kvm_proc.c revision 1.18 1 1.18 gwr /* $NetBSD: kvm_proc.c,v 1.18 1997/08/12 16:30:15 gwr Exp $ */
2 1.16 thorpej
3 1.1 cgd /*-
4 1.11 mycroft * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 1.1 cgd * Copyright (c) 1989, 1992, 1993
6 1.1 cgd * The Regents of the University of California. All rights reserved.
7 1.1 cgd *
8 1.1 cgd * This code is derived from software developed by the Computer Systems
9 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 1.1 cgd * BG 91-66 and contributed to Berkeley.
11 1.1 cgd *
12 1.1 cgd * Redistribution and use in source and binary forms, with or without
13 1.1 cgd * modification, are permitted provided that the following conditions
14 1.1 cgd * are met:
15 1.1 cgd * 1. Redistributions of source code must retain the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer.
17 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cgd * notice, this list of conditions and the following disclaimer in the
19 1.1 cgd * documentation and/or other materials provided with the distribution.
20 1.1 cgd * 3. All advertising materials mentioning features or use of this software
21 1.1 cgd * must display the following acknowledgement:
22 1.1 cgd * This product includes software developed by the University of
23 1.1 cgd * California, Berkeley and its contributors.
24 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.1 cgd * may be used to endorse or promote products derived from this software
26 1.1 cgd * without specific prior written permission.
27 1.1 cgd *
28 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 cgd * SUCH DAMAGE.
39 1.1 cgd */
40 1.1 cgd
41 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
42 1.16 thorpej #if 0
43 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
44 1.16 thorpej #else
45 1.18 gwr static char *rcsid = "$NetBSD: kvm_proc.c,v 1.18 1997/08/12 16:30:15 gwr Exp $";
46 1.16 thorpej #endif
47 1.1 cgd #endif /* LIBC_SCCS and not lint */
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
51 1.1 cgd * users of this code, so we've factored it out into a separate module.
52 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
53 1.1 cgd * most other applications are interested only in open/close/read/nlist).
54 1.1 cgd */
55 1.1 cgd
56 1.1 cgd #include <sys/param.h>
57 1.1 cgd #include <sys/user.h>
58 1.1 cgd #include <sys/proc.h>
59 1.1 cgd #include <sys/exec.h>
60 1.1 cgd #include <sys/stat.h>
61 1.1 cgd #include <sys/ioctl.h>
62 1.1 cgd #include <sys/tty.h>
63 1.7 cgd #include <stdlib.h>
64 1.10 mycroft #include <string.h>
65 1.1 cgd #include <unistd.h>
66 1.1 cgd #include <nlist.h>
67 1.1 cgd #include <kvm.h>
68 1.1 cgd
69 1.1 cgd #include <vm/vm.h>
70 1.1 cgd #include <vm/vm_param.h>
71 1.1 cgd #include <vm/swap_pager.h>
72 1.1 cgd
73 1.1 cgd #include <sys/sysctl.h>
74 1.1 cgd
75 1.1 cgd #include <limits.h>
76 1.1 cgd #include <db.h>
77 1.1 cgd #include <paths.h>
78 1.1 cgd
79 1.1 cgd #include "kvm_private.h"
80 1.1 cgd
81 1.2 mycroft #define KREAD(kd, addr, obj) \
82 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83 1.2 mycroft
84 1.15 cgd int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
85 1.15 cgd int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
86 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
87 1.15 cgd size_t));
88 1.15 cgd
89 1.15 cgd static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
90 1.15 cgd int));
91 1.15 cgd static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
92 1.15 cgd static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
93 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
94 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
95 1.15 cgd struct kinfo_proc *, int));
96 1.15 cgd static int proc_verify __P((kvm_t *, u_long, const struct proc *));
97 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
98 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
99 1.2 mycroft
100 1.8 mycroft char *
101 1.8 mycroft _kvm_uread(kd, p, va, cnt)
102 1.1 cgd kvm_t *kd;
103 1.1 cgd const struct proc *p;
104 1.1 cgd u_long va;
105 1.1 cgd u_long *cnt;
106 1.1 cgd {
107 1.1 cgd register u_long addr, head;
108 1.2 mycroft register u_long offset;
109 1.1 cgd struct vm_map_entry vme;
110 1.1 cgd struct vm_object vmo;
111 1.8 mycroft int rv;
112 1.1 cgd
113 1.6 mycroft if (kd->swapspc == 0) {
114 1.6 mycroft kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
115 1.6 mycroft if (kd->swapspc == 0)
116 1.5 deraadt return (0);
117 1.5 deraadt }
118 1.8 mycroft
119 1.1 cgd /*
120 1.1 cgd * Look through the address map for the memory object
121 1.1 cgd * that corresponds to the given virtual address.
