1 1.100 christos /* $NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $ */ 2 1.26 mycroft 3 1.26 mycroft /*- 4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 1.26 mycroft * All rights reserved. 6 1.26 mycroft * 7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation 8 1.26 mycroft * by Charles M. Hannum. 9 1.26 mycroft * 10 1.26 mycroft * Redistribution and use in source and binary forms, with or without 11 1.26 mycroft * modification, are permitted provided that the following conditions 12 1.26 mycroft * are met: 13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright 14 1.26 mycroft * notice, this list of conditions and the following disclaimer. 15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright 16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the 17 1.26 mycroft * documentation and/or other materials provided with the distribution. 18 1.26 mycroft * 19 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE. 30 1.26 mycroft */ 31 1.16 thorpej 32 1.1 cgd /*- 33 1.1 cgd * Copyright (c) 1989, 1992, 1993 34 1.1 cgd * The Regents of the University of California. All rights reserved. 35 1.1 cgd * 36 1.1 cgd * This code is derived from software developed by the Computer Systems 37 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 1.1 cgd * BG 91-66 and contributed to Berkeley. 39 1.1 cgd * 40 1.1 cgd * Redistribution and use in source and binary forms, with or without 41 1.1 cgd * modification, are permitted provided that the following conditions 42 1.1 cgd * are met: 43 1.1 cgd * 1. Redistributions of source code must retain the above copyright 44 1.1 cgd * notice, this list of conditions and the following disclaimer. 45 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 46 1.1 cgd * notice, this list of conditions and the following disclaimer in the 47 1.1 cgd * documentation and/or other materials provided with the distribution. 48 1.54 agc * 3. Neither the name of the University nor the names of its contributors 49 1.1 cgd * may be used to endorse or promote products derived from this software 50 1.1 cgd * without specific prior written permission. 51 1.1 cgd * 52 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 1.1 cgd * SUCH DAMAGE. 63 1.1 cgd */ 64 1.1 cgd 65 1.19 mikel #include <sys/cdefs.h> 66 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint) 67 1.16 thorpej #if 0 68 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 1.16 thorpej #else 70 1.100 christos __RCSID("$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $"); 71 1.16 thorpej #endif 72 1.1 cgd #endif /* LIBC_SCCS and not lint */ 73 1.1 cgd 74 1.1 cgd /* 75 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 1.1 cgd * users of this code, so we've factored it out into a separate module. 77 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e., 78 1.1 cgd * most other applications are interested only in open/close/read/nlist). 79 1.1 cgd */ 80 1.1 cgd 81 1.1 cgd #include <sys/param.h> 82 1.46 thorpej #include <sys/lwp.h> 83 1.92 christos #include <sys/wait.h> 84 1.1 cgd #include <sys/proc.h> 85 1.1 cgd #include <sys/exec.h> 86 1.1 cgd #include <sys/stat.h> 87 1.1 cgd #include <sys/ioctl.h> 88 1.1 cgd #include <sys/tty.h> 89 1.62 yamt #include <sys/resourcevar.h> 90 1.68 christos #include <sys/mutex.h> 91 1.68 christos #include <sys/specificdata.h> 92 1.86 jym #include <sys/types.h> 93 1.66 ad 94 1.63 yamt #include <errno.h> 95 1.7 cgd #include <stdlib.h> 96 1.52 ross #include <stddef.h> 97 1.10 mycroft #include <string.h> 98 1.1 cgd #include <unistd.h> 99 1.1 cgd #include <nlist.h> 100 1.1 cgd #include <kvm.h> 101 1.1 cgd 102 1.23 chs #include <uvm/uvm_extern.h> 103 1.82 mrg #include <uvm/uvm_param.h> 104 1.29 mrg #include <uvm/uvm_amap.h> 105 1.88 uebayasi #include <uvm/uvm_page.h> 106 1.23 chs 107 1.1 cgd #include <sys/sysctl.h> 108 1.1 cgd 109 1.1 cgd #include <limits.h> 110 1.1 cgd #include <db.h> 111 1.1 cgd #include <paths.h> 112 1.1 cgd 113 1.1 cgd #include "kvm_private.h" 114 1.1 cgd 115 1.34 simonb /* 116 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 117 1.34 simonb */ 118 1.34 simonb struct miniproc { 119 1.34 simonb struct vmspace *p_vmspace; 120 1.34 simonb char p_stat; 121 1.97 christos vaddr_t p_psstrp; 122 1.34 simonb struct proc *p_paddr; 123 1.34 simonb pid_t p_pid; 124 1.34 simonb }; 125 1.34 simonb 126 1.34 simonb /* 127 1.100 christos * Convert from struct proc and kinfo_proc to miniproc. 128 1.34 simonb */ 129 1.34 simonb #define KPTOMINI(kp, p) \ 130 1.48 enami do { \ 131 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \ 132 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \ 133 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 134 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 135 1.100 christos } while (0) 136 1.34 simonb 137 1.34 simonb 138 1.68 christos /* 139 1.68 christos * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 140 1.68 christos * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 141 1.68 christos * kvm(3) so dumps can be read properly. 142 1.68 christos * 143 1.68 christos * Whenever NetBSD starts exporting credentials to userland consistently (using 144 1.68 christos * 'struct uucred', or something) this will have to be updated again. 