kvm_proc.c revision 1.15 1 1.1 cgd /*-
2 1.11 mycroft * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
3 1.1 cgd * Copyright (c) 1989, 1992, 1993
4 1.1 cgd * The Regents of the University of California. All rights reserved.
5 1.1 cgd *
6 1.1 cgd * This code is derived from software developed by the Computer Systems
7 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8 1.1 cgd * BG 91-66 and contributed to Berkeley.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
40 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41 1.1 cgd #endif /* LIBC_SCCS and not lint */
42 1.1 cgd
43 1.1 cgd /*
44 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 1.1 cgd * users of this code, so we've factored it out into a separate module.
46 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 1.1 cgd * most other applications are interested only in open/close/read/nlist).
48 1.1 cgd */
49 1.1 cgd
50 1.1 cgd #include <sys/param.h>
51 1.1 cgd #include <sys/user.h>
52 1.1 cgd #include <sys/proc.h>
53 1.1 cgd #include <sys/exec.h>
54 1.1 cgd #include <sys/stat.h>
55 1.1 cgd #include <sys/ioctl.h>
56 1.1 cgd #include <sys/tty.h>
57 1.7 cgd #include <stdlib.h>
58 1.10 mycroft #include <string.h>
59 1.1 cgd #include <unistd.h>
60 1.1 cgd #include <nlist.h>
61 1.1 cgd #include <kvm.h>
62 1.1 cgd
63 1.1 cgd #include <vm/vm.h>
64 1.1 cgd #include <vm/vm_param.h>
65 1.1 cgd #include <vm/swap_pager.h>
66 1.1 cgd
67 1.1 cgd #include <sys/sysctl.h>
68 1.1 cgd
69 1.1 cgd #include <limits.h>
70 1.1 cgd #include <db.h>
71 1.1 cgd #include <paths.h>
72 1.1 cgd
73 1.1 cgd #include "kvm_private.h"
74 1.1 cgd
75 1.2 mycroft #define KREAD(kd, addr, obj) \
76 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
77 1.2 mycroft
78 1.15 cgd int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
79 1.15 cgd int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
80 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
81 1.15 cgd size_t));
82 1.15 cgd
83 1.15 cgd static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
84 1.15 cgd int));
85 1.15 cgd static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
86 1.15 cgd static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
87 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
88 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
89 1.15 cgd struct kinfo_proc *, int));
90 1.15 cgd static int proc_verify __P((kvm_t *, u_long, const struct proc *));
91 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
92 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
93 1.2 mycroft
94 1.8 mycroft char *
95 1.8 mycroft _kvm_uread(kd, p, va, cnt)
96 1.1 cgd kvm_t *kd;
97 1.1 cgd const struct proc *p;
98 1.1 cgd u_long va;
99 1.1 cgd u_long *cnt;
100 1.1 cgd {
101 1.1 cgd register u_long addr, head;
102 1.2 mycroft register u_long offset;
103 1.1 cgd struct vm_map_entry vme;
104 1.1 cgd struct vm_object vmo;
105 1.8 mycroft int rv;
106 1.1 cgd
107 1.6 mycroft if (kd->swapspc == 0) {
108 1.6 mycroft kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
109 1.6 mycroft if (kd->swapspc == 0)
110 1.5 deraadt return (0);
111 1.5 deraadt }
112 1.8 mycroft
113 1.1 cgd /*
114 1.1 cgd * Look through the address map for the memory object
115 1.1 cgd * that corresponds to the given virtual address.
116 1.1 cgd * The header just has the entire valid range.
117 1.1 cgd */
118 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
119 1.1 cgd addr = head;
120 1.1 cgd while (1) {
121 1.2 mycroft if (KREAD(kd, addr, &vme))
122 1.1 cgd return (0);
123 1.1 cgd
124 1.2 mycroft if (va >= vme.start && va < vme.end &&
125 1.1 cgd vme.object.vm_object != 0)
126 1.1 cgd break;
127 1.1 cgd
128 1.1 cgd addr = (u_long)vme.next;
129 1.2 mycroft if (addr == head)
130 1.1 cgd return (0);
131 1.1 cgd }
132 1.2 mycroft
133 1.1 cgd /*
134 1.1 cgd * We found the right object -- follow shadow links.