122 1.1 cgd * The header just has the entire valid range.
123 1.1 cgd */
124 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
125 1.1 cgd addr = head;
126 1.1 cgd while (1) {
127 1.2 mycroft if (KREAD(kd, addr, &vme))
128 1.1 cgd return (0);
129 1.1 cgd
130 1.2 mycroft if (va >= vme.start && va < vme.end &&
131 1.1 cgd vme.object.vm_object != 0)
132 1.1 cgd break;
133 1.1 cgd
134 1.1 cgd addr = (u_long)vme.next;
135 1.2 mycroft if (addr == head)
136 1.1 cgd return (0);
137 1.1 cgd }
138 1.2 mycroft
139 1.1 cgd /*
140 1.1 cgd * We found the right object -- follow shadow links.
141 1.1 cgd */
142 1.1 cgd offset = va - vme.start + vme.offset;
143 1.1 cgd addr = (u_long)vme.object.vm_object;
144 1.8 mycroft
145 1.1 cgd while (1) {
146 1.8 mycroft /* Try reading the page from core first. */
147 1.8 mycroft if ((rv = _kvm_readfromcore(kd, addr, offset)))
148 1.8 mycroft break;
149 1.8 mycroft
150 1.2 mycroft if (KREAD(kd, addr, &vmo))
151 1.1 cgd return (0);
152 1.2 mycroft
153 1.2 mycroft /* If there is a pager here, see if it has the page. */
154 1.2 mycroft if (vmo.pager != 0 &&
155 1.8 mycroft (rv = _kvm_readfrompager(kd, &vmo, offset)))
156 1.2 mycroft break;
157 1.2 mycroft
158 1.2 mycroft /* Move down the shadow chain. */
159 1.1 cgd addr = (u_long)vmo.shadow;
160 1.1 cgd if (addr == 0)
161 1.2 mycroft return (0);
162 1.1 cgd offset += vmo.shadow_offset;
163 1.1 cgd }
164 1.2 mycroft
165 1.8 mycroft if (rv == -1)
166 1.8 mycroft return (0);
167 1.8 mycroft
168 1.2 mycroft /* Found the page. */
169 1.6 mycroft offset %= kd->nbpg;
170 1.6 mycroft *cnt = kd->nbpg - offset;
171 1.6 mycroft return (&kd->swapspc[offset]);
172 1.2 mycroft }
173 1.2 mycroft
174 1.8 mycroft #define vm_page_hash(kd, object, offset) \
175 1.8 mycroft (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
176 1.8 mycroft
177 1.8 mycroft int
178 1.8 mycroft _kvm_coreinit(kd)
179 1.8 mycroft kvm_t *kd;
180 1.8 mycroft {
181 1.8 mycroft struct nlist nlist[3];
182 1.8 mycroft
183 1.8 mycroft nlist[0].n_name = "_vm_page_buckets";
184 1.8 mycroft nlist[1].n_name = "_vm_page_hash_mask";
185 1.8 mycroft nlist[2].n_name = 0;
186 1.8 mycroft if (kvm_nlist(kd, nlist) != 0)
187 1.8 mycroft return (-1);
188 1.8 mycroft
189 1.8 mycroft if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
190 1.8 mycroft KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
191 1.8 mycroft return (-1);
192 1.8 mycroft
