Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.10
      1   1.1      cgd /*-
      2   1.2  mycroft  * Copyright (c) 1994 Charles Hannum.
      3   1.1      cgd  * Copyright (c) 1989, 1992, 1993
      4   1.1      cgd  *	The Regents of the University of California.  All rights reserved.
      5   1.1      cgd  *
      6   1.1      cgd  * This code is derived from software developed by the Computer Systems
      7   1.1      cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
      8   1.1      cgd  * BG 91-66 and contributed to Berkeley.
      9   1.1      cgd  *
     10   1.1      cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1      cgd  * modification, are permitted provided that the following conditions
     12   1.1      cgd  * are met:
     13   1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      cgd  *    documentation and/or other materials provided with the distribution.
     18   1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.1      cgd  *    must display the following acknowledgement:
     20   1.1      cgd  *	This product includes software developed by the University of
     21   1.1      cgd  *	California, Berkeley and its contributors.
     22   1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     23   1.1      cgd  *    may be used to endorse or promote products derived from this software
     24   1.1      cgd  *    without specific prior written permission.
     25   1.1      cgd  *
     26   1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27   1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28   1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29   1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30   1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31   1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32   1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33   1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34   1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35   1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36   1.1      cgd  * SUCH DAMAGE.
     37   1.1      cgd  */
     38   1.1      cgd 
     39   1.1      cgd #if defined(LIBC_SCCS) && !defined(lint)
     40   1.1      cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     41   1.1      cgd #endif /* LIBC_SCCS and not lint */
     42   1.1      cgd 
     43   1.1      cgd /*
     44   1.1      cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     45   1.1      cgd  * users of this code, so we've factored it out into a separate module.
     46   1.1      cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     47   1.1      cgd  * most other applications are interested only in open/close/read/nlist).
     48   1.1      cgd  */
     49   1.1      cgd 
     50   1.1      cgd #include <sys/param.h>
     51   1.1      cgd #include <sys/user.h>
     52   1.1      cgd #include <sys/proc.h>
     53   1.1      cgd #include <sys/exec.h>
     54   1.1      cgd #include <sys/stat.h>
     55   1.1      cgd #include <sys/ioctl.h>
     56   1.1      cgd #include <sys/tty.h>
     57   1.7      cgd #include <stdlib.h>
     58  1.10  mycroft #include <string.h>
     59   1.1      cgd #include <unistd.h>
     60   1.1      cgd #include <nlist.h>
     61   1.1      cgd #include <kvm.h>
     62   1.1      cgd 
     63   1.1      cgd #include <vm/vm.h>
     64   1.1      cgd #include <vm/vm_param.h>
     65   1.1      cgd #include <vm/swap_pager.h>
     66   1.1      cgd 
     67   1.1      cgd #include <sys/sysctl.h>
     68   1.1      cgd 
     69   1.1      cgd #include <limits.h>
     70   1.1      cgd #include <db.h>
     71   1.1      cgd #include <paths.h>
     72   1.1      cgd 
     73   1.1      cgd #include "kvm_private.h"
     74   1.1      cgd 
     75   1.2  mycroft #define KREAD(kd, addr, obj) \
     76   1.2  mycroft 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     77   1.2  mycroft 
     78   1.8  mycroft int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
     79   1.6  mycroft int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     80   1.7      cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t));
     81   1.2  mycroft 
     82   1.8  mycroft char *
     83   1.8  mycroft _kvm_uread(kd, p, va, cnt)
     84   1.1      cgd 	kvm_t *kd;
     85   1.1      cgd 	const struct proc *p;
     86   1.1      cgd 	u_long va;
     87   1.1      cgd 	u_long *cnt;
     88   1.1      cgd {
     89   1.1      cgd 	register u_long addr, head;
     90   1.2  mycroft 	register u_long offset;
     91   1.1      cgd 	struct vm_map_entry vme;
     92   1.1      cgd 	struct vm_object vmo;
     93   1.8  mycroft 	int rv;
     94   1.1      cgd 
     95   1.6  mycroft 	if (kd->swapspc == 0) {
     96   1.6  mycroft 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
     97   1.6  mycroft 		if (kd->swapspc == 0)
     98   1.5  deraadt 			return (0);
     99   1.5  deraadt 	}
    100   1.8  mycroft 
    101   1.1      cgd 	/*
    102   1.1      cgd 	 * Look through the address map for the memory object
    103   1.1      cgd 	 * that corresponds to the given virtual address.
    104   1.1      cgd 	 * The header just has the entire valid range.
    105   1.1      cgd 	 */
    106   1.8  mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    107   1.1      cgd 	addr = head;
    108   1.1      cgd 	while (1) {
    109   1.2  mycroft 		if (KREAD(kd, addr, &vme))
    110   1.1      cgd 			return (0);
    111   1.1      cgd 
    112   1.2  mycroft 		if (va >= vme.start && va < vme.end &&
    113   1.1      cgd 		    vme.object.vm_object != 0)
    114   1.1      cgd 			break;
    115   1.1      cgd 
    116   1.1      cgd 		addr = (u_long)vme.next;
    117   1.2  mycroft 		if (addr == head)
    118   1.1      cgd 			return (0);
    119   1.1      cgd 	}
    120   1.2  mycroft 
    121   1.1      cgd 	/*
    122   1.1      cgd 	 * We found the right object -- follow shadow links.
