
    662   1.46   thorpej 				    pstats.p_ru.ru_utime.tv_sec;
    663   1.39  christos 				kp2p->p_uutime_usec = (u_int32_t)
    664   1.46   thorpej 				    pstats.p_ru.ru_utime.tv_usec;
    665   1.39  christos 				kp2p->p_ustime_sec = (u_int32_t)
    666   1.46   thorpej 				    pstats.p_ru.ru_stime.tv_sec;
    667   1.39  christos 				kp2p->p_ustime_usec = (u_int32_t)
    668   1.46   thorpej 				    pstats.p_ru.ru_stime.tv_usec;
    669   1.34    simonb 
    670   1.46   thorpej 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    671   1.46   thorpej 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    672   1.46   thorpej 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    673   1.46   thorpej 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    674   1.46   thorpej 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    675   1.46   thorpej 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    676   1.46   thorpej 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    677   1.46   thorpej 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    678   1.46   thorpej 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    679   1.46   thorpej 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    680   1.46   thorpej 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    681   1.46   thorpej 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    682   1.46   thorpej 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    683   1.46   thorpej 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    684   1.34    simonb 
    685   1.39  christos 				kp2p->p_uctime_sec = (u_int32_t)
    686   1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_sec +
    687   1.46   thorpej 				    pstats.p_cru.ru_stime.tv_sec);
    688   1.39  christos 				kp2p->p_uctime_usec = (u_int32_t)
    689   1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_usec +
    690   1.46   thorpej 				    pstats.p_cru.ru_stime.tv_usec);
    691   1.34    simonb 			}
    692   1.34    simonb 
    693   1.34    simonb 			memcpy(kp2c, &kp2, esize);
    694   1.34    simonb 			kp2c += esize;
    695   1.34    simonb 		}
    696   1.34    simonb 	}
    697   1.34    simonb 	*cnt = nprocs;
    698   1.34    simonb 	return (kd->procbase2);
    699   1.46   thorpej }
    700   1.46   thorpej 
    701   1.46   thorpej struct kinfo_lwp *
    702   1.85       jym kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
    703   1.46   thorpej {
    704   1.46   thorpej 	size_t size;
    705   1.52      ross 	int mib[5], nlwps;
    706   1.52      ross 	ssize_t st;
    707   1.46   thorpej 	struct kinfo_lwp *kl;
    708   1.46   thorpej 
    709   1.46   thorpej 	if (ISSYSCTL(kd)) {
    710   1.46   thorpej 		size = 0;
    711   1.46   thorpej 		mib[0] = CTL_KERN;
    712   1.46   thorpej 		mib[1] = KERN_LWP;
    713   1.46   thorpej 		mib[2] = pid;
    714   1.52      ross 		mib[3] = (int)esize;
    715   1.46   thorpej 		mib[4] = 0;
    716   1.71  christos again:
    717   1.52      ross 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    718   1.46   thorpej 		if (st == -1) {
    719   1.71  christos 			switch (errno) {
    720   1.72  christos 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    721   1.72  christos 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    722   1.71  christos 				return NULL;
    723   1.71  christos 			default:
    724   1.71  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    725   1.71  christos 				return NULL;
    726   1.71  christos 			}
    727   1.46   thorpej 		}
    728   1.52      ross 		mib[4] = (int) (size / esize);
    729   1.61  christos 		KVM_ALLOC(kd, lwpbase, size);
    730   1.52      ross 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    731   1.46   thorpej 		if (st == -1) {
    732   1.71  christos 			switch (errno) {
    733   1.72  christos 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    734   1.72  christos 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    735   1.71  christos 				return NULL;
    736   1.71  christos 			case ENOMEM:
    737   1.71  christos 				goto again;
    738   1.71  christos 			default:
    739   1.71  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    740   1.71  christos 				return NULL;
    741   1.71  christos 			}
    742   1.46   thorpej 		}
    743   1.52      ross 		nlwps = (int) (size / esize);
    744   1.46   thorpej 	} else {
    745   1.46   thorpej 		/* grovel through the memory image */
    746   1.46   thorpej 		struct proc p;
    747   1.46   thorpej 		struct lwp l;
