kvm_proc.c revision 1.1 1 1.1 cgd /*-
2 1.1 cgd * Copyright (c) 1989, 1992, 1993
3 1.1 cgd * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software developed by the Computer Systems
6 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 1.1 cgd * BG 91-66 and contributed to Berkeley.
8 1.1 cgd *
9 1.1 cgd * Redistribution and use in source and binary forms, with or without
10 1.1 cgd * modification, are permitted provided that the following conditions
11 1.1 cgd * are met:
12 1.1 cgd * 1. Redistributions of source code must retain the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer.
14 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 cgd * notice, this list of conditions and the following disclaimer in the
16 1.1 cgd * documentation and/or other materials provided with the distribution.
17 1.1 cgd * 3. All advertising materials mentioning features or use of this software
18 1.1 cgd * must display the following acknowledgement:
19 1.1 cgd * This product includes software developed by the University of
20 1.1 cgd * California, Berkeley and its contributors.
21 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
22 1.1 cgd * may be used to endorse or promote products derived from this software
23 1.1 cgd * without specific prior written permission.
24 1.1 cgd *
25 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 cgd * SUCH DAMAGE.
36 1.1 cgd */
37 1.1 cgd
38 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
39 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
40 1.1 cgd #endif /* LIBC_SCCS and not lint */
41 1.1 cgd
42 1.1 cgd /*
43 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
44 1.1 cgd * users of this code, so we've factored it out into a separate module.
45 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
46 1.1 cgd * most other applications are interested only in open/close/read/nlist).
47 1.1 cgd */
48 1.1 cgd
49 1.1 cgd #include <sys/param.h>
50 1.1 cgd #include <sys/user.h>
51 1.1 cgd #include <sys/proc.h>
52 1.1 cgd #include <sys/exec.h>
53 1.1 cgd #include <sys/stat.h>
54 1.1 cgd #include <sys/ioctl.h>
55 1.1 cgd #include <sys/tty.h>
56 1.1 cgd #include <unistd.h>
57 1.1 cgd #include <nlist.h>
58 1.1 cgd #include <kvm.h>
59 1.1 cgd
60 1.1 cgd #include <vm/vm.h>
61 1.1 cgd #include <vm/vm_param.h>
62 1.1 cgd #include <vm/swap_pager.h>
63 1.1 cgd
64 1.1 cgd #include <sys/sysctl.h>
65 1.1 cgd
66 1.1 cgd #include <limits.h>
67 1.1 cgd #include <db.h>
68 1.1 cgd #include <paths.h>
69 1.1 cgd
70 1.1 cgd #include "kvm_private.h"
71 1.1 cgd
72 1.1 cgd static char *
73 1.1 cgd kvm_readswap(kd, p, va, cnt)
74 1.1 cgd kvm_t *kd;
75 1.1 cgd const struct proc *p;
76 1.1 cgd u_long va;
77 1.1 cgd u_long *cnt;
78 1.1 cgd {
79 1.1 cgd register int ix;
80 1.1 cgd register u_long addr, head;
81 1.1 cgd register u_long offset, pagestart, sbstart, pgoff;
82 1.1 cgd register off_t seekpoint;
83 1.1 cgd struct vm_map_entry vme;
84 1.1 cgd struct vm_object vmo;
85 1.1 cgd struct pager_struct pager;
86 1.1 cgd struct swpager swap;
87 1.1 cgd struct swblock swb;
88 1.1 cgd static char page[NBPG];
89 1.1 cgd
90 1.1 cgd head = (u_long)&p->p_vmspace->vm_map.header;
91 1.1 cgd /*
92 1.1 cgd * Look through the address map for the memory object
93 1.1 cgd * that corresponds to the given virtual address.
94 1.1 cgd * The header just has the entire valid range.