145 1.68 christos */ 146 1.68 christos struct kvm_kauth_cred { 147 1.68 christos u_int cr_refcnt; /* reference count */ 148 1.95 christos #if COHERENCY_UNIT > 4 149 1.95 christos uint8_t cr_pad[COHERENCY_UNIT - 4]; 150 1.95 christos #endif 151 1.68 christos uid_t cr_uid; /* user id */ 152 1.68 christos uid_t cr_euid; /* effective user id */ 153 1.68 christos uid_t cr_svuid; /* saved effective user id */ 154 1.68 christos gid_t cr_gid; /* group id */ 155 1.68 christos gid_t cr_egid; /* effective group id */ 156 1.68 christos gid_t cr_svgid; /* saved effective group id */ 157 1.68 christos u_int cr_ngroups; /* number of groups */ 158 1.68 christos gid_t cr_groups[NGROUPS]; /* group memberships */ 159 1.68 christos specificdata_reference cr_sd; /* specific data */ 160 1.68 christos }; 161 1.68 christos 162 1.85 jym static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 163 1.85 jym u_long *); 164 1.85 jym static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 165 1.85 jym char *, size_t); 166 1.85 jym 167 1.85 jym static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 168 1.85 jym static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 169 1.85 jym static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 170 1.85 jym void (*)(struct ps_strings *, u_long *, int *)); 171 1.85 jym static char **kvm_doargv2(kvm_t *, pid_t, int, int); 172 1.85 jym static int kvm_proclist(kvm_t *, int, int, struct proc *, 173 1.85 jym struct kinfo_proc *, int); 174 1.85 jym static int proc_verify(kvm_t *, u_long, const struct miniproc *); 175 1.85 jym static void ps_str_a(struct ps_strings *, u_long *, int *); 176 1.85 jym static void ps_str_e(struct ps_strings *, u_long *, int *); 177 1.2 mycroft 178 1.34 simonb 179 1.34 simonb static char * 180 1.85 jym _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 181 1.1 cgd { 182 1.21 perry u_long addr, head; 183 1.21 perry u_long offset; 184 1.1 cgd struct vm_map_entry vme; 185 1.23 chs struct vm_amap amap; 186 1.23 chs struct vm_anon *anonp, anon; 187 1.23 chs struct vm_page pg; 188 1.28 christos u_long slot; 189 1.1 cgd 190 1.36 tron if (kd->swapspc == NULL) { 191 1.61 christos kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 192 1.36 tron if (kd->swapspc == NULL) 193 1.48 enami return (NULL); 194 1.5 deraadt } 195 1.8 mycroft 196 1.1 cgd /* 197 1.1 cgd * Look through the address map for the memory object 198 1.1 cgd * that corresponds to the given virtual address. 199 1.1 cgd * The header just has the entire valid range. 200 1.1 cgd */ 201 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header; 202 1.1 cgd addr = head; 203 1.73 ad for (;;) { 204 1.2 mycroft if (KREAD(kd, addr, &vme)) 205 1.48 enami return (NULL); 206 1.1 cgd 207 1.23 chs if (va >= vme.start && va < vme.end && 208 1.23 chs vme.aref.ar_amap != NULL) 209 1.23 chs break; 210 1.23 chs 211 1.1 cgd addr = (u_long)vme.next; 212 1.2 mycroft if (addr == head) 213 1.48 enami return (NULL); 214 1.1 cgd } 215 1.2 mycroft 216 1.1 cgd /* 217 1.23 chs * we found the map entry, now to find the object... 218 1.23 chs */ 219 1.23 chs if (vme.aref.ar_amap == NULL) 220 1.48 enami return (NULL); 221 1.23 chs 222 1.23 chs addr = (u_long)vme.aref.ar_amap; 223 1.23 chs if (KREAD(kd, addr, &amap)) 224 1.48 enami return (NULL); 225 1.23 chs 226 1.23 chs offset = va - vme.start; 227 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff; 228 1.23 chs /* sanity-check slot number */ 229 1.48 enami if (slot > amap.am_nslot) 230 1.48 enami return (NULL); 231 1.23 chs 232 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 233 1.23 chs if (KREAD(kd, addr, &anonp)) 234 1.48 enami return (NULL); 235 1.23 chs 236 1.23 chs addr = (u_long)anonp; 237 1.23 chs if (KREAD(kd, addr, &anon)) 238 1.48 enami return (NULL); 239 1.23 chs 240 1.59 jmc addr = (u_long)anon.an_page; 241 1.23 chs if (addr) { 242 1.23 chs if (KREAD(kd, addr, &pg)) 243 1.48 enami return (NULL); 244 1.23 chs 245 1.76 ad if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 246 1.94 ad (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg) 247 1.48 enami return (NULL); 248 1.48 enami } else { 249 1.60 yamt if (kd->swfd < 0 || 250 1.76 ad _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 251 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 252 1.48 enami return (NULL); 253 1.23 chs } 254 1.8 mycroft 255 1.2 mycroft /* Found the page. */ 256 1.6 mycroft offset %= kd->nbpg; 257 1.6 mycroft *cnt = kd->nbpg - offset; 258 1.28 christos return (&kd->swapspc[(size_t)offset]); 259 1.2 mycroft } 260 1.1 cgd 261 1.1 cgd /* 262 1.65 elad * Convert credentials located in kernel space address 'cred' and store 263 1.65 elad * them in the appropriate members of 'eproc'. 264 1.65 elad */ 265 1.65 elad static int 266 1.65 elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 267 1.65 elad { 268 1.68 christos struct kvm_kauth_cred kauthcred; 269 1.67 dsl struct ki_pcred *pc = &eproc->e_pcred; 270 1.67 dsl struct ki_ucred *uc = &eproc->e_ucred; 271 1.65 elad 272 1.65 elad if (KREAD(kd, cred, &kauthcred) != 0) 273 1.65 elad return (-1); 274 1.65 elad 275 1.65 elad /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 276 1.65 elad pc->p_ruid = kauthcred.cr_uid; 277 1.65 elad pc->p_svuid = kauthcred.cr_svuid; 278 1.65 elad pc->p_rgid = kauthcred.cr_gid; 279 1.65 elad pc->p_svgid = kauthcred.cr_svgid; 280 1.65 elad pc->p_refcnt = kauthcred.cr_refcnt; 281 1.67 dsl pc->p_pad = NULL; 282 1.65 elad 283 1.65 elad /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 284 1.65 elad uc->cr_ref = kauthcred.cr_refcnt; 285 1.65 elad uc->cr_uid = kauthcred.cr_euid; 286 1.65 elad uc->cr_gid = kauthcred.cr_egid; 287 1.71 christos uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 288 1.65 elad sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 289 1.65 elad memcpy(uc->cr_groups, kauthcred.cr_groups, 290 1.65 elad uc->cr_ngroups * sizeof(uc->cr_groups[0])); 291 1.65 elad 292 1.65 elad return (0); 293 1.65 elad } 294 1.65 elad 295 1.65 elad /* 296 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold 297 1.1 cgd * at most maxcnt procs. 