    123   1.1      cgd 	 */
    124   1.1      cgd 	offset = va - vme.start + vme.offset;
    125   1.1      cgd 	addr = (u_long)vme.object.vm_object;
    126   1.8  mycroft 
    127   1.1      cgd 	while (1) {
    128   1.8  mycroft 		/* Try reading the page from core first. */
    129   1.8  mycroft 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    130   1.8  mycroft 			break;
    131   1.8  mycroft 
    132   1.2  mycroft 		if (KREAD(kd, addr, &vmo))
    133   1.1      cgd 			return (0);
    134   1.2  mycroft 
    135   1.2  mycroft 		/* If there is a pager here, see if it has the page. */
    136   1.2  mycroft 		if (vmo.pager != 0 &&
    137   1.8  mycroft 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    138   1.2  mycroft 			break;
    139   1.2  mycroft 
    140   1.2  mycroft 		/* Move down the shadow chain. */
    141   1.1      cgd 		addr = (u_long)vmo.shadow;
    142   1.1      cgd 		if (addr == 0)
    143   1.2  mycroft 			return (0);
    144   1.1      cgd 		offset += vmo.shadow_offset;
    145   1.1      cgd 	}
    146   1.2  mycroft 
    147   1.8  mycroft 	if (rv == -1)
    148   1.8  mycroft 		return (0);
    149   1.8  mycroft 
    150   1.2  mycroft 	/* Found the page. */
    151   1.6  mycroft 	offset %= kd->nbpg;
    152   1.6  mycroft 	*cnt = kd->nbpg - offset;
    153   1.6  mycroft 	return (&kd->swapspc[offset]);
    154   1.2  mycroft }
    155   1.2  mycroft 
    156   1.8  mycroft #define	vm_page_hash(kd, object, offset) \
    157   1.8  mycroft 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    158   1.8  mycroft 
    159   1.8  mycroft int
    160   1.8  mycroft _kvm_coreinit(kd)
    161   1.8  mycroft 	kvm_t *kd;
    162   1.8  mycroft {
    163   1.8  mycroft 	struct nlist nlist[3];
    164   1.8  mycroft 
    165   1.8  mycroft 	nlist[0].n_name = "_vm_page_buckets";
    166   1.8  mycroft 	nlist[1].n_name = "_vm_page_hash_mask";
    167   1.8  mycroft 	nlist[2].n_name = 0;
    168   1.8  mycroft 	if (kvm_nlist(kd, nlist) != 0)
    169   1.8  mycroft 		return (-1);
    170   1.8  mycroft 
    171   1.8  mycroft 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    172   1.8  mycroft 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    173   1.8  mycroft 		return (-1);
    174   1.8  mycroft 
    175   1.8  mycroft 	return (0);
    176   1.8  mycroft }
    177   1.8  mycroft 
    178   1.8  mycroft int
    179   1.8  mycroft _kvm_readfromcore(kd, object, offset)
    180   1.8  mycroft 	kvm_t *kd;
    181   1.8  mycroft 	u_long object, offset;
    182   1.8  mycroft {
    183   1.8  mycroft 	u_long addr;
    184   1.8  mycroft 	struct pglist bucket;
    185   1.8  mycroft 	struct vm_page mem;
    186   1.8  mycroft 	off_t seekpoint;
    187   1.8  mycroft 
    188   1.8  mycroft 	if (kd->vm_page_buckets == 0 &&
    189   1.8  mycroft 	    _kvm_coreinit(kd))
    190   1.8  mycroft 		return (-1);
    191   1.8  mycroft 
    192   1.8  mycroft 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    193   1.8  mycroft 	if (KREAD(kd, addr, &bucket))
    194   1.8  mycroft 		return (-1);
    195   1.8  mycroft 
    196   1.8  mycroft 	addr = (u_long)bucket.tqh_first;
    197   1.8  mycroft 	offset &= ~(kd->nbpg -1);
    198   1.8  mycroft 	while (1) {
    199   1.8  mycroft 		if (addr == 0)
    200   1.8  mycroft 			return (0);
    201   1.8  mycroft 
    202   1.8  mycroft 		if (KREAD(kd, addr, &mem))
    203   1.8  mycroft 			return (-1);
    204   1.8  mycroft 
    205   1.8  mycroft 		if ((u_long)mem.object == object &&
    206   1.8  mycroft 		    (u_long)mem.offset == offset)
    207   1.8  mycroft 			break;
    208   1.8  mycroft 
    209   1.8  mycroft 		addr = (u_long)mem.hashq.tqe_next;
    210   1.8  mycroft 	}
    211   1.8  mycroft 
    212   1.8  mycroft 	seekpoint = mem.phys_addr;
    213   1.8  mycroft 
    214   1.8  mycroft 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
    215   1.8  mycroft 		return (-1);
    216   1.8  mycroft 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    217   1.8  mycroft 		return (-1);