135 1.1 cgd */
136 1.1 cgd offset = va - vme.start + vme.offset;
137 1.1 cgd addr = (u_long)vme.object.vm_object;
138 1.8 mycroft
139 1.1 cgd while (1) {
140 1.8 mycroft /* Try reading the page from core first. */
141 1.8 mycroft if ((rv = _kvm_readfromcore(kd, addr, offset)))
142 1.8 mycroft break;
143 1.8 mycroft
144 1.2 mycroft if (KREAD(kd, addr, &vmo))
145 1.1 cgd return (0);
146 1.2 mycroft
147 1.2 mycroft /* If there is a pager here, see if it has the page. */
148 1.2 mycroft if (vmo.pager != 0 &&
149 1.8 mycroft (rv = _kvm_readfrompager(kd, &vmo, offset)))
150 1.2 mycroft break;
151 1.2 mycroft
152 1.2 mycroft /* Move down the shadow chain. */
153 1.1 cgd addr = (u_long)vmo.shadow;
154 1.1 cgd if (addr == 0)
155 1.2 mycroft return (0);
156 1.1 cgd offset += vmo.shadow_offset;
157 1.1 cgd }
158 1.2 mycroft
159 1.8 mycroft if (rv == -1)
160 1.8 mycroft return (0);
161 1.8 mycroft
162 1.2 mycroft /* Found the page. */
163 1.6 mycroft offset %= kd->nbpg;
164 1.6 mycroft *cnt = kd->nbpg - offset;
165 1.6 mycroft return (&kd->swapspc[offset]);
166 1.2 mycroft }
167 1.2 mycroft
168 1.8 mycroft #define vm_page_hash(kd, object, offset) \
169 1.8 mycroft (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
170 1.8 mycroft
171 1.8 mycroft int
172 1.8 mycroft _kvm_coreinit(kd)
173 1.8 mycroft kvm_t *kd;
174 1.8 mycroft {
175 1.8 mycroft struct nlist nlist[3];
176 1.8 mycroft
177 1.8 mycroft nlist[0].n_name = "_vm_page_buckets";
178 1.8 mycroft nlist[1].n_name = "_vm_page_hash_mask";
179 1.8 mycroft nlist[2].n_name = 0;
180 1.8 mycroft if (kvm_nlist(kd, nlist) != 0)
181 1.8 mycroft return (-1);
182 1.8 mycroft
183 1.8 mycroft if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
184 1.8 mycroft KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
185 1.8 mycroft return (-1);
186 1.8 mycroft
187 1.8 mycroft return (0);
188 1.8 mycroft }
189 1.8 mycroft
190 1.8 mycroft int
191 1.8 mycroft _kvm_readfromcore(kd, object, offset)
192 1.8 mycroft kvm_t *kd;
193 1.8 mycroft u_long object, offset;
194 1.8 mycroft {
195 1.8 mycroft u_long addr;
196 1.8 mycroft struct pglist bucket;
197 1.8 mycroft struct vm_page mem;
198 1.8 mycroft off_t seekpoint;
199 1.8 mycroft
200 1.8 mycroft if (kd->vm_page_buckets == 0 &&
201 1.8 mycroft _kvm_coreinit(kd))
202 1.8 mycroft return (-1);
203 1.8 mycroft
204 1.8 mycroft addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
205 1.8 mycroft if (KREAD(kd, addr, &bucket))
206 1.8 mycroft return (-1);
207 1.8 mycroft
208 1.8 mycroft addr = (u_long)bucket.tqh_first;
209 1.8 mycroft offset &= ~(kd->nbpg -1);
210 1.8 mycroft while (1) {
211 1.8 mycroft if (addr == 0)
212 1.8 mycroft return (0);
213 1.8 mycroft
214 1.8 mycroft if (KREAD(kd, addr, &mem))
215 1.8 mycroft return (-1);
216 1.8 mycroft
217 1.8 mycroft if ((u_long)mem.object == object &&
218 1.8 mycroft (u_long)mem.offset == offset)
219 1.8 mycroft break;
220 1.8 mycroft
221 1.8 mycroft addr = (u_long)mem.hashq.tqe_next;
222 1.8 mycroft }
223 1.8 mycroft
224 1.8 mycroft seekpoint = mem.phys_addr;
225 1.8 mycroft
226 1.8 mycroft if (lseek(kd->pmfd, seekpoint, 0) == -1)
227 1.8 mycroft return (-1);
228 1.8 mycroft if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