    748   1.46   thorpej 		u_long laddr;
    749   1.70  christos 		void *back;
    750   1.46   thorpej 		int i;
    751   1.46   thorpej 
    752   1.46   thorpej 		st = kvm_read(kd, paddr, &p, sizeof(p));
    753   1.46   thorpej 		if (st == -1) {
    754   1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    755   1.48     enami 			return (NULL);
    756   1.46   thorpej 		}
    757   1.46   thorpej 
    758   1.46   thorpej 		nlwps = p.p_nlwps;
    759   1.61  christos 		size = nlwps * sizeof(*kd->lwpbase);
    760   1.61  christos 		KVM_ALLOC(kd, lwpbase, size);
    761   1.57    atatat 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    762   1.46   thorpej 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    763   1.46   thorpej 			st = kvm_read(kd, laddr, &l, sizeof(l));
    764   1.46   thorpej 			if (st == -1) {
    765   1.46   thorpej 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    766   1.48     enami 				return (NULL);
    767   1.46   thorpej 			}
    768   1.46   thorpej 			kl = &kd->lwpbase[i];
    769   1.46   thorpej 			kl->l_laddr = laddr;
    770   1.70  christos 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
    771   1.70  christos 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
    772   1.70  christos 			st = kvm_read(kd, laddr, &back, sizeof(back));
    773   1.70  christos 			if (st == -1) {
    774   1.70  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    775   1.70  christos 				return (NULL);
    776   1.70  christos 			}
    777   1.70  christos 			kl->l_back = PTRTOUINT64(back);
    778   1.57    atatat 			kl->l_addr = PTRTOUINT64(l.l_addr);
    779   1.46   thorpej 			kl->l_lid = l.l_lid;
    780   1.46   thorpej 			kl->l_flag = l.l_flag;
    781   1.46   thorpej 			kl->l_swtime = l.l_swtime;
    782   1.46   thorpej 			kl->l_slptime = l.l_slptime;
    783   1.46   thorpej 			kl->l_schedflags = 0; /* XXX */
    784   1.84     rmind 			kl->l_holdcnt = 0;
    785   1.46   thorpej 			kl->l_priority = l.l_priority;
    786   1.74        ad 			kl->l_usrpri = l.l_priority;
    787   1.46   thorpej 			kl->l_stat = l.l_stat;
    788   1.57    atatat 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    789   1.46   thorpej 			if (l.l_wmesg)
    790   1.46   thorpej 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    791   1.52      ross 				    kl->l_wmesg, (size_t)WMESGLEN);
    792   1.46   thorpej 			kl->l_cpuid = KI_NOCPU;
    793   1.57    atatat 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    794   1.46   thorpej 		}
    795   1.46   thorpej 	}
    796   1.46   thorpej 
    797   1.46   thorpej 	*cnt = nlwps;
    798   1.48     enami 	return (kd->lwpbase);
    799   1.34    simonb }
    800   1.34    simonb 
    801    1.1       cgd struct kinfo_proc *
    802   1.85       jym kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
    803    1.1       cgd {
    804    1.7       cgd 	size_t size;
    805    1.7       cgd 	int mib[4], st, nprocs;
    806    1.1       cgd 
    807   1.83      yamt 	if (ISALIVE(kd)) {
    808    1.1       cgd 		size = 0;
    809    1.1       cgd 		mib[0] = CTL_KERN;
    810    1.1       cgd 		mib[1] = KERN_PROC;
    811    1.1       cgd 		mib[2] = op;
    812    1.1       cgd 		mib[3] = arg;
    813   1.52      ross 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    814    1.1       cgd 		if (st == -1) {
    815    1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    816   1.48     enami 			return (NULL);
    817    1.1       cgd 		}
    818   1.61  christos 		KVM_ALLOC(kd, procbase, size);
    819   1.52      ross 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    820    1.1       cgd 		if (st == -1) {
    821    1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    822   1.48     enami 			return (NULL);
    823    1.1       cgd 		}
    824    1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    825    1.1       cgd 			_kvm_err(kd, kd->program,
    826   1.42     enami 			    "proc size mismatch (%lu total, %lu chunks)",
    827   1.42     enami 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    828   1.48     enami 			return (NULL);
    829    1.1       cgd 		}
    830   1.52      ross 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    831    1.1       cgd 	} else {
    832   1.53  christos 		struct nlist nl[4], *p;
    833    1.1       cgd 
    834   1.56  christos 		(void)memset(nl, 0, sizeof(nl));
    835    1.1       cgd 		nl[0].n_name = "_nprocs";
    836    1.1       cgd 		nl[1].n_name = "_allproc";
    837   1.53  christos 		nl[2].n_name = "_zombproc";
    838   1.53  christos 		nl[3].n_name = NULL;