    218   1.8  mycroft 
    219   1.8  mycroft 	return (1);
    220   1.8  mycroft }
    221   1.8  mycroft 
    222   1.2  mycroft int
    223   1.6  mycroft _kvm_readfrompager(kd, vmop, offset)
    224   1.2  mycroft 	kvm_t *kd;
    225   1.2  mycroft 	struct vm_object *vmop;
    226   1.2  mycroft 	u_long offset;
    227   1.8  mycroft {
    228   1.2  mycroft 	u_long addr;
    229   1.2  mycroft 	struct pager_struct pager;
    230   1.2  mycroft 	struct swpager swap;
    231   1.2  mycroft 	int ix;
    232   1.2  mycroft 	struct swblock swb;
    233   1.8  mycroft 	off_t seekpoint;
    234   1.2  mycroft 
    235   1.2  mycroft 	/* Read in the pager info and make sure it's a swap device. */
    236   1.2  mycroft 	addr = (u_long)vmop->pager;
    237   1.2  mycroft 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    238   1.8  mycroft 		return (-1);
    239   1.1      cgd 
    240   1.2  mycroft 	/* Read in the swap_pager private data. */
    241   1.2  mycroft 	addr = (u_long)pager.pg_data;
    242   1.2  mycroft 	if (KREAD(kd, addr, &swap))
    243   1.8  mycroft 		return (-1);
    244   1.1      cgd 
    245   1.1      cgd 	/*
    246   1.2  mycroft 	 * Calculate the paging offset, and make sure it's within the
    247   1.2  mycroft 	 * bounds of the pager.
    248   1.1      cgd 	 */
    249   1.2  mycroft 	offset += vmop->paging_offset;
    250   1.1      cgd 	ix = offset / dbtob(swap.sw_bsize);
    251   1.2  mycroft #if 0
    252   1.1      cgd 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    253   1.8  mycroft 		return (-1);
    254   1.2  mycroft #else
    255   1.2  mycroft 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    256   1.2  mycroft 		int i;
    257   1.2  mycroft 		printf("BUG BUG BUG BUG:\n");
    258   1.2  mycroft 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    259   1.2  mycroft 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    260   1.2  mycroft 		    vmop->pager, pager.pg_data);
    261   1.2  mycroft 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    262   1.2  mycroft 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    263   1.2  mycroft 		    swap.sw_nblocks);
    264   1.2  mycroft 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    265   1.2  mycroft 			addr = (u_long)&swap.sw_blocks[ix];
    266   1.2  mycroft 			if (KREAD(kd, addr, &swb))
    267   1.2  mycroft 				return (0);
    268   1.2  mycroft 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    269   1.2  mycroft 			    swb.swb_block, swb.swb_mask);
    270   1.2  mycroft 		}
    271   1.8  mycroft 		return (-1);
    272   1.2  mycroft 	}
    273   1.2  mycroft #endif
    274   1.1      cgd 
    275   1.2  mycroft 	/* Read in the swap records. */
    276   1.1      cgd 	addr = (u_long)&swap.sw_blocks[ix];
    277   1.2  mycroft 	if (KREAD(kd, addr, &swb))
    278   1.8  mycroft 		return (-1);
    279   1.1      cgd 
    280   1.2  mycroft 	/* Calculate offset within pager. */
    281   1.2  mycroft 	offset %= dbtob(swap.sw_bsize);
    282   1.1      cgd 
    283   1.2  mycroft 	/* Check that the page is actually present. */
    284   1.6  mycroft 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    285   1.1      cgd 		return (0);
    286   1.1      cgd 
    287   1.8  mycroft 	if (!ISALIVE(kd))
    288   1.8  mycroft 		return (-1);
    289   1.8  mycroft 
    290   1.2  mycroft 	/* Calculate the physical address and read the page. */
    291   1.6  mycroft 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    292   1.8  mycroft 
    293   1.2  mycroft 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    294   1.8  mycroft 		return (-1);
    295   1.6  mycroft 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    296   1.8  mycroft 		return (-1);
    297   1.1      cgd 
    298   1.2  mycroft 	return (1);
    299   1.1      cgd }
    300   1.1      cgd 
    301   1.1      cgd /*
    302   1.1      cgd  * Read proc's from memory file into buffer bp, which has space to hold
    303   1.1      cgd  * at most maxcnt procs.