229 1.8 mycroft return (-1);
230 1.8 mycroft
231 1.8 mycroft return (1);
232 1.8 mycroft }
233 1.8 mycroft
234 1.2 mycroft int
235 1.6 mycroft _kvm_readfrompager(kd, vmop, offset)
236 1.2 mycroft kvm_t *kd;
237 1.2 mycroft struct vm_object *vmop;
238 1.2 mycroft u_long offset;
239 1.8 mycroft {
240 1.2 mycroft u_long addr;
241 1.2 mycroft struct pager_struct pager;
242 1.2 mycroft struct swpager swap;
243 1.2 mycroft int ix;
244 1.2 mycroft struct swblock swb;
245 1.8 mycroft off_t seekpoint;
246 1.2 mycroft
247 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
248 1.2 mycroft addr = (u_long)vmop->pager;
249 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
250 1.8 mycroft return (-1);
251 1.1 cgd
252 1.2 mycroft /* Read in the swap_pager private data. */
253 1.2 mycroft addr = (u_long)pager.pg_data;
254 1.2 mycroft if (KREAD(kd, addr, &swap))
255 1.8 mycroft return (-1);
256 1.1 cgd
257 1.1 cgd /*
258 1.2 mycroft * Calculate the paging offset, and make sure it's within the
259 1.2 mycroft * bounds of the pager.
260 1.1 cgd */
261 1.2 mycroft offset += vmop->paging_offset;
262 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
263 1.2 mycroft #if 0
264 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
265 1.8 mycroft return (-1);
266 1.2 mycroft #else
267 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
268 1.2 mycroft int i;
269 1.2 mycroft printf("BUG BUG BUG BUG:\n");
270 1.2 mycroft printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
271 1.2 mycroft vmop, offset - vmop->paging_offset, vmop->paging_offset,
272 1.2 mycroft vmop->pager, pager.pg_data);
273 1.2 mycroft printf("osize %x bsize %x blocks %x nblocks %x\n",
274 1.2 mycroft swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
275 1.2 mycroft swap.sw_nblocks);
276 1.2 mycroft for (ix = 0; ix < swap.sw_nblocks; ix++) {
277 1.2 mycroft addr = (u_long)&swap.sw_blocks[ix];
278 1.2 mycroft if (KREAD(kd, addr, &swb))
279 1.2 mycroft return (0);
280 1.2 mycroft printf("sw_blocks[%d]: block %x mask %x\n", ix,
281 1.2 mycroft swb.swb_block, swb.swb_mask);
282 1.2 mycroft }
283 1.8 mycroft return (-1);
284 1.2 mycroft }
285 1.2 mycroft #endif
286 1.1 cgd
287 1.2 mycroft /* Read in the swap records. */
288 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
289 1.2 mycroft if (KREAD(kd, addr, &swb))
290 1.8 mycroft return (-1);
291 1.1 cgd
292 1.2 mycroft /* Calculate offset within pager. */
293 1.2 mycroft offset %= dbtob(swap.sw_bsize);
294 1.1 cgd
295 1.2 mycroft /* Check that the page is actually present. */
296 1.6 mycroft if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
297 1.1 cgd return (0);
298 1.1 cgd
299 1.8 mycroft if (!ISALIVE(kd))
300 1.8 mycroft return (-1);
301 1.8 mycroft
302 1.2 mycroft /* Calculate the physical address and read the page. */
303 1.6 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
304 1.8 mycroft
305 1.2 mycroft if (lseek(kd->swfd, seekpoint, 0) == -1)
306 1.8 mycroft return (-1);
307 1.6 mycroft if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
308 1.8 mycroft return (-1);
309 1.1 cgd
310 1.2 mycroft return (1);
311 1.1 cgd }
312 1.1 cgd
313 1.1 cgd /*
314 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
315 1.1 cgd * at most maxcnt procs.