95 1.1 cgd */
96 1.1 cgd addr = head;
97 1.1 cgd while (1) {
98 1.1 cgd if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) !=
99 1.1 cgd sizeof(vme))
100 1.1 cgd return (0);
101 1.1 cgd
102 1.1 cgd if (va >= vme.start && va <= vme.end &&
103 1.1 cgd vme.object.vm_object != 0)
104 1.1 cgd break;
105 1.1 cgd
106 1.1 cgd addr = (u_long)vme.next;
107 1.1 cgd if (addr == 0 || addr == head)
108 1.1 cgd return (0);
109 1.1 cgd }
110 1.1 cgd /*
111 1.1 cgd * We found the right object -- follow shadow links.
112 1.1 cgd */
113 1.1 cgd offset = va - vme.start + vme.offset;
114 1.1 cgd addr = (u_long)vme.object.vm_object;
115 1.1 cgd while (1) {
116 1.1 cgd if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) !=
117 1.1 cgd sizeof(vmo))
118 1.1 cgd return (0);
119 1.1 cgd addr = (u_long)vmo.shadow;
120 1.1 cgd if (addr == 0)
121 1.1 cgd break;
122 1.1 cgd offset += vmo.shadow_offset;
123 1.1 cgd }
124 1.1 cgd if (vmo.pager == 0)
125 1.1 cgd return (0);
126 1.1 cgd
127 1.1 cgd offset += vmo.paging_offset;
128 1.1 cgd /*
129 1.1 cgd * Read in the pager info and make sure it's a swap device.
130 1.1 cgd */
131 1.1 cgd addr = (u_long)vmo.pager;
132 1.1 cgd if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager)
133 1.1 cgd || pager.pg_type != PG_SWAP)
134 1.1 cgd return (0);
135 1.1 cgd
136 1.1 cgd /*
137 1.1 cgd * Read in the swap_pager private data, and compute the
138 1.1 cgd * swap offset.
139 1.1 cgd */
140 1.1 cgd addr = (u_long)pager.pg_data;
141 1.1 cgd if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap))
142 1.1 cgd return (0);
143 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
144 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
145 1.1 cgd return (0);
146 1.1 cgd
147 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
148 1.1 cgd if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb))
149 1.1 cgd return (0);
150 1.1 cgd
151 1.1 cgd sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize);
152 1.1 cgd sbstart /= NBPG;
153 1.1 cgd pagestart = offset / NBPG;
154 1.1 cgd pgoff = pagestart - sbstart;
155 1.1 cgd
156 1.1 cgd if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0)
157 1.1 cgd return (0);
158 1.1 cgd
159 1.1 cgd seekpoint = dbtob(swb.swb_block) + ctob(pgoff);
160 1.1 cgd errno = 0;
161 1.1 cgd if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0)
162 1.1 cgd return (0);
163 1.1 cgd if (read(kd->swfd, page, sizeof(page)) != sizeof(page))
164 1.1 cgd return (0);
165 1.1 cgd
166 1.1 cgd offset %= NBPG;
167 1.1 cgd *cnt = NBPG - offset;
168 1.1 cgd return (&page[offset]);
169 1.1 cgd }
170 1.1 cgd
171 1.1 cgd #define KREAD(kd, addr, obj) \
172 1.1 cgd (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
173 1.1 cgd
174 1.1 cgd /*
175 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
176 1.1 cgd * at most maxcnt procs.