298 1.1 cgd */ 299 1.1 cgd static int 300 1.85 jym kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 301 1.85 jym struct kinfo_proc *bp, int maxcnt) 302 1.1 cgd { 303 1.21 perry int cnt = 0; 304 1.46 thorpej int nlwps; 305 1.46 thorpej struct kinfo_lwp *kl; 306 1.1 cgd struct eproc eproc; 307 1.1 cgd struct pgrp pgrp; 308 1.1 cgd struct session sess; 309 1.1 cgd struct tty tty; 310 1.1 cgd struct proc proc; 311 1.1 cgd 312 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 313 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) { 314 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p); 315 1.1 cgd return (-1); 316 1.1 cgd } 317 1.65 elad if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 318 1.65 elad _kvm_err(kd, kd->program, 319 1.65 elad "can't read proc credentials at %p", p); 320 1.65 elad return (-1); 321 1.65 elad } 322 1.1 cgd 323 1.48 enami switch (what) { 324 1.31 simonb 325 1.1 cgd case KERN_PROC_PID: 326 1.1 cgd if (proc.p_pid != (pid_t)arg) 327 1.1 cgd continue; 328 1.1 cgd break; 329 1.1 cgd 330 1.1 cgd case KERN_PROC_UID: 331 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg) 332 1.1 cgd continue; 333 1.1 cgd break; 334 1.1 cgd 335 1.1 cgd case KERN_PROC_RUID: 336 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg) 337 1.1 cgd continue; 338 1.1 cgd break; 339 1.1 cgd } 340 1.1 cgd /* 341 1.1 cgd * We're going to add another proc to the set. If this 342 1.1 cgd * will overflow the buffer, assume the reason is because 343 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error. 344 1.1 cgd */ 345 1.1 cgd if (cnt >= maxcnt) { 346 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt"); 347 1.1 cgd return (-1); 348 1.1 cgd } 349 1.1 cgd /* 350 1.1 cgd * gather eproc 351 1.1 cgd */ 352 1.1 cgd eproc.e_paddr = p; 353 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 354 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p", 355 1.48 enami proc.p_pgrp); 356 1.1 cgd return (-1); 357 1.1 cgd } 358 1.1 cgd eproc.e_sess = pgrp.pg_session; 359 1.1 cgd eproc.e_pgid = pgrp.pg_id; 360 1.1 cgd eproc.e_jobc = pgrp.pg_jobc; 361 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 362 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p", 363 1.48 enami pgrp.pg_session); 364 1.1 cgd return (-1); 365 1.1 cgd } 366 1.66 ad if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 367 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 368 1.1 cgd _kvm_err(kd, kd->program, 369 1.48 enami "can't read tty at %p", sess.s_ttyp); 370 1.1 cgd return (-1); 371 1.1 cgd } 372 1.81 christos eproc.e_tdev = (uint32_t)tty.t_dev; 373 1.1 cgd eproc.e_tsess = tty.t_session; 374 1.1 cgd if (tty.t_pgrp != NULL) { 375 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 376 1.1 cgd _kvm_err(kd, kd->program, 377 1.48 enami "can't read tpgrp at %p", 378 1.48 enami tty.t_pgrp); 379 1.1 cgd return (-1); 380 1.1 cgd } 381 1.1 cgd eproc.e_tpgid = pgrp.pg_id; 382 1.1 cgd } else 383 1.1 cgd eproc.e_tpgid = -1; 384 1.1 cgd } else 385 1.81 christos eproc.e_tdev = (uint32_t)NODEV; 386 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 387 1.33 simonb eproc.e_sid = sess.s_sid; 388 1.1 cgd if (sess.s_leader == p) 389 1.1 cgd eproc.e_flag |= EPROC_SLEADER; 390 1.48 enami /* 391 1.48 enami * Fill in the old-style proc.p_wmesg by copying the wmesg 392 1.55 wiz * from the first available LWP. 393 1.46 thorpej */ 394 1.47 christos kl = kvm_getlwps(kd, proc.p_pid, 395 1.57 atatat (u_long)PTRTOUINT64(eproc.e_paddr), 396 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps); 397 1.46 thorpej if (kl) { 398 1.46 thorpej if (nlwps > 0) { 399 1.46 thorpej strcpy(eproc.e_wmesg, kl[0].l_wmesg); 400 1.46 thorpej } 401 1.46 thorpej } 402 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 403 1.34 simonb sizeof(eproc.e_vm)); 404 1.9 pk 405 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0; 406 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0; 407 1.1 cgd 408 1.1 cgd switch (what) { 409 1.1 cgd 410 1.1 cgd case KERN_PROC_PGRP: 411 1.1 cgd if (eproc.e_pgid != (pid_t)arg) 412 1.1 cgd continue; 413 1.1 cgd break; 414 1.1 cgd 415 1.1 cgd case KERN_PROC_TTY: 416 1.66 ad if ((proc.p_lflag & PL_CONTROLT) == 0 || 417 1.48 enami eproc.e_tdev != (dev_t)arg) 418 1.1 cgd continue; 419 1.1 cgd break; 420 1.1 cgd } 421 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc)); 422 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 423 1.1 cgd ++bp; 424 1.1 cgd ++cnt; 425 1.1 cgd } 426 1.1 cgd return (cnt); 427 1.1 cgd } 428 1.1 cgd 429 1.1 cgd /* 430 1.1 cgd * Build proc info array by reading in proc list from a crash dump. 431 1.1 cgd * Return number of procs read. maxcnt is the max we will read. 432 1.1 cgd */ 433 1.1 cgd static int 434 1.85 jym kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 435 1.85 jym u_long a_zombproc, int maxcnt) 436 1.1 cgd { 437 1.21 perry struct kinfo_proc *bp = kd->procbase; 438 1.53 christos int acnt, zcnt; 439 1.1 cgd struct proc *p; 440 1.1 cgd 441 1.1 cgd if (KREAD(kd, a_allproc, &p)) { 442 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc"); 443 1.1 cgd return (-1); 444 1.1 cgd } 445 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 446 1.1 cgd if (acnt < 0) 447 1.1 cgd return (acnt); 448 1.1 cgd 449 1.1 cgd if (KREAD(kd, a_zombproc, &p)) { 450 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc"); 451 1.1 cgd return (-1); 452 1.1 cgd } 453 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 454 1.53 christos maxcnt - acnt); 455 1.1 cgd if (zcnt < 0) 456 1.1 cgd zcnt = 0; 457 1.1 cgd 458 1.1 cgd return (acnt + zcnt); 459 1.1 cgd } 460 1.1 cgd 461 1.34 simonb struct kinfo_proc2 * 462 1.85 jym kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 463 1.34 simonb { 464 1.34 simonb size_t size; 465 1.34 simonb int mib[6], st, nprocs; 466 1.46 thorpej struct pstats pstats; 