316 1.1 cgd */
317 1.1 cgd static int
318 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
319 1.1 cgd kvm_t *kd;
320 1.1 cgd int what, arg;
321 1.1 cgd struct proc *p;
322 1.1 cgd struct kinfo_proc *bp;
323 1.1 cgd int maxcnt;
324 1.1 cgd {
325 1.1 cgd register int cnt = 0;
326 1.1 cgd struct eproc eproc;
327 1.1 cgd struct pgrp pgrp;
328 1.1 cgd struct session sess;
329 1.1 cgd struct tty tty;
330 1.1 cgd struct proc proc;
331 1.1 cgd
332 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
333 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
334 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
335 1.1 cgd return (-1);
336 1.1 cgd }
337 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
338 1.1 cgd KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
339 1.1 cgd &eproc.e_ucred);
340 1.1 cgd
341 1.1 cgd switch(what) {
342 1.1 cgd
343 1.1 cgd case KERN_PROC_PID:
344 1.1 cgd if (proc.p_pid != (pid_t)arg)
345 1.1 cgd continue;
346 1.1 cgd break;
347 1.1 cgd
348 1.1 cgd case KERN_PROC_UID:
349 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
350 1.1 cgd continue;
351 1.1 cgd break;
352 1.1 cgd
353 1.1 cgd case KERN_PROC_RUID:
354 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
355 1.1 cgd continue;
356 1.1 cgd break;
357 1.1 cgd }
358 1.1 cgd /*
359 1.1 cgd * We're going to add another proc to the set. If this
360 1.1 cgd * will overflow the buffer, assume the reason is because
361 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
362 1.1 cgd */
363 1.1 cgd if (cnt >= maxcnt) {
364 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
365 1.1 cgd return (-1);
366 1.1 cgd }
367 1.1 cgd /*
368 1.1 cgd * gather eproc
369 1.1 cgd */
370 1.1 cgd eproc.e_paddr = p;
371 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
372 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
373 1.1 cgd proc.p_pgrp);
374 1.1 cgd return (-1);
375 1.1 cgd }
376 1.1 cgd eproc.e_sess = pgrp.pg_session;
377 1.1 cgd eproc.e_pgid = pgrp.pg_id;
378 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
379 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
380 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
381 1.1 cgd pgrp.pg_session);
382 1.1 cgd return (-1);
383 1.1 cgd }
384 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
385 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
386 1.1 cgd _kvm_err(kd, kd->program,
387 1.1 cgd "can't read tty at %x", sess.s_ttyp);
388 1.1 cgd return (-1);
389 1.1 cgd }
390 1.1 cgd eproc.e_tdev = tty.t_dev;
391 1.1 cgd eproc.e_tsess = tty.t_session;
392 1.1 cgd if (tty.t_pgrp != NULL) {
393 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
394 1.1 cgd _kvm_err(kd, kd->program,
395 1.1 cgd "can't read tpgrp at &x",
396 1.1 cgd tty.t_pgrp);
397 1.1 cgd return (-1);
398 1.1 cgd }
399 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
400 1.1 cgd } else
401 1.1 cgd eproc.e_tpgid = -1;
402 1.1 cgd } else
403 1.1 cgd eproc.e_tdev = NODEV;
404 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
405 1.1 cgd if (sess.s_leader == p)
406 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
407 1.1 cgd if (proc.p_wmesg)
408 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
409 1.1 cgd eproc.e_wmesg, WMESGLEN);
410 1.1 cgd
411 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
412 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
413 1.9 pk
414 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
415 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
416 1.1 cgd
417 1.1 cgd switch (what) {
418 1.1 cgd
419 1.1 cgd case KERN_PROC_PGRP:
420 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
421 1.1 cgd continue;
422 1.1 cgd break;
423 1.1 cgd
424 1.1 cgd case KERN_PROC_TTY:
425 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
426 1.1 cgd eproc.e_tdev != (dev_t)arg)
427 1.1 cgd continue;
428 1.1 cgd break;
429 1.1 cgd }
430 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
431 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
432 1.1 cgd ++bp;
433 1.1 cgd ++cnt;
434 1.1 cgd }
435 1.1 cgd return (cnt);
436 1.1 cgd }
437 1.1 cgd
438 1.1 cgd /*
439 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
440 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
441 1.1 cgd */
442 1.1 cgd static int
443 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
444 1.1 cgd kvm_t *kd;
445 1.1 cgd int what, arg;
446 1.1 cgd u_long a_allproc;
447 1.1 cgd u_long a_zombproc;
448 1.1 cgd int maxcnt;
449 1.1 cgd {
450 1.1 cgd register struct kinfo_proc *bp = kd->procbase;
451 1.1 cgd register int acnt, zcnt;
452 1.1 cgd struct proc *p;
453 1.1 cgd
454 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
455 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
456 1.1 cgd return (-1);
457 1.1 cgd }
458 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
459 1.1 cgd if (acnt < 0)
460 1.1 cgd return (acnt);
461 1.1 cgd
462 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
463 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
464 1.1 cgd return (-1);
465 1.1 cgd }
466 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
467 1.1 cgd if (zcnt < 0)
468 1.1 cgd zcnt = 0;
469 1.1 cgd
470 1.1 cgd return (acnt + zcnt);
471 1.1 cgd }
472 1.1 cgd
473 1.1 cgd struct kinfo_proc *
474 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
475 1.1 cgd kvm_t *kd;
476 1.1 cgd int op, arg;
477 1.1 cgd int *cnt;
478 1.1 cgd {
479 1.7 cgd size_t size;
480 1.7 cgd int mib[4], st, nprocs;
481 1.1 cgd
482 1.1 cgd if (kd->procbase != 0) {
483 1.1 cgd free((void *)kd->procbase);
484 1.1 cgd /*
485 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
486 1.1 cgd * kvm_close() will free it again.
487 1.1 cgd */
488 1.1 cgd kd->procbase = 0;
489 1.1 cgd }
490 1.1 cgd if (ISALIVE(kd)) {
491 1.1 cgd size = 0;
492 1.1 cgd mib[0] = CTL_KERN;
493 1.1 cgd mib[1] = KERN_PROC;
494 1.1 cgd mib[2] = op;
495 1.1 cgd mib[3] = arg;
496 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
497 1.1 cgd if (st == -1) {
498 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
499 1.1 cgd return (0);
500 1.1 cgd }
501 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
502 1.1 cgd if (kd->procbase == 0)
503 1.1 cgd return (0);
504 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
505 1.1 cgd if (st == -1) {
506 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
507 1.1 cgd return (0);
508 1.1 cgd }
509 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
510 1.1 cgd _kvm_err(kd, kd->program,
511 1.1 cgd "proc size mismatch (%d total, %d chunks)",
512 1.1 cgd size, sizeof(struct kinfo_proc));
513 1.1 cgd return (0);
514 1.1 cgd }
515 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
516 1.1 cgd } else {
517 1.1 cgd struct nlist nl[4], *p;
518 1.1 cgd
519 1.1 cgd nl[0].n_name = "_nprocs";
520 1.1 cgd nl[1].n_name = "_allproc";
521 1.1 cgd nl[2].n_name = "_zombproc";
522 1.1 cgd nl[3].n_name = 0;
523 1.1 cgd
524 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
525 1.1 cgd for (p = nl; p->n_type != 0; ++p)
526 1.1 cgd ;
527 1.1 cgd _kvm_err(kd, kd->program,
528 1.1 cgd "%s: no such symbol", p->n_name);
529 1.1 cgd return (0);
530 1.1 cgd }
531 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