177 1.1 cgd */
178 1.1 cgd static int
179 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
180 1.1 cgd kvm_t *kd;
181 1.1 cgd int what, arg;
182 1.1 cgd struct proc *p;
183 1.1 cgd struct kinfo_proc *bp;
184 1.1 cgd int maxcnt;
185 1.1 cgd {
186 1.1 cgd register int cnt = 0;
187 1.1 cgd struct eproc eproc;
188 1.1 cgd struct pgrp pgrp;
189 1.1 cgd struct session sess;
190 1.1 cgd struct tty tty;
191 1.1 cgd struct proc proc;
192 1.1 cgd
193 1.1 cgd for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
194 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
195 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
196 1.1 cgd return (-1);
197 1.1 cgd }
198 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
199 1.1 cgd KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
200 1.1 cgd &eproc.e_ucred);
201 1.1 cgd
202 1.1 cgd switch(what) {
203 1.1 cgd
204 1.1 cgd case KERN_PROC_PID:
205 1.1 cgd if (proc.p_pid != (pid_t)arg)
206 1.1 cgd continue;
207 1.1 cgd break;
208 1.1 cgd
209 1.1 cgd case KERN_PROC_UID:
210 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
211 1.1 cgd continue;
212 1.1 cgd break;
213 1.1 cgd
214 1.1 cgd case KERN_PROC_RUID:
215 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
216 1.1 cgd continue;
217 1.1 cgd break;
218 1.1 cgd }
219 1.1 cgd /*
220 1.1 cgd * We're going to add another proc to the set. If this
221 1.1 cgd * will overflow the buffer, assume the reason is because
222 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
223 1.1 cgd */
224 1.1 cgd if (cnt >= maxcnt) {
225 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
226 1.1 cgd return (-1);
227 1.1 cgd }
228 1.1 cgd /*
229 1.1 cgd * gather eproc
230 1.1 cgd */
231 1.1 cgd eproc.e_paddr = p;
232 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
233 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
234 1.1 cgd proc.p_pgrp);
235 1.1 cgd return (-1);
236 1.1 cgd }
237 1.1 cgd eproc.e_sess = pgrp.pg_session;
238 1.1 cgd eproc.e_pgid = pgrp.pg_id;
239 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
240 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
241 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
242 1.1 cgd pgrp.pg_session);
243 1.1 cgd return (-1);
244 1.1 cgd }
245 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
246 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
247 1.1 cgd _kvm_err(kd, kd->program,
248 1.1 cgd "can't read tty at %x", sess.s_ttyp);
249 1.1 cgd return (-1);
250 1.1 cgd }
251 1.1 cgd eproc.e_tdev = tty.t_dev;
252 1.1 cgd eproc.e_tsess = tty.t_session;
253 1.1 cgd if (tty.t_pgrp != NULL) {
254 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
255 1.1 cgd _kvm_err(kd, kd->program,
256 1.1 cgd "can't read tpgrp at &x",
257 1.1 cgd tty.t_pgrp);
258 1.1 cgd return (-1);
259 1.1 cgd }
260 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
261 1.1 cgd } else
262 1.1 cgd eproc.e_tpgid = -1;
263 1.1 cgd } else
264 1.1 cgd eproc.e_tdev = NODEV;
265 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
266 1.1 cgd if (sess.s_leader == p)
267 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
268 1.1 cgd if (proc.p_wmesg)
269 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
270 1.1 cgd eproc.e_wmesg, WMESGLEN);
271 1.1 cgd
272 1.1 cgd #ifdef sparc
273 1.1 cgd (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
274 1.1 cgd (char *)&eproc.e_vm.vm_rssize,
275 1.1 cgd sizeof(eproc.e_vm.vm_rssize));
276 1.1 cgd (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
277 1.1 cgd (char *)&eproc.e_vm.vm_tsize,
278 1.1 cgd 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */
279 1.1 cgd #else
280 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
281 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
282 1.1 cgd #endif
283 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
284 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
285 1.1 cgd
286 1.1 cgd switch (what) {
287 1.1 cgd
288 1.1 cgd case KERN_PROC_PGRP:
289 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
290 1.1 cgd continue;
291 1.1 cgd break;
292 1.1 cgd
293 1.1 cgd case KERN_PROC_TTY:
294 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
295 1.1 cgd eproc.e_tdev != (dev_t)arg)
296 1.1 cgd continue;
297 1.1 cgd break;
298 1.1 cgd }
299 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
300 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
301 1.1 cgd ++bp;
302 1.1 cgd ++cnt;
303 1.1 cgd }
304 1.1 cgd return (cnt);
305 1.1 cgd }