193 1.8 mycroft return (0);
194 1.8 mycroft }
195 1.8 mycroft
196 1.8 mycroft int
197 1.8 mycroft _kvm_readfromcore(kd, object, offset)
198 1.8 mycroft kvm_t *kd;
199 1.8 mycroft u_long object, offset;
200 1.8 mycroft {
201 1.8 mycroft u_long addr;
202 1.8 mycroft struct pglist bucket;
203 1.8 mycroft struct vm_page mem;
204 1.8 mycroft off_t seekpoint;
205 1.8 mycroft
206 1.8 mycroft if (kd->vm_page_buckets == 0 &&
207 1.8 mycroft _kvm_coreinit(kd))
208 1.8 mycroft return (-1);
209 1.8 mycroft
210 1.8 mycroft addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
211 1.8 mycroft if (KREAD(kd, addr, &bucket))
212 1.8 mycroft return (-1);
213 1.8 mycroft
214 1.8 mycroft addr = (u_long)bucket.tqh_first;
215 1.8 mycroft offset &= ~(kd->nbpg -1);
216 1.8 mycroft while (1) {
217 1.8 mycroft if (addr == 0)
218 1.8 mycroft return (0);
219 1.8 mycroft
220 1.8 mycroft if (KREAD(kd, addr, &mem))
221 1.8 mycroft return (-1);
222 1.8 mycroft
223 1.8 mycroft if ((u_long)mem.object == object &&
224 1.8 mycroft (u_long)mem.offset == offset)
225 1.8 mycroft break;
226 1.8 mycroft
227 1.8 mycroft addr = (u_long)mem.hashq.tqe_next;
228 1.8 mycroft }
229 1.8 mycroft
230 1.8 mycroft seekpoint = mem.phys_addr;
231 1.8 mycroft
232 1.8 mycroft if (lseek(kd->pmfd, seekpoint, 0) == -1)
233 1.8 mycroft return (-1);
234 1.8 mycroft if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
235 1.8 mycroft return (-1);
236 1.8 mycroft
237 1.8 mycroft return (1);
238 1.8 mycroft }
239 1.8 mycroft
240 1.2 mycroft int
241 1.6 mycroft _kvm_readfrompager(kd, vmop, offset)
242 1.2 mycroft kvm_t *kd;
243 1.2 mycroft struct vm_object *vmop;
244 1.2 mycroft u_long offset;
245 1.8 mycroft {
246 1.2 mycroft u_long addr;
247 1.2 mycroft struct pager_struct pager;
248 1.2 mycroft struct swpager swap;
249 1.2 mycroft int ix;
250 1.2 mycroft struct swblock swb;
251 1.8 mycroft off_t seekpoint;
252 1.2 mycroft
253 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
254 1.2 mycroft addr = (u_long)vmop->pager;
255 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
256 1.8 mycroft return (-1);
257 1.1 cgd
258 1.2 mycroft /* Read in the swap_pager private data. */
259 1.2 mycroft addr = (u_long)pager.pg_data;
260 1.2 mycroft if (KREAD(kd, addr, &swap))
261 1.8 mycroft return (-1);
262 1.1 cgd
263 1.1 cgd /*
264 1.2 mycroft * Calculate the paging offset, and make sure it's within the
265 1.2 mycroft * bounds of the pager.