532 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
533 1.1 cgd return (0);
534 1.1 cgd }
535 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
536 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
537 1.1 cgd if (kd->procbase == 0)
538 1.1 cgd return (0);
539 1.1 cgd
540 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
541 1.1 cgd nl[2].n_value, nprocs);
542 1.1 cgd #ifdef notdef
543 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
544 1.1 cgd (void)realloc(kd->procbase, size);
545 1.1 cgd #endif
546 1.1 cgd }
547 1.1 cgd *cnt = nprocs;
548 1.1 cgd return (kd->procbase);
549 1.1 cgd }
550 1.1 cgd
551 1.1 cgd void
552 1.1 cgd _kvm_freeprocs(kd)
553 1.1 cgd kvm_t *kd;
554 1.1 cgd {
555 1.1 cgd if (kd->procbase) {
556 1.1 cgd free(kd->procbase);
557 1.1 cgd kd->procbase = 0;
558 1.1 cgd }
559 1.1 cgd }
560 1.1 cgd
561 1.1 cgd void *
562 1.1 cgd _kvm_realloc(kd, p, n)
563 1.1 cgd kvm_t *kd;
564 1.1 cgd void *p;
565 1.1 cgd size_t n;
566 1.1 cgd {
567 1.1 cgd void *np = (void *)realloc(p, n);
568 1.1 cgd
569 1.1 cgd if (np == 0)
570 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
571 1.1 cgd return (np);
572 1.1 cgd }
573 1.1 cgd
574 1.1 cgd #ifndef MAX
575 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
576 1.1 cgd #endif
577 1.1 cgd
578 1.1 cgd /*
579 1.1 cgd * Read in an argument vector from the user address space of process p.
580 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
581 1.1 cgd * strings. This is used to read in both the command arguments and
582 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
583 1.1 cgd */
584 1.1 cgd static char **
585 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
586 1.1 cgd kvm_t *kd;
587 1.15 cgd const struct proc *p;
588 1.1 cgd register u_long addr;
589 1.1 cgd register int narg;
590 1.1 cgd register int maxcnt;
591 1.1 cgd {
592 1.10 mycroft register char *np, *cp, *ep, *ap;
593 1.10 mycroft register u_long oaddr = -1;
594 1.1 cgd register int len, cc;
595 1.1 cgd register char **argv;
596 1.1 cgd
597 1.1 cgd /*
598 1.1 cgd * Check that there aren't an unreasonable number of agruments,
599 1.1 cgd * and that the address is in user space.
600 1.1 cgd */
601 1.10 mycroft if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
602 1.1 cgd return (0);
603 1.1 cgd
604 1.1 cgd if (kd->argv == 0) {
605 1.1 cgd /*
606 1.1 cgd * Try to avoid reallocs.
607 1.1 cgd */
608 1.1 cgd kd->argc = MAX(narg + 1, 32);
609 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
610 1.1 cgd sizeof(*kd->argv));
611 1.1 cgd if (kd->argv == 0)
612 1.1 cgd return (0);
613 1.1 cgd } else if (narg + 1 > kd->argc) {
614 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
615 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
616 1.1 cgd sizeof(*kd->argv));
617 1.1 cgd if (kd->argv == 0)
618 1.1 cgd return (0);
619 1.1 cgd }
620 1.1 cgd if (kd->argspc == 0) {
621 1.6 mycroft kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
622 1.1 cgd if (kd->argspc == 0)
623 1.1 cgd return (0);
624 1.6 mycroft kd->arglen = kd->nbpg;
625 1.1 cgd }
626 1.10 mycroft if (kd->argbuf == 0) {
627 1.10 mycroft kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
628 1.10 mycroft if (kd->argbuf == 0)
629 1.10 mycroft return (0);
630 1.10 mycroft }
631 1.10 mycroft cc = sizeof(char *) * narg;
632 1.10 mycroft if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
633 1.10 mycroft return (0);
634 1.10 mycroft ap = np = kd->argspc;
635 1.1 cgd argv = kd->argv;
636 1.1 cgd len = 0;
637 1.1 cgd /*
638 1.1 cgd * Loop over pages, filling in the argument vector.