306 1.1 cgd
307 1.1 cgd /*
308 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
309 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
310 1.1 cgd */
311 1.1 cgd static int
312 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
313 1.1 cgd kvm_t *kd;
314 1.1 cgd int what, arg;
315 1.1 cgd u_long a_allproc;
316 1.1 cgd u_long a_zombproc;
317 1.1 cgd int maxcnt;
318 1.1 cgd {
319 1.1 cgd register struct kinfo_proc *bp = kd->procbase;
320 1.1 cgd register int acnt, zcnt;
321 1.1 cgd struct proc *p;
322 1.1 cgd
323 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
324 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
325 1.1 cgd return (-1);
326 1.1 cgd }
327 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
328 1.1 cgd if (acnt < 0)
329 1.1 cgd return (acnt);
330 1.1 cgd
331 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
332 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
333 1.1 cgd return (-1);
334 1.1 cgd }
335 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
336 1.1 cgd if (zcnt < 0)
337 1.1 cgd zcnt = 0;
338 1.1 cgd
339 1.1 cgd return (acnt + zcnt);
340 1.1 cgd }
341 1.1 cgd
342 1.1 cgd struct kinfo_proc *
343 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
344 1.1 cgd kvm_t *kd;
345 1.1 cgd int op, arg;
346 1.1 cgd int *cnt;
347 1.1 cgd {
348 1.1 cgd int mib[4], size, st, nprocs;
349 1.1 cgd
350 1.1 cgd if (kd->procbase != 0) {
351 1.1 cgd free((void *)kd->procbase);
352 1.1 cgd /*
353 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
354 1.1 cgd * kvm_close() will free it again.
355 1.1 cgd */
356 1.1 cgd kd->procbase = 0;
357 1.1 cgd }
358 1.1 cgd if (ISALIVE(kd)) {
359 1.1 cgd size = 0;
360 1.1 cgd mib[0] = CTL_KERN;
361 1.1 cgd mib[1] = KERN_PROC;
362 1.1 cgd mib[2] = op;
363 1.1 cgd mib[3] = arg;
364 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
365 1.1 cgd if (st == -1) {
366 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
367 1.1 cgd return (0);
368 1.1 cgd }
369 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
370 1.1 cgd if (kd->procbase == 0)
371 1.1 cgd return (0);
372 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
373 1.1 cgd if (st == -1) {
374 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
375 1.1 cgd return (0);
376 1.1 cgd }
377 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
378 1.1 cgd _kvm_err(kd, kd->program,
379 1.1 cgd "proc size mismatch (%d total, %d chunks)",
380 1.1 cgd size, sizeof(struct kinfo_proc));
381 1.1 cgd return (0);
382 1.1 cgd }
383 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
384 1.1 cgd } else {
385 1.1 cgd struct nlist nl[4], *p;
386 1.1 cgd
387 1.1 cgd nl[0].n_name = "_nprocs";
388 1.1 cgd nl[1].n_name = "_allproc";
389 1.1 cgd nl[2].n_name = "_zombproc";
390 1.1 cgd nl[3].n_name = 0;
391 1.1 cgd
392 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
393 1.1 cgd for (p = nl; p->n_type != 0; ++p)
394 1.1 cgd ;
395 1.1 cgd _kvm_err(kd, kd->program,
396 1.1 cgd "%s: no such symbol", p->n_name);
397 1.1 cgd return (0);
398 1.1 cgd }
399 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
400 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
401 1.1 cgd return (0);
402 1.1 cgd }
403 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
404 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
405 1.1 cgd if (kd->procbase == 0)
406 1.1 cgd return (0);
407 1.1 cgd
408 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
409 1.1 cgd nl[2].n_value, nprocs);
410 1.1 cgd #ifdef notdef
411 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
412 1.1 cgd (void)realloc(kd->procbase, size);
413 1.1 cgd #endif
414 1.1 cgd }
415 1.1 cgd *cnt = nprocs;
416 1.1 cgd return (kd->procbase);
417 1.1 cgd }
418 1.1 cgd
419 1.1 cgd void
420 1.1 cgd _kvm_freeprocs(kd)
421 1.1 cgd kvm_t *kd;
422 1.1 cgd {
423 1.1 cgd if (kd->procbase) {
424 1.1 cgd free(kd->procbase);
425 1.1 cgd kd->procbase = 0;
426 1.1 cgd }
427 1.1 cgd }
428 1.1 cgd
429 1.1 cgd void *
430 1.1 cgd _kvm_realloc(kd, p, n)
431 1.1 cgd kvm_t *kd;
432 1.1 cgd void *p;
433 1.1 cgd size_t n;
434 1.1 cgd {
435 1.1 cgd void *np = (void *)realloc(p, n);
436 1.1 cgd
437 1.1 cgd if (np == 0)
438 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
439 1.1 cgd return (np);
440 1.1 cgd }
441 1.1 cgd
442 1.1 cgd #ifndef MAX
443 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
444 1.1 cgd #endif
445 1.1 cgd
446 1.1 cgd /*
447 1.1 cgd * Read in an argument vector from the user address space of process p.