467 1.34 simonb 468 1.34 simonb if (ISSYSCTL(kd)) { 469 1.34 simonb size = 0; 470 1.34 simonb mib[0] = CTL_KERN; 471 1.34 simonb mib[1] = KERN_PROC2; 472 1.34 simonb mib[2] = op; 473 1.34 simonb mib[3] = arg; 474 1.52 ross mib[4] = (int)esize; 475 1.63 yamt again: 476 1.34 simonb mib[5] = 0; 477 1.52 ross st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 478 1.34 simonb if (st == -1) { 479 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2"); 480 1.48 enami return (NULL); 481 1.34 simonb } 482 1.34 simonb 483 1.52 ross mib[5] = (int) (size / esize); 484 1.61 christos KVM_ALLOC(kd, procbase2, size); 485 1.52 ross st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 486 1.34 simonb if (st == -1) { 487 1.63 yamt if (errno == ENOMEM) { 488 1.63 yamt goto again; 489 1.63 yamt } 490 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2"); 491 1.48 enami return (NULL); 492 1.34 simonb } 493 1.52 ross nprocs = (int) (size / esize); 494 1.34 simonb } else { 495 1.34 simonb char *kp2c; 496 1.34 simonb struct kinfo_proc *kp; 497 1.34 simonb struct kinfo_proc2 kp2, *kp2p; 498 1.46 thorpej struct kinfo_lwp *kl; 499 1.46 thorpej int i, nlwps; 500 1.34 simonb 501 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs); 502 1.34 simonb if (kp == NULL) 503 1.48 enami return (NULL); 504 1.34 simonb 505 1.61 christos size = nprocs * esize; 506 1.61 christos KVM_ALLOC(kd, procbase2, size); 507 1.39 christos kp2c = (char *)(void *)kd->procbase2; 508 1.34 simonb kp2p = &kp2; 509 1.34 simonb for (i = 0; i < nprocs; i++, kp++) { 510 1.75 yamt struct timeval tv; 511 1.75 yamt 512 1.48 enami kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 513 1.57 atatat (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 514 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps); 515 1.64 chs 516 1.79 cegger if (kl == NULL) { 517 1.79 cegger _kvm_syserr(kd, NULL, 518 1.79 cegger "kvm_getlwps() failed on process %u\n", 519 1.79 cegger kp->kp_proc.p_pid); 520 1.79 cegger if (nlwps == 0) 521 1.79 cegger return NULL; 522 1.79 cegger else 523 1.79 cegger continue; 524 1.79 cegger } 525 1.79 cegger 526 1.46 thorpej /* We use kl[0] as the "representative" LWP */ 527 1.34 simonb memset(kp2p, 0, sizeof(kp2)); 528 1.46 thorpej kp2p->p_forw = kl[0].l_forw; 529 1.46 thorpej kp2p->p_back = kl[0].l_back; 530 1.57 atatat kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 531 1.46 thorpej kp2p->p_addr = kl[0].l_addr; 532 1.57 atatat kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 533 1.57 atatat kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 534 1.57 atatat kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 535 1.57 atatat kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 536 1.57 atatat kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 537 1.57 atatat kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 538 1.57 atatat kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 539 1.34 simonb kp2p->p_tsess = 0; 540 1.69 dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 541 1.69 dsl kp2p->p_ru = 0; 542 1.69 dsl #else 543 1.69 dsl kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 544 1.69 dsl #endif 545 1.34 simonb 546 1.34 simonb kp2p->p_eflag = 0; 547 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig; 548 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag; 549 1.34 simonb 550 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid; 551 1.34 simonb 552 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid; 553 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid; 554 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid; 555 1.34 simonb 556 1.51 dsl kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 557 1.34 simonb 558 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 559 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 560 1.50 atatat kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 561 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 562 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 563 1.50 atatat kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 564 1.34 simonb 565 1.39 christos /*CONSTCOND*/ 566 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 567 1.48 enami MIN(sizeof(kp2p->p_groups), 568 1.48 enami sizeof(kp->kp_eproc.e_ucred.cr_groups))); 569 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 570 1.34 simonb 571 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc; 572 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev; 573 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 574 1.57 atatat kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 575 1.34 simonb 576 1.74 ad kp2p->p_estcpu = 0; 577 1.75 yamt bintime2timeval(&kp->kp_proc.p_rtime, &tv); 578 1.75 yamt kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 579 1.75 yamt kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 580 1.70 christos kp2p->p_cpticks = kl[0].l_cpticks; 581 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 582 1.46 thorpej kp2p->p_swtime = kl[0].l_swtime; 583 1.46 thorpej kp2p->p_slptime = kl[0].l_slptime; 584 1.35 thorpej #if 0 /* XXX thorpej */ 585 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags; 586 1.35 thorpej #else 587 1.35 thorpej kp2p->p_schedflags = 0; 588 1.35 thorpej #endif 589 1.34 simonb 590 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks; 591 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks; 592 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks; 593 1.34 simonb 594 1.57 atatat kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 595 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag; 596 1.34 simonb 597 1.46 thorpej kp2p->p_holdcnt = kl[0].l_holdcnt; 598 1.34 simonb 599 1.48 enami