    304   1.1      cgd  */
    305   1.1      cgd static int
    306   1.1      cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    307   1.1      cgd 	kvm_t *kd;
    308   1.1      cgd 	int what, arg;
    309   1.1      cgd 	struct proc *p;
    310   1.1      cgd 	struct kinfo_proc *bp;
    311   1.1      cgd 	int maxcnt;
    312   1.1      cgd {
    313   1.1      cgd 	register int cnt = 0;
    314   1.1      cgd 	struct eproc eproc;
    315   1.1      cgd 	struct pgrp pgrp;
    316   1.1      cgd 	struct session sess;
    317   1.1      cgd 	struct tty tty;
    318   1.1      cgd 	struct proc proc;
    319   1.1      cgd 
    320   1.4  mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    321   1.1      cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    322   1.1      cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    323   1.1      cgd 			return (-1);
    324   1.1      cgd 		}
    325   1.1      cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    326   1.1      cgd 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    327   1.1      cgd 			      &eproc.e_ucred);
    328   1.1      cgd 
    329   1.1      cgd 		switch(what) {
    330   1.1      cgd 
    331   1.1      cgd 		case KERN_PROC_PID:
    332   1.1      cgd 			if (proc.p_pid != (pid_t)arg)
    333   1.1      cgd 				continue;
    334   1.1      cgd 			break;
    335   1.1      cgd 
    336   1.1      cgd 		case KERN_PROC_UID:
    337   1.1      cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    338   1.1      cgd 				continue;
    339   1.1      cgd 			break;
    340   1.1      cgd 
    341   1.1      cgd 		case KERN_PROC_RUID:
    342   1.1      cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    343   1.1      cgd 				continue;
    344   1.1      cgd 			break;
    345   1.1      cgd 		}
    346   1.1      cgd 		/*
    347   1.1      cgd 		 * We're going to add another proc to the set.  If this
    348   1.1      cgd 		 * will overflow the buffer, assume the reason is because
    349   1.1      cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    350   1.1      cgd 		 */
    351   1.1      cgd 		if (cnt >= maxcnt) {
    352   1.1      cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    353   1.1      cgd 			return (-1);
    354   1.1      cgd 		}
    355   1.1      cgd 		/*
    356   1.1      cgd 		 * gather eproc
    357   1.1      cgd 		 */
    358   1.1      cgd 		eproc.e_paddr = p;
    359   1.1      cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    360   1.1      cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    361   1.1      cgd 				 proc.p_pgrp);
    362   1.1      cgd 			return (-1);
    363   1.1      cgd 		}
    364   1.1      cgd 		eproc.e_sess = pgrp.pg_session;
    365   1.1      cgd 		eproc.e_pgid = pgrp.pg_id;
    366   1.1      cgd 		eproc.e_jobc = pgrp.pg_jobc;
    367   1.1      cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    368   1.1      cgd 			_kvm_err(kd, kd->program, "can't read session at %x",
    369   1.1      cgd 				pgrp.pg_session);
    370   1.1      cgd 			return (-1);
    371   1.1      cgd 		}
    372   1.1      cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    373   1.1      cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    374   1.1      cgd 				_kvm_err(kd, kd->program,
    375   1.1      cgd 					 "can't read tty at %x", sess.s_ttyp);
    376   1.1      cgd 				return (-1);
    377   1.1      cgd 			}
    378   1.1      cgd 			eproc.e_tdev = tty.t_dev;
    379   1.1      cgd 			eproc.e_tsess = tty.t_session;
    380   1.1      cgd 			if (tty.t_pgrp != NULL) {
    381   1.1      cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    382   1.1      cgd 					_kvm_err(kd, kd->program,
    383   1.1      cgd 						 "can't read tpgrp at &x",
    384   1.1      cgd 						tty.t_pgrp);
    385   1.1      cgd 					return (-1);
    386   1.1      cgd 				}
    387   1.1      cgd 				eproc.e_tpgid = pgrp.pg_id;
    388   1.1      cgd 			} else
    389   1.1      cgd 				eproc.e_tpgid = -1;
    390   1.1      cgd 		} else
    391   1.1      cgd 			eproc.e_tdev = NODEV;
    392   1.1      cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    393   1.1      cgd 		if (sess.s_leader == p)
    394   1.1      cgd 			eproc.e_flag |= EPROC_SLEADER;
    395   1.1      cgd 		if (proc.p_wmesg)
    396   1.1      cgd 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    397   1.1      cgd 			    eproc.e_wmesg, WMESGLEN);
    398   1.1      cgd 
    399   1.1      cgd 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    400   1.1      cgd 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    401   1.9       pk 
    402   1.1      cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    403   1.1      cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    404   1.1      cgd 
    405   1.1      cgd 		switch (what) {
    406   1.1      cgd 
    407   1.1      cgd 		case KERN_PROC_PGRP:
    408   1.1      cgd 			if (eproc.e_pgid != (pid_t)arg)
    409   1.1      cgd 				continue;
    410   1.1      cgd 			break;
    411   1.1      cgd 
    412   1.1      cgd 		case KERN_PROC_TTY:
    413   1.1      cgd 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    414   1.1      cgd 			     eproc.e_tdev != (dev_t)arg)
    415   1.1      cgd 				continue;
    416   1.1      cgd 			break;
    417   1.1      cgd 		}
    418   1.1      cgd 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    419   1.1      cgd 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    420   1.1      cgd 		++bp;
    421   1.1      cgd 		++cnt;
    422   1.1      cgd 	}
    423   1.1      cgd 	return (cnt);
    424   1.1      cgd }
    425   1.1      cgd 
    426   1.1      cgd /*
    427   1.1      cgd  * Build proc info array by reading in proc list from a crash dump.