    839    1.1       cgd 
    840    1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    841    1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    842   1.48     enami 				continue;
    843    1.1       cgd 			_kvm_err(kd, kd->program,
    844   1.48     enami 			    "%s: no such symbol", p->n_name);
    845   1.48     enami 			return (NULL);
    846    1.1       cgd 		}
    847    1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    848    1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    849   1.48     enami 			return (NULL);
    850    1.1       cgd 		}
    851   1.61  christos 		size = nprocs * sizeof(*kd->procbase);
    852   1.61  christos 		KVM_ALLOC(kd, procbase, size);
    853    1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    854   1.53  christos 		    nl[2].n_value, nprocs);
    855   1.32       chs 		if (nprocs < 0)
    856   1.48     enami 			return (NULL);
    857    1.1       cgd #ifdef notdef
    858    1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    859    1.1       cgd 		(void)realloc(kd->procbase, size);
    860    1.1       cgd #endif
    861    1.1       cgd 	}
    862    1.1       cgd 	*cnt = nprocs;
    863    1.1       cgd 	return (kd->procbase);
    864    1.1       cgd }
    865    1.1       cgd 
    866    1.1       cgd void *
    867   1.85       jym _kvm_realloc(kvm_t *kd, void *p, size_t n)
    868    1.1       cgd {
    869   1.34    simonb 	void *np = realloc(p, n);
    870    1.1       cgd 
    871   1.36      tron 	if (np == NULL)
    872    1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    873    1.1       cgd 	return (np);
    874    1.1       cgd }
    875    1.1       cgd 
    876    1.1       cgd /*
    877    1.1       cgd  * Read in an argument vector from the user address space of process p.
    878   1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    879    1.1       cgd  * strings.  This is used to read in both the command arguments and
    880    1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    881    1.1       cgd  */
    882    1.1       cgd static char **
    883   1.85       jym kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
    884   1.85       jym 	 int maxcnt)
    885   1.21     perry {
    886   1.21     perry 	char *np, *cp, *ep, *ap;
    887   1.28  christos 	u_long oaddr = (u_long)~0L;
    888   1.28  christos 	u_long len;
    889   1.28  christos 	size_t cc;
    890   1.21     perry 	char **argv;
    891    1.1       cgd 
    892    1.1       cgd 	/*
    893   1.58    toshii 	 * Check that there aren't an unreasonable number of arguments,
    894    1.1       cgd 	 * and that the address is in user space.
    895    1.1       cgd 	 */
    896   1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    897   1.48     enami 		return (NULL);
    898    1.1       cgd 
    899   1.36      tron 	if (kd->argv == NULL) {
    900    1.1       cgd 		/*
    901    1.1       cgd 		 * Try to avoid reallocs.
    902    1.1       cgd 		 */
    903    1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    904   1.61  christos 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
    905   1.36      tron 		if (kd->argv == NULL)
    906   1.48     enami 			return (NULL);
    907    1.1       cgd 	} else if (narg + 1 > kd->argc) {
    908    1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    909   1.61  christos 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
    910   1.48     enami 		    sizeof(*kd->argv));
    911   1.36      tron 		if (kd->argv == NULL)
    912   1.48     enami 			return (NULL);
    913    1.1       cgd 	}
    914   1.36      tron 	if (kd->argspc == NULL) {
    915   1.61  christos 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    916   1.36      tron 		if (kd->argspc == NULL)
    917   1.48     enami 			return (NULL);
    918   1.61  christos 		kd->argspc_len = kd->nbpg;
    919    1.1       cgd 	}
    920   1.36      tron 	if (kd->argbuf == NULL) {
    921   1.61  christos 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
    922   1.36      tron 		if (kd->argbuf == NULL)
    923   1.48     enami 			return (NULL);
    924   1.10   mycroft 	}
    925   1.10   mycroft 	cc = sizeof(char *) * narg;
    926   1.34    simonb 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    927   1.48     enami 		return (NULL);
    928   1.10   mycroft 	ap = np = kd->argspc;
    929    1.1       cgd 	argv = kd->argv;
    930    1.1       cgd 	len = 0;
    931    1.1       cgd 	/*
    932    1.1       cgd 	 * Loop over pages, filling in the argument vector.