266 1.1 cgd */
267 1.2 mycroft offset += vmop->paging_offset;
268 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
269 1.2 mycroft #if 0
270 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
271 1.8 mycroft return (-1);
272 1.2 mycroft #else
273 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
274 1.2 mycroft int i;
275 1.2 mycroft printf("BUG BUG BUG BUG:\n");
276 1.17 mikel printf("object %p offset %lx pgoffset %lx ",
277 1.17 mikel vmop, offset - vmop->paging_offset,
278 1.17 mikel (u_long)vmop->paging_offset);
279 1.17 mikel printf("pager %p swpager %p\n",
280 1.2 mycroft vmop->pager, pager.pg_data);
281 1.17 mikel printf("osize %lx bsize %x blocks %p nblocks %x\n",
282 1.17 mikel (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
283 1.2 mycroft swap.sw_nblocks);
284 1.2 mycroft for (ix = 0; ix < swap.sw_nblocks; ix++) {
285 1.2 mycroft addr = (u_long)&swap.sw_blocks[ix];
286 1.2 mycroft if (KREAD(kd, addr, &swb))
287 1.2 mycroft return (0);
288 1.2 mycroft printf("sw_blocks[%d]: block %x mask %x\n", ix,
289 1.2 mycroft swb.swb_block, swb.swb_mask);
290 1.2 mycroft }
291 1.8 mycroft return (-1);
292 1.2 mycroft }
293 1.2 mycroft #endif
294 1.1 cgd
295 1.2 mycroft /* Read in the swap records. */
296 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
297 1.2 mycroft if (KREAD(kd, addr, &swb))
298 1.8 mycroft return (-1);
299 1.1 cgd
300 1.2 mycroft /* Calculate offset within pager. */
301 1.2 mycroft offset %= dbtob(swap.sw_bsize);
302 1.1 cgd
303 1.2 mycroft /* Check that the page is actually present. */
304 1.6 mycroft if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
305 1.1 cgd return (0);
306 1.1 cgd
307 1.8 mycroft if (!ISALIVE(kd))
308 1.8 mycroft return (-1);
309 1.8 mycroft
310 1.2 mycroft /* Calculate the physical address and read the page. */
311 1.6 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
312 1.8 mycroft
313 1.2 mycroft if (lseek(kd->swfd, seekpoint, 0) == -1)
314 1.8 mycroft return (-1);
315 1.6 mycroft if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
316 1.8 mycroft return (-1);
317 1.1 cgd
318 1.2 mycroft return (1);
319 1.1 cgd }
320 1.1 cgd
321 1.1 cgd /*
322 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
323 1.1 cgd * at most maxcnt procs.
324 1.1 cgd */
325 1.1 cgd static int
326 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
327 1.1 cgd kvm_t *kd;
328 1.1 cgd int what, arg;
329 1.1 cgd struct proc *p;
330 1.1 cgd struct kinfo_proc *bp;
331 1.1 cgd int maxcnt;
332 1.1 cgd {
333 1.1 cgd register int cnt = 0;
334 1.1 cgd struct eproc eproc;
335 1.1 cgd struct pgrp pgrp;
336 1.1 cgd struct session sess;
337 1.1 cgd struct tty tty;
338 1.1 cgd struct proc proc;
339 1.1 cgd
340 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
341 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
342 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
343 1.1 cgd return (-1);
344 1.1 cgd }
345 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
346 1.1 cgd KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
347 1.1 cgd &eproc.e_ucred);
348 1.1 cgd
349 1.1 cgd switch(what) {
350 1.1 cgd
351 1.1 cgd case KERN_PROC_PID:
352 1.1 cgd if (proc.p_pid != (pid_t)arg)
353 1.1 cgd continue;
354 1.1 cgd break;
355 1.1 cgd
356 1.1 cgd case KERN_PROC_UID:
357 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
358 1.1 cgd continue;
359 1.1 cgd break;
360 1.1 cgd
361 1.1 cgd case KERN_PROC_RUID:
362 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
363 1.1 cgd continue;
364 1.1 cgd break;
365 1.1 cgd }
366 1.1 cgd /*
367 1.1 cgd * We're going to add another proc to the set. If this
368 1.1 cgd * will overflow the buffer, assume the reason is because
369 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
370 1.1 cgd */
371 1.1 cgd if (cnt >= maxcnt) {