    428   1.1      cgd  * Return number of procs read.  maxcnt is the max we will read.
    429   1.1      cgd  */
    430   1.1      cgd static int
    431   1.1      cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    432   1.1      cgd 	kvm_t *kd;
    433   1.1      cgd 	int what, arg;
    434   1.1      cgd 	u_long a_allproc;
    435   1.1      cgd 	u_long a_zombproc;
    436   1.1      cgd 	int maxcnt;
    437   1.1      cgd {
    438   1.1      cgd 	register struct kinfo_proc *bp = kd->procbase;
    439   1.1      cgd 	register int acnt, zcnt;
    440   1.1      cgd 	struct proc *p;
    441   1.1      cgd 
    442   1.1      cgd 	if (KREAD(kd, a_allproc, &p)) {
    443   1.1      cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    444   1.1      cgd 		return (-1);
    445   1.1      cgd 	}
    446   1.1      cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    447   1.1      cgd 	if (acnt < 0)
    448   1.1      cgd 		return (acnt);
    449   1.1      cgd 
    450   1.1      cgd 	if (KREAD(kd, a_zombproc, &p)) {
    451   1.1      cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    452   1.1      cgd 		return (-1);
    453   1.1      cgd 	}
    454   1.1      cgd 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    455   1.1      cgd 	if (zcnt < 0)
    456   1.1      cgd 		zcnt = 0;
    457   1.1      cgd 
    458   1.1      cgd 	return (acnt + zcnt);
    459   1.1      cgd }
    460   1.1      cgd 
    461   1.1      cgd struct kinfo_proc *
    462   1.1      cgd kvm_getprocs(kd, op, arg, cnt)
    463   1.1      cgd 	kvm_t *kd;
    464   1.1      cgd 	int op, arg;
    465   1.1      cgd 	int *cnt;
    466   1.1      cgd {
    467   1.7      cgd 	size_t size;
    468   1.7      cgd 	int mib[4], st, nprocs;
    469   1.1      cgd 
    470   1.1      cgd 	if (kd->procbase != 0) {
    471   1.1      cgd 		free((void *)kd->procbase);
    472   1.1      cgd 		/*
    473   1.1      cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    474   1.1      cgd 		 * kvm_close() will free it again.
    475   1.1      cgd 		 */
    476   1.1      cgd 		kd->procbase = 0;
    477   1.1      cgd 	}
    478   1.1      cgd 	if (ISALIVE(kd)) {
    479   1.1      cgd 		size = 0;
    480   1.1      cgd 		mib[0] = CTL_KERN;
    481   1.1      cgd 		mib[1] = KERN_PROC;
    482   1.1      cgd 		mib[2] = op;
    483   1.1      cgd 		mib[3] = arg;
    484   1.1      cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    485   1.1      cgd 		if (st == -1) {
    486   1.1      cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    487   1.1      cgd 			return (0);
    488   1.1      cgd 		}
    489   1.1      cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    490   1.1      cgd 		if (kd->procbase == 0)
    491   1.1      cgd 			return (0);
    492   1.1      cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    493   1.1      cgd 		if (st == -1) {
    494   1.1      cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    495   1.1      cgd 			return (0);
    496   1.1      cgd 		}
    497   1.1      cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    498   1.1      cgd 			_kvm_err(kd, kd->program,
    499   1.1      cgd 				"proc size mismatch (%d total, %d chunks)",
    500   1.1      cgd 				size, sizeof(struct kinfo_proc));
    501   1.1      cgd 			return (0);
    502   1.1      cgd 		}
    503   1.1      cgd 		nprocs = size / sizeof(struct kinfo_proc);
    504   1.1      cgd 	} else {
    505   1.1      cgd 		struct nlist nl[4], *p;
    506   1.1      cgd 
    507   1.1      cgd 		nl[0].n_name = "_nprocs";
    508   1.1      cgd 		nl[1].n_name = "_allproc";
    509   1.1      cgd 		nl[2].n_name = "_zombproc";
    510   1.1      cgd 		nl[3].n_name = 0;
    511   1.1      cgd 
    512   1.1      cgd 		if (kvm_nlist(kd, nl) != 0) {
    513   1.1      cgd 			for (p = nl; p->n_type != 0; ++p)
    514   1.1      cgd 				;
    515   1.1      cgd 			_kvm_err(kd, kd->program,
    516   1.1      cgd 				 "%s: no such symbol", p->n_name);
    517   1.1      cgd 			return (0);
    518   1.1      cgd 		}
    519   1.1      cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    520   1.1      cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    521   1.1      cgd 			return (0);
    522   1.1      cgd 		}
    523   1.1      cgd 		size = nprocs * sizeof(struct kinfo_proc);
    524   1.1      cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    525   1.1      cgd 		if (kd->procbase == 0)