memcpy(&kp2p->p_siglist, 600 1.66 ad &kp->kp_proc.p_sigpend.sp_set, 601 1.48 enami sizeof(ki_sigset_t)); 602 1.66 ad memset(&kp2p->p_sigmask, 0, 603 1.48 enami sizeof(ki_sigset_t)); 604 1.48 enami memcpy(&kp2p->p_sigignore, 605 1.48 enami &kp->kp_proc.p_sigctx.ps_sigignore, 606 1.48 enami sizeof(ki_sigset_t)); 607 1.48 enami memcpy(&kp2p->p_sigcatch, 608 1.48 enami &kp->kp_proc.p_sigctx.ps_sigcatch, 609 1.48 enami sizeof(ki_sigset_t)); 610 1.34 simonb 611 1.64 chs kp2p->p_stat = kl[0].l_stat; 612 1.46 thorpej kp2p->p_priority = kl[0].l_priority; 613 1.74 ad kp2p->p_usrpri = kl[0].l_priority; 614 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice; 615 1.34 simonb 616 1.91 christos kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc); 617 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag; 618 1.34 simonb 619 1.39 christos /*CONSTCOND*/ 620 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 621 1.48 enami MIN(sizeof(kp2p->p_comm), 622 1.48 enami sizeof(kp->kp_proc.p_comm))); 623 1.34 simonb 624 1.48 enami strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 625 1.48 enami sizeof(kp2p->p_wmesg)); 626 1.46 thorpej kp2p->p_wchan = kl[0].l_wchan; 627 1.48 enami strncpy(kp2p->p_login, kp->kp_eproc.e_login, 628 1.48 enami sizeof(kp2p->p_login)); 629 1.34 simonb 630 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 631 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 632 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 633 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 634 1.89 martin kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size 635 1.89 martin / kd->nbpg; 636 1.82 mrg /* Adjust mapped size */ 637 1.82 mrg kp2p->p_vm_msize = 638 1.82 mrg (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - 639 1.82 mrg kp->kp_eproc.e_vm.vm_issize + 640 1.82 mrg kp->kp_eproc.e_vm.vm_ssize; 641 1.34 simonb 642 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 643 1.34 simonb 644 1.46 thorpej kp2p->p_realflag = kp->kp_proc.p_flag; 645 1.46 thorpej kp2p->p_nlwps = kp->kp_proc.p_nlwps; 646 1.46 thorpej kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 647 1.46 thorpej kp2p->p_realstat = kp->kp_proc.p_stat; 648 1.46 thorpej 649 1.48 enami if (P_ZOMBIE(&kp->kp_proc) || 650 1.46 thorpej kp->kp_proc.p_stats == NULL || 651 1.48 enami KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 652 1.34 simonb kp2p->p_uvalid = 0; 653 1.34 simonb } else { 654 1.34 simonb kp2p->p_uvalid = 1; 655 1.34 simonb 656 1.39 christos kp2p->p_ustart_sec = (u_int32_t) 657 1.46 thorpej pstats.p_start.tv_sec; 658 1.39 christos kp2p->p_ustart_usec = (u_int32_t) 659 1.46 thorpej pstats.p_start.tv_usec; 660 1.39 christos 661 1.39 christos kp2p->p_uutime_sec = (u_int32_t) 662 1.46 thorpej pstats.p_ru.ru_utime.tv_sec; 663 1.39 christos kp2p->p_uutime_usec = (u_int32_t) 664 1.46 thorpej pstats.p_ru.ru_utime.tv_usec; 665 1.39 christos kp2p->p_ustime_sec = (u_int32_t) 666 1.46 thorpej pstats.p_ru.ru_stime.tv_sec; 667 1.39 christos kp2p->p_ustime_usec = (u_int32_t) 668 1.46 thorpej pstats.p_ru.ru_stime.tv_usec; 669 1.34 simonb 670 1.46 thorpej kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 671 1.46 thorpej kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 672 1.46 thorpej kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 673 1.46 thorpej kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 674 1.46 thorpej kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 675 1.46 thorpej kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 676 1.46 thorpej kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 677 1.46 thorpej kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 678 1.46 thorpej kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 679 1.46 thorpej kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 680 1.46 thorpej kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 681 1.46 thorpej kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 682 1.46 thorpej kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 683 1.46 thorpej kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 684 1.34 simonb 685 1.39 christos kp2p->p_uctime_sec = (u_int32_t) 686 1.46 thorpej (pstats.p_cru.ru_utime.tv_sec + 687 1.46 thorpej pstats.p_cru.ru_stime.tv_sec); 688 1.39 christos kp2p->p_uctime_usec = (u_int32_t) 689 1.46 thorpej (pstats.p_cru.ru_utime.tv_usec + 690 1.46 thorpej pstats.p_cru.ru_stime.tv_usec); 691 1.34 simonb } 692 1.34 simonb 693 1.34 simonb memcpy(kp2c, &kp2, esize); 694 1.34 simonb kp2c += esize; 695 1.34 simonb } 696 1.34 simonb } 697 1.34 simonb *cnt = nprocs; 698 1.34 simonb return (kd->procbase2); 699 1.46 thorpej } 700 1.46 thorpej 701 1.46 thorpej struct kinfo_lwp * 702 1.85 jym kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt) 703 1.46 thorpej { 704 1.46 thorpej size_t size; 705 1.52 ross int mib[5], nlwps; 706 1.52 ross ssize_t st; 707 1.46 thorpej struct kinfo_lwp *kl; 708 1.46 thorpej 709 1.46 thorpej if (ISSYSCTL(kd)) { 710 1.46 thorpej size = 0; 711 1.46 thorpej mib[0] = CTL_KERN; 712 1.46 thorpej mib[1] = KERN_LWP; 713 1.46 thorpej mib[2] = pid; 714 1.52 ross mib[3] = (int)esize; 715 1.46 thorpej mib[4] = 0; 716 1.71 christos again: 717 1.52 ross st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 718 1.46 thorpej if (st == -1) { 719 1.71 christos switch (errno) { 720 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */ 721 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps"); 722 1.71 christos return NULL; 723 1.71 christos default: 724 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps"); 725 1.71 christos return NULL; 726 1.71 christos } 727 1.46 thorpej } 728 1.52 ross mib[4] = (int) (size / esize); 729 1.61 christos KVM_ALLOC(kd, lwpbase, size); 