448 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
449 1.1 cgd * strings. This is used to read in both the command arguments and
450 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
451 1.1 cgd */
452 1.1 cgd static char **
453 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
454 1.1 cgd kvm_t *kd;
455 1.1 cgd struct proc *p;
456 1.1 cgd register u_long addr;
457 1.1 cgd register int narg;
458 1.1 cgd register int maxcnt;
459 1.1 cgd {
460 1.1 cgd register char *cp;
461 1.1 cgd register int len, cc;
462 1.1 cgd register char **argv;
463 1.1 cgd
464 1.1 cgd /*
465 1.1 cgd * Check that there aren't an unreasonable number of agruments,
466 1.1 cgd * and that the address is in user space.
467 1.1 cgd */
468 1.1 cgd if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
469 1.1 cgd return (0);
470 1.1 cgd
471 1.1 cgd if (kd->argv == 0) {
472 1.1 cgd /*
473 1.1 cgd * Try to avoid reallocs.
474 1.1 cgd */
475 1.1 cgd kd->argc = MAX(narg + 1, 32);
476 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
477 1.1 cgd sizeof(*kd->argv));
478 1.1 cgd if (kd->argv == 0)
479 1.1 cgd return (0);
480 1.1 cgd } else if (narg + 1 > kd->argc) {
481 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
482 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
483 1.1 cgd sizeof(*kd->argv));
484 1.1 cgd if (kd->argv == 0)
485 1.1 cgd return (0);
486 1.1 cgd }
487 1.1 cgd if (kd->argspc == 0) {
488 1.1 cgd kd->argspc = (char *)_kvm_malloc(kd, NBPG);
489 1.1 cgd if (kd->argspc == 0)
490 1.1 cgd return (0);
491 1.1 cgd kd->arglen = NBPG;
492 1.1 cgd }
493 1.1 cgd cp = kd->argspc;
494 1.1 cgd argv = kd->argv;
495 1.1 cgd *argv = cp;
496 1.1 cgd len = 0;
497 1.1 cgd /*
498 1.1 cgd * Loop over pages, filling in the argument vector.
499 1.1 cgd */
500 1.1 cgd while (addr < VM_MAXUSER_ADDRESS) {
501 1.1 cgd cc = NBPG - (addr & PGOFSET);
502 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
503 1.1 cgd cc = maxcnt - len;;
504 1.1 cgd if (len + cc > kd->arglen) {
505 1.1 cgd register int off;
506 1.1 cgd register char **pp;
507 1.1 cgd register char *op = kd->argspc;
508 1.1 cgd
509 1.1 cgd kd->arglen *= 2;
510 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
511 1.1 cgd kd->arglen);
512 1.1 cgd if (kd->argspc == 0)
513 1.1 cgd return (0);
514 1.1 cgd cp = &kd->argspc[len];
515 1.1 cgd /*
516 1.1 cgd * Adjust argv pointers in case realloc moved
517 1.1 cgd * the string space.