639 1.1 cgd */
640 1.10 mycroft while (argv < kd->argv + narg && *argv != 0) {
641 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
642 1.10 mycroft if (addr != oaddr) {
643 1.10 mycroft if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
644 1.10 mycroft kd->nbpg)
645 1.10 mycroft return (0);
646 1.10 mycroft oaddr = addr;
647 1.10 mycroft }
648 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
649 1.10 mycroft cp = kd->argbuf + addr;
650 1.10 mycroft cc = kd->nbpg - addr;
651 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
652 1.1 cgd cc = maxcnt - len;;
653 1.10 mycroft ep = memchr(cp, '\0', cc);
654 1.10 mycroft if (ep != 0)
655 1.10 mycroft cc = ep - cp + 1;
656 1.1 cgd if (len + cc > kd->arglen) {
657 1.1 cgd register int off;
658 1.1 cgd register char **pp;
659 1.1 cgd register char *op = kd->argspc;
660 1.1 cgd
661 1.1 cgd kd->arglen *= 2;
662 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
663 1.1 cgd kd->arglen);
664 1.1 cgd if (kd->argspc == 0)
665 1.1 cgd return (0);
666 1.1 cgd /*
667 1.1 cgd * Adjust argv pointers in case realloc moved
668 1.1 cgd * the string space.
669 1.1 cgd */
670 1.1 cgd off = kd->argspc - op;
671 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
672 1.1 cgd *pp += off;
673 1.12 mycroft ap += off;
674 1.12 mycroft np += off;
675 1.1 cgd }
676 1.10 mycroft memcpy(np, cp, cc);
677 1.10 mycroft np += cc;
678 1.1 cgd len += cc;
679 1.10 mycroft if (ep != 0) {
680 1.10 mycroft *argv++ = ap;
681 1.10 mycroft ap = np;
682 1.10 mycroft } else
683 1.10 mycroft *argv += cc;
684 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
685 1.1 cgd /*
686 1.1 cgd * We're stopping prematurely. Terminate the
687 1.10 mycroft * current string.
688 1.1 cgd */
689 1.10 mycroft if (ep == 0) {
690 1.10 mycroft *np = '\0';
691 1.14 mycroft *argv++ = ap;
692 1.10 mycroft }
693 1.10 mycroft break;
694 1.1 cgd }
695 1.1 cgd }
696 1.10 mycroft /* Make sure argv is terminated. */
697 1.10 mycroft *argv = 0;
698 1.10 mycroft return (kd->argv);
699 1.1 cgd }
700 1.1 cgd
701 1.1 cgd static void
702 1.1 cgd ps_str_a(p, addr, n)
703 1.1 cgd struct ps_strings *p;
704 1.1 cgd u_long *addr;
705 1.1 cgd int *n;
706 1.1 cgd {
707 1.1 cgd *addr = (u_long)p->ps_argvstr;
708 1.1 cgd *n = p->ps_nargvstr;
709 1.1 cgd }
710 1.1 cgd
711 1.1 cgd static void
712 1.1 cgd ps_str_e(p, addr, n)
713 1.1 cgd struct ps_strings *p;
714 1.1 cgd u_long *addr;
715 1.1 cgd int *n;
716 1.1 cgd {
717 1.1 cgd *addr = (u_long)p->ps_envstr;
718 1.1 cgd *n = p->ps_nenvstr;
719 1.1 cgd }
720 1.1 cgd
721 1.1 cgd /*
722 1.1 cgd * Determine if the proc indicated by p is still active.
723 1.1 cgd * This test is not 100% foolproof in theory, but chances of
724 1.1 cgd * being wrong are very low.
725 1.1 cgd */
726 1.1 cgd static int
727 1.1 cgd proc_verify(kd, kernp, p)
728 1.1 cgd kvm_t *kd;
729 1.1 cgd u_long kernp;
730 1.1 cgd const struct proc *p;
731 1.1 cgd {
732 1.1 cgd struct proc kernproc;
733 1.1 cgd
734 1.1 cgd /*
735 1.1 cgd * Just read in the whole proc. It's not that big relative
736 1.1 cgd * to the cost of the read system call.