    526   1.1      cgd 			return (0);
    527   1.1      cgd 
    528   1.1      cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    529   1.1      cgd 				      nl[2].n_value, nprocs);
    530   1.1      cgd #ifdef notdef
    531   1.1      cgd 		size = nprocs * sizeof(struct kinfo_proc);
    532   1.1      cgd 		(void)realloc(kd->procbase, size);
    533   1.1      cgd #endif
    534   1.1      cgd 	}
    535   1.1      cgd 	*cnt = nprocs;
    536   1.1      cgd 	return (kd->procbase);
    537   1.1      cgd }
    538   1.1      cgd 
    539   1.1      cgd void
    540   1.1      cgd _kvm_freeprocs(kd)
    541   1.1      cgd 	kvm_t *kd;
    542   1.1      cgd {
    543   1.1      cgd 	if (kd->procbase) {
    544   1.1      cgd 		free(kd->procbase);
    545   1.1      cgd 		kd->procbase = 0;
    546   1.1      cgd 	}
    547   1.1      cgd }
    548   1.1      cgd 
    549   1.1      cgd void *
    550   1.1      cgd _kvm_realloc(kd, p, n)
    551   1.1      cgd 	kvm_t *kd;
    552   1.1      cgd 	void *p;
    553   1.1      cgd 	size_t n;
    554   1.1      cgd {
    555   1.1      cgd 	void *np = (void *)realloc(p, n);
    556   1.1      cgd 
    557   1.1      cgd 	if (np == 0)
    558   1.1      cgd 		_kvm_err(kd, kd->program, "out of memory");
    559   1.1      cgd 	return (np);
    560   1.1      cgd }
    561   1.1      cgd 
    562   1.1      cgd #ifndef MAX
    563   1.1      cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
    564   1.1      cgd #endif
    565   1.1      cgd 
    566   1.1      cgd /*
    567   1.1      cgd  * Read in an argument vector from the user address space of process p.
    568   1.1      cgd  * addr if the user-space base address of narg null-terminated contiguous
    569   1.1      cgd  * strings.  This is used to read in both the command arguments and
    570   1.1      cgd  * environment strings.  Read at most maxcnt characters of strings.
    571   1.1      cgd  */
    572   1.1      cgd static char **
    573   1.1      cgd kvm_argv(kd, p, addr, narg, maxcnt)
    574   1.1      cgd 	kvm_t *kd;
    575   1.1      cgd 	struct proc *p;
    576   1.1      cgd 	register u_long addr;
    577   1.1      cgd 	register int narg;
    578   1.1      cgd 	register int maxcnt;
    579   1.1      cgd {
    580  1.10  mycroft 	register char *np, *cp, *ep, *ap;
    581  1.10  mycroft 	register u_long oaddr = -1;
    582   1.1      cgd 	register int len, cc;
    583   1.1      cgd 	register char **argv;
    584   1.1      cgd 
    585   1.1      cgd 	/*
    586   1.1      cgd 	 * Check that there aren't an unreasonable number of agruments,
    587   1.1      cgd 	 * and that the address is in user space.
    588   1.1      cgd 	 */
    589  1.10  mycroft 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    590   1.1      cgd 		return (0);
    591   1.1      cgd 
    592   1.1      cgd 	if (kd->argv == 0) {
    593   1.1      cgd 		/*
    594   1.1      cgd 		 * Try to avoid reallocs.
    595   1.1      cgd 		 */
    596   1.1      cgd 		kd->argc = MAX(narg + 1, 32);
    597   1.1      cgd 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    598   1.1      cgd 						sizeof(*kd->argv));
    599   1.1      cgd 		if (kd->argv == 0)
    600   1.1      cgd 			return (0);
    601   1.1      cgd 	} else if (narg + 1 > kd->argc) {
    602   1.1      cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    603   1.1      cgd 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    604   1.1      cgd 						sizeof(*kd->argv));
    605   1.1      cgd 		if (kd->argv == 0)
    606   1.1      cgd 			return (0);
    607   1.1      cgd 	}
    608   1.1      cgd 	if (kd->argspc == 0) {
    609   1.6  mycroft 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    610   1.1      cgd 		if (kd->argspc == 0)
    611   1.1      cgd 			return (0);
    612   1.6  mycroft 		kd->arglen = kd->nbpg;
    613   1.1      cgd 	}
    614  1.10  mycroft 	if (kd->argbuf == 0) {
    615  1.10  mycroft 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    616  1.10  mycroft 		if (kd->argbuf == 0)
    617  1.10  mycroft 			return (0);
    618  1.10  mycroft 	}
    619  1.10  mycroft 	cc = sizeof(char *) * narg;
    620  1.10  mycroft 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    621  1.10  mycroft 		return (0);
    622  1.10  mycroft 	ap = np = kd->argspc;
    623   1.1      cgd 	argv = kd->argv;
    624   1.1      cgd 	len = 0;
    625   1.1      cgd 	/*
    626   1.1      cgd 	 * Loop over pages, filling in the argument vector.