730 1.52 ross st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 731 1.46 thorpej if (st == -1) { 732 1.71 christos switch (errno) { 733 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */ 734 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps"); 735 1.71 christos return NULL; 736 1.71 christos case ENOMEM: 737 1.71 christos goto again; 738 1.71 christos default: 739 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps"); 740 1.71 christos return NULL; 741 1.71 christos } 742 1.46 thorpej } 743 1.52 ross nlwps = (int) (size / esize); 744 1.46 thorpej } else { 745 1.46 thorpej /* grovel through the memory image */ 746 1.46 thorpej struct proc p; 747 1.46 thorpej struct lwp l; 748 1.46 thorpej u_long laddr; 749 1.70 christos void *back; 750 1.46 thorpej int i; 751 1.46 thorpej 752 1.46 thorpej st = kvm_read(kd, paddr, &p, sizeof(p)); 753 1.46 thorpej if (st == -1) { 754 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps"); 755 1.48 enami return (NULL); 756 1.46 thorpej } 757 1.46 thorpej 758 1.46 thorpej nlwps = p.p_nlwps; 759 1.61 christos size = nlwps * sizeof(*kd->lwpbase); 760 1.61 christos KVM_ALLOC(kd, lwpbase, size); 761 1.57 atatat laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 762 1.46 thorpej for (i = 0; (i < nlwps) && (laddr != 0); i++) { 763 1.46 thorpej st = kvm_read(kd, laddr, &l, sizeof(l)); 764 1.46 thorpej if (st == -1) { 765 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps"); 766 1.48 enami return (NULL); 767 1.46 thorpej } 768 1.46 thorpej kl = &kd->lwpbase[i]; 769 1.46 thorpej kl->l_laddr = laddr; 770 1.70 christos kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 771 1.70 christos laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 772 1.70 christos st = kvm_read(kd, laddr, &back, sizeof(back)); 773 1.70 christos if (st == -1) { 774 1.70 christos _kvm_syserr(kd, kd->program, "kvm_getlwps"); 775 1.70 christos return (NULL); 776 1.70 christos } 777 1.70 christos kl->l_back = PTRTOUINT64(back); 778 1.57 atatat kl->l_addr = PTRTOUINT64(l.l_addr); 779 1.46 thorpej kl->l_lid = l.l_lid; 780 1.46 thorpej kl->l_flag = l.l_flag; 781 1.46 thorpej kl->l_swtime = l.l_swtime; 782 1.46 thorpej kl->l_slptime = l.l_slptime; 783 1.46 thorpej kl->l_schedflags = 0; /* XXX */ 784 1.84 rmind kl->l_holdcnt = 0; 785 1.46 thorpej kl->l_priority = l.l_priority; 786 1.74 ad kl->l_usrpri = l.l_priority; 787 1.46 thorpej kl->l_stat = l.l_stat; 788 1.57 atatat kl->l_wchan = PTRTOUINT64(l.l_wchan); 789 1.46 thorpej if (l.l_wmesg) 790 1.46 thorpej (void)kvm_read(kd, (u_long)l.l_wmesg, 791 1.52 ross kl->l_wmesg, (size_t)WMESGLEN); 792 1.46 thorpej kl->l_cpuid = KI_NOCPU; 793 1.57 atatat laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 794 1.46 thorpej } 795 1.46 thorpej } 796 1.46 thorpej 797 1.46 thorpej *cnt = nlwps; 798 1.48 enami return (kd->lwpbase); 799 1.34 simonb } 800 1.34 simonb 801 1.1 cgd struct kinfo_proc * 802 1.85 jym kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 803 1.1 cgd { 804 1.7 cgd size_t size; 805 1.7 cgd int mib[4], st, nprocs; 806 1.1 cgd 807 1.83 yamt if (ISALIVE(kd)) { 808 1.1 cgd size = 0; 809 1.1 cgd mib[0] = CTL_KERN; 810 1.1 cgd mib[1] = KERN_PROC; 811 1.1 cgd mib[2] = op; 812 1.1 cgd mib[3] = arg; 813 1.52 ross st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 814 1.1 cgd if (st == -1) { 815 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs"); 816 1.48 enami return (NULL); 817 1.1 cgd } 818 1.61 christos KVM_ALLOC(kd, procbase, size); 819 1.52 ross st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 820 1.1 cgd if (st == -1) { 821 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs"); 822 1.48 enami return (NULL); 823 1.1 cgd } 824 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) { 825 1.1 cgd _kvm_err(kd, kd->program, 826 1.42 enami "proc size mismatch (%lu total, %lu chunks)", 827 1.42 enami (u_long)size, (u_long)sizeof(struct kinfo_proc)); 828 1.48 enami return (NULL); 829 1.1 cgd } 830 1.52 ross nprocs = (int) (size / sizeof(struct kinfo_proc)); 831 1.1 cgd } else { 832 1.53 christos struct nlist nl[4], *p; 833 1.1 cgd 834 1.56 christos (void)memset(nl, 0, sizeof(nl)); 835 1.1 cgd nl[0].n_name = "_nprocs"; 836 1.1 cgd nl[1].n_name = "_allproc"; 837 1.53 christos nl[2].n_name = "_zombproc"; 838 1.53 christos nl[3].n_name = NULL; 839 1.1 cgd 840 1.1 cgd if (kvm_nlist(kd, nl) != 0) { 841 1.1 cgd for (p = nl; p->n_type != 0; ++p) 842 1.48 enami continue; 843 1.1 cgd _kvm_err(kd, kd->program, 844 1.48 enami "%s: no such symbol", p->n_name); 845 1.48 enami return (NULL); 846 1.1 cgd } 847 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) { 848 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs"); 849 1.48 enami return (NULL); 850 1.1 cgd } 851 1.61 christos size = nprocs * sizeof(*kd->procbase); 852 1.61 christos KVM_ALLOC(kd, procbase, size); 853 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 854 1.53 christos nl[2].n_value, nprocs); 855 1.32 chs if (nprocs < 0) 856 1.48 enami return (NULL); 857 1.1 cgd #ifdef notdef 858 1.1 cgd size = nprocs * sizeof(struct kinfo_proc); 859 1.1 cgd (void)realloc(kd->procbase, size); 860 1.1 cgd #endif 861 1.1 cgd } 862 1.1 cgd *cnt = nprocs; 863 1.1 cgd return (kd->procbase); 864 1.1 cgd } 865 1.1 cgd 866 1.1 cgd void * 867 1.85 jym _kvm_realloc(kvm_t *kd, void *p, size_t n) 868 1.1 cgd { 869 1.34 simonb void *np = realloc(p, n); 870 1.1 cgd 871 1.36 tron if (np == NULL) 872 1.1 cgd _kvm_err(kd, kd->program, "out of memory"); 873 1.1 cgd return (np); 874 1.1 cgd } 875 1.1 cgd 876 1.1 cgd /* 877 1.1 cgd * Read in an argument vector from the user address space of process p. 878 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous 879 1.1 cgd * strings. This is used to read in both the command arguments and 880 1.1 cgd * environment strings. Read at most maxcnt characters of strings. 