737 1.1 cgd */
738 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
739 1.1 cgd sizeof(kernproc))
740 1.1 cgd return (0);
741 1.1 cgd return (p->p_pid == kernproc.p_pid &&
742 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
743 1.1 cgd }
744 1.1 cgd
745 1.1 cgd static char **
746 1.1 cgd kvm_doargv(kd, kp, nchr, info)
747 1.1 cgd kvm_t *kd;
748 1.1 cgd const struct kinfo_proc *kp;
749 1.1 cgd int nchr;
750 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
751 1.1 cgd {
752 1.1 cgd register const struct proc *p = &kp->kp_proc;
753 1.1 cgd register char **ap;
754 1.1 cgd u_long addr;
755 1.1 cgd int cnt;
756 1.1 cgd struct ps_strings arginfo;
757 1.1 cgd
758 1.1 cgd /*
759 1.1 cgd * Pointers are stored at the top of the user stack.
760 1.1 cgd */
761 1.1 cgd if (p->p_stat == SZOMB ||
762 1.1 cgd kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
763 1.1 cgd sizeof(arginfo)) != sizeof(arginfo))
764 1.1 cgd return (0);
765 1.1 cgd
766 1.1 cgd (*info)(&arginfo, &addr, &cnt);
767 1.3 mycroft if (cnt == 0)
768 1.3 mycroft return (0);
769 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
770 1.1 cgd /*
771 1.1 cgd * For live kernels, make sure this process didn't go away.
772 1.1 cgd */
773 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
774 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
775 1.1 cgd ap = 0;
776 1.1 cgd return (ap);
777 1.1 cgd }
778 1.1 cgd
779 1.1 cgd /*
780 1.1 cgd * Get the command args. This code is now machine independent.
781 1.1 cgd */
782 1.1 cgd char **
783 1.1 cgd kvm_getargv(kd, kp, nchr)
784 1.1 cgd kvm_t *kd;
785 1.1 cgd const struct kinfo_proc *kp;
786 1.1 cgd int nchr;
787 1.1 cgd {
788 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
789 1.1 cgd }
790 1.1 cgd
791 1.1 cgd char **
792 1.1 cgd kvm_getenvv(kd, kp, nchr)
793 1.1 cgd kvm_t *kd;
794 1.1 cgd const struct kinfo_proc *kp;
795 1.1 cgd int nchr;
796 1.1 cgd {
797 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
798 1.1 cgd }
799 1.1 cgd
800 1.1 cgd /*
801 1.1 cgd * Read from user space. The user context is given by p.
802 1.1 cgd */
803 1.1 cgd ssize_t
804 1.1 cgd kvm_uread(kd, p, uva, buf, len)
805 1.1 cgd kvm_t *kd;
806 1.7 cgd register const struct proc *p;
807 1.1 cgd register u_long uva;
808 1.1 cgd register char *buf;
809 1.1 cgd register size_t len;
810 1.1 cgd {
811 1.1 cgd register char *cp;
812 1.1 cgd
813 1.1 cgd cp = buf;
814 1.1 cgd while (len > 0) {
815 1.1 cgd register int cc;
816 1.8 mycroft register char *dp;
817 1.15 cgd u_long cnt;
818 1.8 mycroft
819 1.8 mycroft dp = _kvm_uread(kd, p, uva, &cnt);
820 1.8 mycroft if (dp == 0) {
821 1.8 mycroft _kvm_err(kd, 0, "invalid address (%x)", uva);
822 1.8 mycroft return (0);
823 1.8 mycroft }
824 1.8 mycroft cc = MIN(cnt, len);
825 1.8 mycroft bcopy(dp, cp, cc);
826 1.8 mycroft
827 1.1 cgd cp += cc;
828 1.1 cgd uva += cc;
829 1.1 cgd len -= cc;
830 1.1 cgd }
831 1.1 cgd return (ssize_t)(cp - buf);
832 1.1 cgd }
833