518 1.1 cgd */
519 1.1 cgd off = kd->argspc - op;
520 1.1 cgd for (pp = kd->argv; pp < argv; ++pp)
521 1.1 cgd *pp += off;
522 1.1 cgd }
523 1.1 cgd if (kvm_uread(kd, p, addr, cp, cc) != cc)
524 1.1 cgd /* XXX */
525 1.1 cgd return (0);
526 1.1 cgd len += cc;
527 1.1 cgd addr += cc;
528 1.1 cgd
529 1.1 cgd if (maxcnt == 0 && len > 16 * NBPG)
530 1.1 cgd /* sanity */
531 1.1 cgd return (0);
532 1.1 cgd
533 1.1 cgd while (--cc >= 0) {
534 1.1 cgd if (*cp++ == 0) {
535 1.1 cgd if (--narg <= 0) {
536 1.1 cgd *++argv = 0;
537 1.1 cgd return (kd->argv);
538 1.1 cgd } else
539 1.1 cgd *++argv = cp;
540 1.1 cgd }
541 1.1 cgd }
542 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
543 1.1 cgd /*
544 1.1 cgd * We're stopping prematurely. Terminate the
545 1.1 cgd * argv and current string.
546 1.1 cgd */
547 1.1 cgd *++argv = 0;
548 1.1 cgd *cp = 0;
549 1.1 cgd return (kd->argv);
550 1.1 cgd }
551 1.1 cgd }
552 1.1 cgd }
553 1.1 cgd
554 1.1 cgd static void
555 1.1 cgd ps_str_a(p, addr, n)
556 1.1 cgd struct ps_strings *p;
557 1.1 cgd u_long *addr;
558 1.1 cgd int *n;
559 1.1 cgd {
560 1.1 cgd *addr = (u_long)p->ps_argvstr;
561 1.1 cgd *n = p->ps_nargvstr;
562 1.1 cgd }
563 1.1 cgd
564 1.1 cgd static void
565 1.1 cgd ps_str_e(p, addr, n)
566 1.1 cgd struct ps_strings *p;
567 1.1 cgd u_long *addr;
568 1.1 cgd int *n;
569 1.1 cgd {
570 1.1 cgd *addr = (u_long)p->ps_envstr;
571 1.1 cgd *n = p->ps_nenvstr;
572 1.1 cgd }
573 1.1 cgd
574 1.1 cgd /*
575 1.1 cgd * Determine if the proc indicated by p is still active.
576 1.1 cgd * This test is not 100% foolproof in theory, but chances of
577 1.1 cgd * being wrong are very low.
578 1.1 cgd */
579 1.1 cgd static int
580 1.1 cgd proc_verify(kd, kernp, p)
581 1.1 cgd kvm_t *kd;
582 1.1 cgd u_long kernp;
583 1.1 cgd const struct proc *p;
584 1.1 cgd {
585 1.1 cgd struct proc kernproc;
586 1.1 cgd
587 1.1 cgd /*
588 1.1 cgd * Just read in the whole proc. It's not that big relative
589 1.1 cgd * to the cost of the read system call.
590 1.1 cgd */
591 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
592 1.1 cgd sizeof(kernproc))
593 1.1 cgd return (0);
594 1.1 cgd return (p->p_pid == kernproc.p_pid &&
595 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
596 1.1 cgd }
597 1.1 cgd
598 1.1 cgd static char **
599 1.1 cgd kvm_doargv(kd, kp, nchr, info)
600 1.1 cgd kvm_t *kd;
601 1.1 cgd const struct kinfo_proc *kp;
602 1.1 cgd int nchr;
603 1.1 cgd int (*info)(struct ps_strings*, u_long *, int *);
604 1.1 cgd {
605 1.1 cgd register const struct proc *p = &kp->kp_proc;
606 1.1 cgd register char **ap;
607 1.1 cgd u_long addr;
608 1.1 cgd int cnt;
609 1.1 cgd struct ps_strings arginfo;
610 1.1 cgd
611 1.1 cgd /*
612 1.1 cgd * Pointers are stored at the top of the user stack.