881 1.1 cgd */ 882 1.1 cgd static char ** 883 1.85 jym kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 884 1.85 jym int maxcnt) 885 1.21 perry { 886 1.21 perry char *np, *cp, *ep, *ap; 887 1.28 christos u_long oaddr = (u_long)~0L; 888 1.28 christos u_long len; 889 1.28 christos size_t cc; 890 1.21 perry char **argv; 891 1.1 cgd 892 1.1 cgd /* 893 1.58 toshii * Check that there aren't an unreasonable number of arguments, 894 1.1 cgd * and that the address is in user space. 895 1.1 cgd */ 896 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 897 1.48 enami return (NULL); 898 1.1 cgd 899 1.36 tron if (kd->argv == NULL) { 900 1.1 cgd /* 901 1.1 cgd * Try to avoid reallocs. 902 1.1 cgd */ 903 1.1 cgd kd->argc = MAX(narg + 1, 32); 904 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 905 1.36 tron if (kd->argv == NULL) 906 1.48 enami return (NULL); 907 1.1 cgd } else if (narg + 1 > kd->argc) { 908 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1); 909 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 910 1.48 enami sizeof(*kd->argv)); 911 1.36 tron if (kd->argv == NULL) 912 1.48 enami return (NULL); 913 1.1 cgd } 914 1.36 tron if (kd->argspc == NULL) { 915 1.61 christos kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 916 1.36 tron if (kd->argspc == NULL) 917 1.48 enami return (NULL); 918 1.61 christos kd->argspc_len = kd->nbpg; 919 1.1 cgd } 920 1.36 tron if (kd->argbuf == NULL) { 921 1.61 christos kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 922 1.36 tron if (kd->argbuf == NULL) 923 1.48 enami return (NULL); 924 1.10 mycroft } 925 1.10 mycroft cc = sizeof(char *) * narg; 926 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 927 1.48 enami return (NULL); 928 1.10 mycroft ap = np = kd->argspc; 929 1.1 cgd argv = kd->argv; 930 1.1 cgd len = 0; 931 1.1 cgd /* 932 1.1 cgd * Loop over pages, filling in the argument vector. 933 1.1 cgd */ 934 1.36 tron while (argv < kd->argv + narg && *argv != NULL) { 935 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1); 936 1.10 mycroft if (addr != oaddr) { 937 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf, 938 1.28 christos (size_t)kd->nbpg) != kd->nbpg) 939 1.48 enami return (NULL); 940 1.10 mycroft oaddr = addr; 941 1.10 mycroft } 942 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1); 943 1.28 christos cp = kd->argbuf + (size_t)addr; 944 1.28 christos cc = kd->nbpg - (size_t)addr; 945 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 946 1.28 christos cc = (size_t)(maxcnt - len); 947 1.10 mycroft ep = memchr(cp, '\0', cc); 948 1.36 tron if (ep != NULL) 949 1.10 mycroft cc = ep - cp + 1; 950 1.61 christos if (len + cc > kd->argspc_len) { 951 1.52 ross ptrdiff_t off; 952 1.21 perry char **pp; 953 1.99 mrg uintptr_t op = (uintptr_t)kd->argspc; 954 1.1 cgd 955 1.61 christos kd->argspc_len *= 2; 956 1.61 christos kd->argspc = _kvm_realloc(kd, kd->argspc, 957 1.61 christos kd->argspc_len); 958 1.36 tron if (kd->argspc == NULL) 959 1.48 enami return (NULL); 960 1.1 cgd /* 961 1.1 cgd * Adjust argv pointers in case realloc moved 962 1.1 cgd * the string space. 963 1.1 cgd */ 964 1.99 mrg off = (uintptr_t)kd->argspc - op; 965 1.13 mycroft for (pp = kd->argv; pp < argv; pp++) 966 1.1 cgd *pp += off; 967 1.12 mycroft ap += off; 968 1.12 mycroft np += off; 969 1.1 cgd } 970 1.10 mycroft memcpy(np, cp, cc); 971 1.10 mycroft np += cc; 972 1.1 cgd len += cc; 973 1.36 tron if (ep != NULL) { 974 1.10 mycroft *argv++ = ap; 975 1.10 mycroft ap = np; 976 1.10 mycroft } else 977 1.10 mycroft *argv += cc; 978 1.1 cgd if (maxcnt > 0 && len >= maxcnt) { 979 1.1 cgd /* 980 1.1 cgd * We're stopping prematurely. Terminate the 981 1.10 mycroft * current string. 982 1.1 cgd */ 983 1.36 tron if (ep == NULL) { 984 1.10 mycroft *np = '\0'; 985 1.14 mycroft *argv++ = ap; 986 1.10 mycroft } 987 1.10 mycroft break; 988 1.1 cgd } 989 1.1 cgd } 990 1.10 mycroft /* Make sure argv is terminated. */ 991 1.36 tron *argv = NULL; 992 1.10 mycroft return (kd->argv); 993 1.1 cgd } 994 1.1 cgd 995 1.1 cgd static void 996 1.85 jym ps_str_a(struct ps_strings *p, u_long *addr, int *n) 997 1.1 cgd { 998 1.48 enami 999 1.1 cgd *addr = (u_long)p->ps_argvstr; 1000 1.1 cgd *n = p->ps_nargvstr; 1001 1.1 cgd } 1002 1.1 cgd 1003 1.1 cgd static void 1004 1.85 jym ps_str_e(struct ps_strings *p, u_long *addr, int *n) 1005 1.1 cgd { 1006 1.48 enami 1007 1.1 cgd *addr = (u_long)p->ps_envstr; 1008 1.1 cgd *n = p->ps_nenvstr; 1009 1.1 cgd } 1010 1.1 cgd 1011 1.1 cgd /* 1012 1.1 cgd * Determine if the proc indicated by p is still active. 1013 1.1 cgd * This test is not 100% foolproof in theory, but chances of 1014 1.1 cgd * being wrong are very low. 1015 1.1 cgd */ 1016 1.1 cgd static int 1017 1.85 jym proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p) 1018 1.1 cgd { 1019 1.1 cgd struct proc kernproc; 1020 1.1 cgd 1021 1.1 cgd /* 1022 1.1 cgd * Just read in the whole proc. It's not that big relative 1023 1.1 cgd * to the cost of the read system call. 1024 1.1 cgd */ 1025 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1026 1.1 cgd sizeof(kernproc)) 1027 1.48 enami return (0); 1028 1.1 cgd return (p->p_pid == kernproc.p_pid && 1029 1.48 enami (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1030 1.1 cgd } 1031 1.1 cgd 1032 1.1 cgd static char ** 1033 1.85 jym kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 1034 1.85 jym void (*info)(struct ps_strings *, u_long *, int *)) 1035 1.1 cgd { 1036 1.21 perry char **ap; 1037 1.1 cgd u_long addr; 1038 1.1 cgd int cnt; 1039 1.1 cgd struct ps_strings arginfo; 1040 1.1 cgd 1041 1.1 cgd /* 1042 1.1 cgd * Pointers are stored at the top of the user stack. 