    627   1.1      cgd 	 */
    628  1.10  mycroft 	while (argv < kd->argv + narg && *argv != 0) {
    629  1.10  mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    630  1.10  mycroft 		if (addr != oaddr) {
    631  1.10  mycroft 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    632  1.10  mycroft 			    kd->nbpg)
    633  1.10  mycroft 				return (0);
    634  1.10  mycroft 			oaddr = addr;
    635  1.10  mycroft 		}
    636  1.10  mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    637  1.10  mycroft 		cp = kd->argbuf + addr;
    638  1.10  mycroft 		cc = kd->nbpg - addr;
    639   1.1      cgd 		if (maxcnt > 0 && cc > maxcnt - len)
    640   1.1      cgd 			cc = maxcnt - len;;
    641  1.10  mycroft 		ep = memchr(cp, '\0', cc);
    642  1.10  mycroft 		if (ep != 0)
    643  1.10  mycroft 			cc = ep - cp + 1;
    644   1.1      cgd 		if (len + cc > kd->arglen) {
    645   1.1      cgd 			register int off;
    646   1.1      cgd 			register char **pp;
    647   1.1      cgd 			register char *op = kd->argspc;
    648   1.1      cgd 
    649   1.1      cgd 			kd->arglen *= 2;
    650   1.1      cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    651   1.1      cgd 							  kd->arglen);
    652   1.1      cgd 			if (kd->argspc == 0)
    653   1.1      cgd 				return (0);
    654  1.10  mycroft 			np = kd->argspc + len;
    655   1.1      cgd 			/*
    656   1.1      cgd 			 * Adjust argv pointers in case realloc moved
    657   1.1      cgd 			 * the string space.
    658   1.1      cgd 			 */
    659   1.1      cgd 			off = kd->argspc - op;
    660   1.1      cgd 			for (pp = kd->argv; pp < argv; ++pp)
    661   1.1      cgd 				*pp += off;
    662   1.1      cgd 		}
    663  1.10  mycroft 		memcpy(np, cp, cc);
    664  1.10  mycroft 		np += cc;
    665   1.1      cgd 		len += cc;
    666  1.10  mycroft 		if (ep != 0) {
    667  1.10  mycroft 			*argv++ = ap;
    668  1.10  mycroft 			ap = np;
    669  1.10  mycroft 		} else
    670  1.10  mycroft 			*argv += cc;
    671   1.1      cgd 		if (maxcnt > 0 && len >= maxcnt) {
    672   1.1      cgd 			/*
    673   1.1      cgd 			 * We're stopping prematurely.  Terminate the
    674  1.10  mycroft 			 * current string.
    675   1.1      cgd 			 */
    676  1.10  mycroft 			if (ep == 0) {
    677  1.10  mycroft 				*np = '\0';
    678  1.10  mycroft 				++argv;
    679  1.10  mycroft 			}
    680  1.10  mycroft 			break;
    681   1.1      cgd 		}
    682   1.1      cgd 	}
    683  1.10  mycroft 	/* Make sure argv is terminated. */
    684  1.10  mycroft 	*argv = 0;
    685  1.10  mycroft 	return (kd->argv);
    686   1.1      cgd }
    687   1.1      cgd 
    688   1.1      cgd static void
    689   1.1      cgd ps_str_a(p, addr, n)
    690   1.1      cgd 	struct ps_strings *p;
    691   1.1      cgd 	u_long *addr;
    692   1.1      cgd 	int *n;
    693   1.1      cgd {
    694   1.1      cgd 	*addr = (u_long)p->ps_argvstr;
    695   1.1      cgd 	*n = p->ps_nargvstr;
    696   1.1      cgd }
    697   1.1      cgd 
    698   1.1      cgd static void
    699   1.1      cgd ps_str_e(p, addr, n)
    700   1.1      cgd 	struct ps_strings *p;
    701   1.1      cgd 	u_long *addr;
    702   1.1      cgd 	int *n;
    703   1.1      cgd {
    704   1.1      cgd 	*addr = (u_long)p->ps_envstr;
    705   1.1      cgd 	*n = p->ps_nenvstr;
    706   1.1      cgd }
    707   1.1      cgd 
    708   1.1      cgd /*
    709   1.1      cgd  * Determine if the proc indicated by p is still active.
    710   1.1      cgd  * This test is not 100% foolproof in theory, but chances of
    711   1.1      cgd  * being wrong are very low.