    933    1.1       cgd 	 */
    934   1.36      tron 	while (argv < kd->argv + narg && *argv != NULL) {
    935   1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    936   1.10   mycroft 		if (addr != oaddr) {
    937   1.34    simonb 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    938   1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    939   1.48     enami 				return (NULL);
    940   1.10   mycroft 			oaddr = addr;
    941   1.10   mycroft 		}
    942   1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    943   1.28  christos 		cp = kd->argbuf + (size_t)addr;
    944   1.28  christos 		cc = kd->nbpg - (size_t)addr;
    945   1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    946   1.28  christos 			cc = (size_t)(maxcnt - len);
    947   1.10   mycroft 		ep = memchr(cp, '\0', cc);
    948   1.36      tron 		if (ep != NULL)
    949   1.10   mycroft 			cc = ep - cp + 1;
    950   1.61  christos 		if (len + cc > kd->argspc_len) {
    951   1.52      ross 			ptrdiff_t off;
    952   1.21     perry 			char **pp;
    953   1.99       mrg 			uintptr_t op = (uintptr_t)kd->argspc;
    954    1.1       cgd 
    955   1.61  christos 			kd->argspc_len *= 2;
    956   1.61  christos 			kd->argspc = _kvm_realloc(kd, kd->argspc,
    957   1.61  christos 			    kd->argspc_len);
    958   1.36      tron 			if (kd->argspc == NULL)
    959   1.48     enami 				return (NULL);
    960    1.1       cgd 			/*
    961    1.1       cgd 			 * Adjust argv pointers in case realloc moved
    962    1.1       cgd 			 * the string space.
    963    1.1       cgd 			 */
    964   1.99       mrg 			off = (uintptr_t)kd->argspc - op;
    965   1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    966    1.1       cgd 				*pp += off;
    967   1.12   mycroft 			ap += off;
    968   1.12   mycroft 			np += off;
    969    1.1       cgd 		}
    970   1.10   mycroft 		memcpy(np, cp, cc);
    971   1.10   mycroft 		np += cc;
    972    1.1       cgd 		len += cc;
    973   1.36      tron 		if (ep != NULL) {
    974   1.10   mycroft 			*argv++ = ap;
    975   1.10   mycroft 			ap = np;
    976   1.10   mycroft 		} else
    977   1.10   mycroft 			*argv += cc;
    978    1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
    979    1.1       cgd 			/*
    980    1.1       cgd 			 * We're stopping prematurely.  Terminate the
    981   1.10   mycroft 			 * current string.
    982    1.1       cgd 			 */
    983   1.36      tron 			if (ep == NULL) {
    984   1.10   mycroft 				*np = '\0';
    985   1.14   mycroft 				*argv++ = ap;
    986   1.10   mycroft 			}
    987   1.10   mycroft 			break;
    988    1.1       cgd 		}
    989    1.1       cgd 	}
    990   1.10   mycroft 	/* Make sure argv is terminated. */
    991   1.36      tron 	*argv = NULL;
    992   1.10   mycroft 	return (kd->argv);
    993    1.1       cgd }
    994    1.1       cgd 
    995    1.1       cgd static void
    996   1.85       jym ps_str_a(struct ps_strings *p, u_long *addr, int *n)
    997    1.1       cgd {
    998   1.48     enami 
    999    1.1       cgd 	*addr = (u_long)p->ps_argvstr;
   1000    1.1       cgd 	*n = p->ps_nargvstr;
   1001    1.1       cgd }
   1002    1.1       cgd 
   1003    1.1       cgd static void
   1004   1.85       jym ps_str_e(struct ps_strings *p, u_long *addr, int *n)
   1005    1.1       cgd {
   1006   1.48     enami 
   1007    1.1       cgd 	*addr = (u_long)p->ps_envstr;
   1008    1.1       cgd 	*n = p->ps_nenvstr;
   1009    1.1       cgd }
   1010    1.1       cgd 
   1011    1.1       cgd /*
   1012    1.1       cgd  * Determine if the proc indicated by p is still active.
   1013    1.1       cgd  * This test is not 100% foolproof in theory, but chances of
   1014    1.1       cgd  * being wrong are very low.