1043 1.1 cgd */ 1044 1.18 gwr if (p->p_stat == SZOMB) 1045 1.48 enami return (NULL); 1046 1.97 christos cnt = (int)kvm_ureadm(kd, p, p->p_psstrp, 1047 1.28 christos (void *)&arginfo, sizeof(arginfo)); 1048 1.18 gwr if (cnt != sizeof(arginfo)) 1049 1.48 enami return (NULL); 1050 1.1 cgd 1051 1.1 cgd (*info)(&arginfo, &addr, &cnt); 1052 1.3 mycroft if (cnt == 0) 1053 1.48 enami return (NULL); 1054 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr); 1055 1.1 cgd /* 1056 1.1 cgd * For live kernels, make sure this process didn't go away. 1057 1.1 cgd */ 1058 1.36 tron if (ap != NULL && ISALIVE(kd) && 1059 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p)) 1060 1.36 tron ap = NULL; 1061 1.1 cgd return (ap); 1062 1.1 cgd } 1063 1.1 cgd 1064 1.1 cgd /* 1065 1.1 cgd * Get the command args. This code is now machine independent. 1066 1.1 cgd */ 1067 1.1 cgd char ** 1068 1.85 jym kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1069 1.1 cgd { 1070 1.34 simonb struct miniproc p; 1071 1.34 simonb 1072 1.34 simonb KPTOMINI(kp, &p); 1073 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1074 1.1 cgd } 1075 1.1 cgd 1076 1.1 cgd char ** 1077 1.85 jym kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1078 1.1 cgd { 1079 1.34 simonb struct miniproc p; 1080 1.34 simonb 1081 1.34 simonb KPTOMINI(kp, &p); 1082 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1083 1.34 simonb } 1084 1.34 simonb 1085 1.34 simonb static char ** 1086 1.85 jym kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr) 1087 1.34 simonb { 1088 1.34 simonb size_t bufs; 1089 1.39 christos int narg, mib[4]; 1090 1.61 christos size_t newargspc_len; 1091 1.34 simonb char **ap, *bp, *endp; 1092 1.34 simonb 1093 1.34 simonb /* 1094 1.58 toshii * Check that there aren't an unreasonable number of arguments. 1095 1.34 simonb */ 1096 1.34 simonb if (nchr > ARG_MAX) 1097 1.48 enami return (NULL); 1098 1.34 simonb 1099 1.34 simonb if (nchr == 0) 1100 1.34 simonb nchr = ARG_MAX; 1101 1.34 simonb 1102 1.34 simonb /* Get number of strings in argv */ 1103 1.34 simonb mib[0] = CTL_KERN; 1104 1.34 simonb mib[1] = KERN_PROC_ARGS; 1105 1.34 simonb mib[2] = pid; 1106 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1107 1.34 simonb bufs = sizeof(narg); 1108 1.52 ross if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1109 1.48 enami return (NULL); 1110 1.34 simonb 1111 1.36 tron if (kd->argv == NULL) { 1112 1.34 simonb /* 1113 1.34 simonb * Try to avoid reallocs. 1114 1.34 simonb */ 1115 1.34 simonb kd->argc = MAX(narg + 1, 32); 1116 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1117 1.36 tron if (kd->argv == NULL) 1118 1.48 enami return (NULL); 1119 1.34 simonb } else if (narg + 1 > kd->argc) { 1120 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1); 1121 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1122 1.48 enami sizeof(*kd->argv)); 1123 1.36 tron if (kd->argv == NULL) 1124 1.48 enami return (NULL); 1125 1.34 simonb } 1126 1.34 simonb 1127 1.61 christos newargspc_len = MIN(nchr, ARG_MAX); 1128 1.61 christos KVM_ALLOC(kd, argspc, newargspc_len); 1129 1.61 christos memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1130 1.34 simonb 1131 1.34 simonb mib[0] = CTL_KERN; 1132 1.34 simonb mib[1] = KERN_PROC_ARGS; 1133 1.34 simonb mib[2] = pid; 1134 1.34 simonb mib[3] = type; 1135 1.61 christos bufs = kd->argspc_len; 1136 1.52 ross if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1137 1.48 enami return (NULL); 1138 1.34 simonb 1139 1.34 simonb bp = kd->argspc; 1140 1.61 christos bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1141 1.34 simonb ap = kd->argv; 1142 1.34 simonb endp = bp + MIN(nchr, bufs); 1143 1.34 simonb 1144 1.34 simonb while (bp < endp) { 1145 1.34 simonb *ap++ = bp; 1146 1.48 enami /* 1147 1.48 enami * XXX: don't need following anymore, or stick check 1148 1.48 enami * for max argc in above while loop? 1149 1.48 enami */ 1150 1.34 simonb if (ap >= kd->argv + kd->argc) { 1151 1.34 simonb kd->argc *= 2; 1152 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv, 1153 1.34 simonb kd->argc * sizeof(*kd->argv)); 1154 1.44 jdolecek ap = kd->argv; 1155 1.34 simonb } 1156 1.34 simonb bp += strlen(bp) + 1; 1157 1.34 simonb } 1158 1.34 simonb *ap = NULL; 1159 1.48 enami 1160 1.34 simonb return (kd->argv); 1161 1.34 simonb } 1162 1.34 simonb 1163 1.34 simonb char ** 1164 1.85 jym kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1165 1.34 simonb { 1166 1.48 enami 1167 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1168 1.34 simonb } 1169 1.34 simonb 1170 1.34 simonb char ** 1171 1.85 jym kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1172 1.34 simonb { 1173 1.48 enami 1174 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1175 1.1 cgd } 1176 1.1 cgd 1177 1.1 cgd /* 1178 1.1 cgd * Read from user space. The user context is given by p. 1179 1.1 cgd */ 1180 1.34 simonb static ssize_t 1181 1.85 jym kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, 1182 1.85 jym char *buf, size_t len) 1183 1.1 cgd { 1184 1.21 perry char *cp; 1185 1.1 cgd 1186 1.1 cgd cp = buf; 1187 1.1 cgd while (len > 0) { 1188 1.28 christos size_t cc; 1189 1.21 perry char *dp; 1190 1.15 cgd u_long cnt; 1191 1.8 mycroft 1192 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt); 1193 1.36 tron if (dp == NULL) { 1194 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva); 1195 1.48 enami return (0); 1196 1.8 mycroft } 1197 1.28 christos cc = (size_t)MIN(cnt, len); 1198 1.25 perry memcpy(cp, dp, cc); 1199 1.1 cgd cp += cc; 1200 1.1 cgd uva += cc; 1201 1.1 cgd len -= cc; 1202 1.1 cgd } 1203 1.1 cgd return (ssize_t)(cp - buf); 1204 1.34 simonb } 1205