    712   1.1      cgd  */
    713   1.1      cgd static int
    714   1.1      cgd proc_verify(kd, kernp, p)
    715   1.1      cgd 	kvm_t *kd;
    716   1.1      cgd 	u_long kernp;
    717   1.1      cgd 	const struct proc *p;
    718   1.1      cgd {
    719   1.1      cgd 	struct proc kernproc;
    720   1.1      cgd 
    721   1.1      cgd 	/*
    722   1.1      cgd 	 * Just read in the whole proc.  It's not that big relative
    723   1.1      cgd 	 * to the cost of the read system call.
    724   1.1      cgd 	 */
    725   1.1      cgd 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    726   1.1      cgd 	    sizeof(kernproc))
    727   1.1      cgd 		return (0);
    728   1.1      cgd 	return (p->p_pid == kernproc.p_pid &&
    729   1.1      cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    730   1.1      cgd }
    731   1.1      cgd 
    732   1.1      cgd static char **
    733   1.1      cgd kvm_doargv(kd, kp, nchr, info)
    734   1.1      cgd 	kvm_t *kd;
    735   1.1      cgd 	const struct kinfo_proc *kp;
    736   1.1      cgd 	int nchr;
    737  1.10  mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
    738   1.1      cgd {
    739   1.1      cgd 	register const struct proc *p = &kp->kp_proc;
    740   1.1      cgd 	register char **ap;
    741   1.1      cgd 	u_long addr;
    742   1.1      cgd 	int cnt;
    743   1.1      cgd 	struct ps_strings arginfo;
    744   1.1      cgd 
    745   1.1      cgd 	/*
    746   1.1      cgd 	 * Pointers are stored at the top of the user stack.
    747   1.1      cgd 	 */
    748   1.1      cgd 	if (p->p_stat == SZOMB ||
    749   1.1      cgd 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    750   1.1      cgd 		      sizeof(arginfo)) != sizeof(arginfo))
    751   1.1      cgd 		return (0);
    752   1.1      cgd 
    753   1.1      cgd 	(*info)(&arginfo, &addr, &cnt);
    754   1.3  mycroft 	if (cnt == 0)
    755   1.3  mycroft 		return (0);
    756   1.1      cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    757   1.1      cgd 	/*
    758   1.1      cgd 	 * For live kernels, make sure this process didn't go away.
    759   1.1      cgd 	 */
    760   1.1      cgd 	if (ap != 0 && ISALIVE(kd) &&
    761   1.1      cgd 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    762   1.1      cgd 		ap = 0;
    763   1.1      cgd 	return (ap);
    764   1.1      cgd }
    765   1.1      cgd 
    766   1.1      cgd /*
    767   1.1      cgd  * Get the command args.  This code is now machine independent.
    768   1.1      cgd  */
    769   1.1      cgd char **
    770   1.1      cgd kvm_getargv(kd, kp, nchr)
    771   1.1      cgd 	kvm_t *kd;
    772   1.1      cgd 	const struct kinfo_proc *kp;
    773   1.1      cgd 	int nchr;
    774   1.1      cgd {
    775   1.1      cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    776   1.1      cgd }
    777   1.1      cgd 
    778   1.1      cgd char **
    779   1.1      cgd kvm_getenvv(kd, kp, nchr)
    780   1.1      cgd 	kvm_t *kd;
    781   1.1      cgd 	const struct kinfo_proc *kp;
    782   1.1      cgd 	int nchr;
    783   1.1      cgd {
    784   1.1      cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    785   1.1      cgd }
    786   1.1      cgd 
    787   1.1      cgd /*
    788   1.1      cgd  * Read from user space.  The user context is given by p.
    789   1.1      cgd  */
    790   1.1      cgd ssize_t
    791   1.1      cgd kvm_uread(kd, p, uva, buf, len)
    792   1.1      cgd 	kvm_t *kd;
    793   1.7      cgd 	register const struct proc *p;
    794   1.1      cgd 	register u_long uva;
    795   1.1      cgd 	register char *buf;
    796   1.1      cgd 	register size_t len;
    797   1.1      cgd {
    798   1.1      cgd 	register char *cp;
    799   1.1      cgd 
    800   1.1      cgd 	cp = buf;
    801   1.1      cgd 	while (len > 0) {
    802   1.1      cgd 		register int cc;
    803   1.8  mycroft 		register char *dp;
    804   1.8  mycroft 		int cnt;
    805   1.8  mycroft 
    806   1.8  mycroft 		dp = _kvm_uread(kd, p, uva, &cnt);
    807   1.8  mycroft 		if (dp == 0) {
    808   1.8  mycroft 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    809   1.8  mycroft 			return (0);
    810   1.8  mycroft 		}
    811   1.8  mycroft 		cc = MIN(cnt, len);
    812   1.8  mycroft 		bcopy(dp, cp, cc);
    813   1.8  mycroft 
    814   1.1      cgd 		cp += cc;
    815   1.1      cgd 		uva += cc;
    816   1.1      cgd 		len -= cc;
    817   1.1      cgd 	}
    818   1.1      cgd 	return (ssize_t)(cp - buf);
    819   1.1      cgd }
    820