   1015    1.1       cgd  */
   1016    1.1       cgd static int
   1017   1.85       jym proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
   1018    1.1       cgd {
   1019    1.1       cgd 	struct proc kernproc;
   1020    1.1       cgd 
   1021    1.1       cgd 	/*
   1022    1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
   1023    1.1       cgd 	 * to the cost of the read system call.
   1024    1.1       cgd 	 */
   1025   1.34    simonb 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1026    1.1       cgd 	    sizeof(kernproc))
   1027   1.48     enami 		return (0);
   1028    1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
   1029   1.48     enami 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1030    1.1       cgd }
   1031    1.1       cgd 
   1032    1.1       cgd static char **
   1033   1.85       jym kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
   1034   1.85       jym 	   void (*info)(struct ps_strings *, u_long *, int *))
   1035    1.1       cgd {
   1036   1.21     perry 	char **ap;
   1037    1.1       cgd 	u_long addr;
   1038    1.1       cgd 	int cnt;
   1039    1.1       cgd 	struct ps_strings arginfo;
   1040    1.1       cgd 
   1041    1.1       cgd 	/*
   1042    1.1       cgd 	 * Pointers are stored at the top of the user stack.
   1043    1.1       cgd 	 */
   1044   1.18       gwr 	if (p->p_stat == SZOMB)
   1045   1.48     enami 		return (NULL);
   1046   1.97  christos 	cnt = (int)kvm_ureadm(kd, p, p->p_psstrp,
   1047   1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
   1048   1.18       gwr 	if (cnt != sizeof(arginfo))
   1049   1.48     enami 		return (NULL);
   1050    1.1       cgd 
   1051    1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
   1052    1.3   mycroft 	if (cnt == 0)
   1053   1.48     enami 		return (NULL);
   1054    1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1055    1.1       cgd 	/*
   1056    1.1       cgd 	 * For live kernels, make sure this process didn't go away.
   1057    1.1       cgd 	 */
   1058   1.36      tron 	if (ap != NULL && ISALIVE(kd) &&
   1059   1.34    simonb 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1060   1.36      tron 		ap = NULL;
   1061    1.1       cgd 	return (ap);
   1062    1.1       cgd }
   1063    1.1       cgd 
   1064    1.1       cgd /*
   1065    1.1       cgd  * Get the command args.  This code is now machine independent.
   1066    1.1       cgd  */
   1067    1.1       cgd char **
   1068   1.85       jym kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1069    1.1       cgd {
   1070   1.34    simonb 	struct miniproc p;
   1071   1.34    simonb 
   1072   1.34    simonb 	KPTOMINI(kp, &p);
   1073   1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1074    1.1       cgd }
   1075    1.1       cgd 
   1076    1.1       cgd char **
   1077   1.85       jym kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1078    1.1       cgd {
   1079   1.34    simonb 	struct miniproc p;
   1080   1.34    simonb 
   1081   1.34    simonb 	KPTOMINI(kp, &p);
   1082   1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1083   1.34    simonb }
   1084   1.34    simonb 
   1085   1.34    simonb static char **
   1086   1.85       jym kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
   1087   1.34    simonb {
   1088   1.34    simonb 	size_t bufs;
   1089   1.39  christos 	int narg, mib[4];
   1090   1.61  christos 	size_t newargspc_len;
   1091   1.34    simonb 	char **ap, *bp, *endp;
   1092   1.34    simonb 
   1093   1.34    simonb 	/*
   1094   1.58    toshii 	 * Check that there aren't an unreasonable number of arguments.
   1095   1.34    simonb 	 */
   1096   1.34    simonb 	if (nchr > ARG_MAX)
   1097   1.48     enami 		return (NULL);
   1098   1.34    simonb 
   1099   1.34    simonb 	if (nchr == 0)
   1100   1.34    simonb 		nchr = ARG_MAX;
   1101   1.34    simonb 
   1102   1.34    simonb 	/* Get number of strings in argv */
   1103   1.34    simonb 	mib[0] = CTL_KERN;
   1104   1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1105   1.34    simonb 	mib[2] = pid;
   1106   1.34    simonb 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1107   1.34    simonb 	bufs = sizeof(narg);
   1108   1.52      ross 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1109   1.48     enami 		return (NULL);
   1110   1.34    simonb 
   1111   1.36      tron 	if (kd->argv == NULL) {
   1112   1.34    simonb 		/*
   1113   1.34    simonb 		 * Try to avoid reallocs.