613 1.1 cgd */
614 1.1 cgd if (p->p_stat == SZOMB ||
615 1.1 cgd kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
616 1.1 cgd sizeof(arginfo)) != sizeof(arginfo))
617 1.1 cgd return (0);
618 1.1 cgd
619 1.1 cgd (*info)(&arginfo, &addr, &cnt);
620 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
621 1.1 cgd /*
622 1.1 cgd * For live kernels, make sure this process didn't go away.
623 1.1 cgd */
624 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
625 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
626 1.1 cgd ap = 0;
627 1.1 cgd return (ap);
628 1.1 cgd }
629 1.1 cgd
630 1.1 cgd /*
631 1.1 cgd * Get the command args. This code is now machine independent.
632 1.1 cgd */
633 1.1 cgd char **
634 1.1 cgd kvm_getargv(kd, kp, nchr)
635 1.1 cgd kvm_t *kd;
636 1.1 cgd const struct kinfo_proc *kp;
637 1.1 cgd int nchr;
638 1.1 cgd {
639 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
640 1.1 cgd }
641 1.1 cgd
642 1.1 cgd char **
643 1.1 cgd kvm_getenvv(kd, kp, nchr)
644 1.1 cgd kvm_t *kd;
645 1.1 cgd const struct kinfo_proc *kp;
646 1.1 cgd int nchr;
647 1.1 cgd {
648 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
649 1.1 cgd }
650 1.1 cgd
651 1.1 cgd /*
652 1.1 cgd * Read from user space. The user context is given by p.
653 1.1 cgd */
654 1.1 cgd ssize_t
655 1.1 cgd kvm_uread(kd, p, uva, buf, len)
656 1.1 cgd kvm_t *kd;
657 1.1 cgd register struct proc *p;
658 1.1 cgd register u_long uva;
659 1.1 cgd register char *buf;
660 1.1 cgd register size_t len;
661 1.1 cgd {
662 1.1 cgd register char *cp;
663 1.1 cgd
664 1.1 cgd cp = buf;
665 1.1 cgd while (len > 0) {
666 1.1 cgd u_long pa;
667 1.1 cgd register int cc;
668 1.1 cgd
669 1.1 cgd cc = _kvm_uvatop(kd, p, uva, &pa);
670 1.1 cgd if (cc > 0) {
671 1.1 cgd if (cc > len)
672 1.1 cgd cc = len;
673 1.1 cgd errno = 0;
674 1.1 cgd if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
675 1.1 cgd _kvm_err(kd, 0, "invalid address (%x)", uva);
676 1.1 cgd break;
677 1.1 cgd }
678 1.1 cgd cc = read(kd->pmfd, cp, cc);
679 1.1 cgd if (cc < 0) {
680 1.1 cgd _kvm_syserr(kd, 0, _PATH_MEM);
681 1.1 cgd break;
682 1.1 cgd } else if (cc < len) {
683 1.1 cgd _kvm_err(kd, kd->program, "short read");
684 1.1 cgd break;
685 1.1 cgd }
686 1.1 cgd } else if (ISALIVE(kd)) {
687 1.1 cgd /* try swap */
688 1.1 cgd register char *dp;
689 1.1 cgd int cnt;
690 1.1 cgd
691 1.1 cgd dp = kvm_readswap(kd, p, uva, &cnt);
692 1.1 cgd if (dp == 0) {
693 1.1 cgd _kvm_err(kd, 0, "invalid address (%x)", uva);
694 1.1 cgd return (0);
695 1.1 cgd }
696 1.1 cgd cc = MIN(cnt, len);
697 1.1 cgd bcopy(dp, cp, cc);
698 1.1 cgd } else
699 1.1 cgd break;
700 1.1 cgd cp += cc;
701 1.1 cgd uva += cc;
702 1.1 cgd len -= cc;
703 1.1 cgd }
704 1.1 cgd return (ssize_t)(cp - buf);
705 1.1 cgd }
706