   1114   1.34    simonb 		 */
   1115   1.34    simonb 		kd->argc = MAX(narg + 1, 32);
   1116   1.61  christos 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
   1117   1.36      tron 		if (kd->argv == NULL)
   1118   1.48     enami 			return (NULL);
   1119   1.34    simonb 	} else if (narg + 1 > kd->argc) {
   1120   1.34    simonb 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1121   1.61  christos 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
   1122   1.48     enami 		    sizeof(*kd->argv));
   1123   1.36      tron 		if (kd->argv == NULL)
   1124   1.48     enami 			return (NULL);
   1125   1.34    simonb 	}
   1126   1.34    simonb 
   1127   1.61  christos 	newargspc_len = MIN(nchr, ARG_MAX);
   1128   1.61  christos 	KVM_ALLOC(kd, argspc, newargspc_len);
   1129   1.61  christos 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
   1130   1.34    simonb 
   1131   1.34    simonb 	mib[0] = CTL_KERN;
   1132   1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1133   1.34    simonb 	mib[2] = pid;
   1134   1.34    simonb 	mib[3] = type;
   1135   1.61  christos 	bufs = kd->argspc_len;
   1136   1.52      ross 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1137   1.48     enami 		return (NULL);
   1138   1.34    simonb 
   1139   1.34    simonb 	bp = kd->argspc;
   1140   1.61  christos 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
   1141   1.34    simonb 	ap = kd->argv;
   1142   1.34    simonb 	endp = bp + MIN(nchr, bufs);
   1143   1.34    simonb 
   1144   1.34    simonb 	while (bp < endp) {
   1145   1.34    simonb 		*ap++ = bp;
   1146   1.48     enami 		/*
   1147   1.48     enami 		 * XXX: don't need following anymore, or stick check
   1148   1.48     enami 		 * for max argc in above while loop?
   1149   1.48     enami 		 */
   1150   1.34    simonb 		if (ap >= kd->argv + kd->argc) {
   1151   1.34    simonb 			kd->argc *= 2;
   1152   1.34    simonb 			kd->argv = _kvm_realloc(kd, kd->argv,
   1153   1.34    simonb 			    kd->argc * sizeof(*kd->argv));
   1154   1.44  jdolecek 			ap = kd->argv;
   1155   1.34    simonb 		}
   1156   1.34    simonb 		bp += strlen(bp) + 1;
   1157   1.34    simonb 	}
   1158   1.34    simonb 	*ap = NULL;
   1159   1.48     enami 
   1160   1.34    simonb 	return (kd->argv);
   1161   1.34    simonb }
   1162   1.34    simonb 
   1163   1.34    simonb char **
   1164   1.85       jym kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1165   1.34    simonb {
   1166   1.48     enami 
   1167   1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1168   1.34    simonb }
   1169   1.34    simonb 
   1170   1.34    simonb char **
   1171   1.85       jym kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1172   1.34    simonb {
   1173   1.48     enami 
   1174   1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1175    1.1       cgd }
   1176    1.1       cgd 
   1177    1.1       cgd /*
   1178    1.1       cgd  * Read from user space.  The user context is given by p.
   1179    1.1       cgd  */
   1180   1.34    simonb static ssize_t
   1181   1.85       jym kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
   1182   1.85       jym 	   char *buf, size_t len)
   1183    1.1       cgd {
   1184   1.21     perry 	char *cp;
   1185    1.1       cgd 
   1186    1.1       cgd 	cp = buf;
   1187    1.1       cgd 	while (len > 0) {
   1188   1.28  christos 		size_t cc;
   1189   1.21     perry 		char *dp;
   1190   1.15       cgd 		u_long cnt;
   1191    1.8   mycroft 
   1192   1.34    simonb 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1193   1.36      tron 		if (dp == NULL) {
   1194   1.41  sommerfe 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1195   1.48     enami 			return (0);
   1196    1.8   mycroft 		}
   1197   1.28  christos 		cc = (size_t)MIN(cnt, len);
   1198   1.25     perry 		memcpy(cp, dp, cc);
   1199    1.1       cgd 		cp += cc;
   1200    1.1       cgd 		uva += cc;
   1201    1.1       cgd 		len -= cc;
   1202    1.1       cgd 	}
   1203    1.1       cgd 	return (ssize_t)(cp - buf);
   1204   1.34    simonb }
   1205