372 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
373 1.1 cgd return (-1);
374 1.1 cgd }
375 1.1 cgd /*
376 1.1 cgd * gather eproc
377 1.1 cgd */
378 1.1 cgd eproc.e_paddr = p;
379 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
380 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
381 1.1 cgd proc.p_pgrp);
382 1.1 cgd return (-1);
383 1.1 cgd }
384 1.1 cgd eproc.e_sess = pgrp.pg_session;
385 1.1 cgd eproc.e_pgid = pgrp.pg_id;
386 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
387 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
388 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
389 1.1 cgd pgrp.pg_session);
390 1.1 cgd return (-1);
391 1.1 cgd }
392 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
393 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
394 1.1 cgd _kvm_err(kd, kd->program,
395 1.1 cgd "can't read tty at %x", sess.s_ttyp);
396 1.1 cgd return (-1);
397 1.1 cgd }
398 1.1 cgd eproc.e_tdev = tty.t_dev;
399 1.1 cgd eproc.e_tsess = tty.t_session;
400 1.1 cgd if (tty.t_pgrp != NULL) {
401 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
402 1.1 cgd _kvm_err(kd, kd->program,
403 1.1 cgd "can't read tpgrp at &x",
404 1.1 cgd tty.t_pgrp);
405 1.1 cgd return (-1);
406 1.1 cgd }
407 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
408 1.1 cgd } else
409 1.1 cgd eproc.e_tpgid = -1;
410 1.1 cgd } else
411 1.1 cgd eproc.e_tdev = NODEV;
412 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
413 1.1 cgd if (sess.s_leader == p)
414 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
415 1.1 cgd if (proc.p_wmesg)
416 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
417 1.1 cgd eproc.e_wmesg, WMESGLEN);
418 1.1 cgd
419 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
420 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
421 1.9 pk
422 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
423 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
424 1.1 cgd
425 1.1 cgd switch (what) {
426 1.1 cgd
427 1.1 cgd case KERN_PROC_PGRP:
428 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
429 1.1 cgd continue;
430 1.1 cgd break;
431 1.1 cgd
432 1.1 cgd case KERN_PROC_TTY:
433 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
434 1.1 cgd eproc.e_tdev != (dev_t)arg)
435 1.1 cgd continue;
436 1.1 cgd break;
437 1.1 cgd }
438 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
439 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
440 1.1 cgd ++bp;
441 1.1 cgd ++cnt;
442 1.1 cgd }
443 1.1 cgd return (cnt);
444 1.1 cgd }
445 1.1 cgd
446 1.1 cgd /*
447 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
448 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
449 1.1 cgd */
450 1.1 cgd static int
451 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
452 1.1 cgd kvm_t *kd;
453 1.1 cgd int what, arg;
454 1.1 cgd u_long a_allproc;
455 1.1 cgd u_long a_zombproc;
456 1.1 cgd int maxcnt;
457 1.1 cgd {
458 1.1 cgd register struct kinfo_proc *bp = kd->procbase;
459 1.1 cgd register int acnt, zcnt;
460 1.1 cgd struct proc *p;
461 1.1 cgd
462 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
463 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
464 1.1 cgd return (-1);
465 1.1 cgd }
466 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
467 1.1 cgd if (acnt < 0)
468 1.1 cgd return (acnt);
469 1.1 cgd
470 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
471 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
472 1.1 cgd return (-1);
473 1.1 cgd }
474 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
475 1.1 cgd if (zcnt < 0)
476 1.1 cgd zcnt = 0;
477 1.1 cgd
478 1.1 cgd return (acnt + zcnt);
479 1.1 cgd }
480 1.1 cgd
481 1.1 cgd struct kinfo_proc *
482 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
483 1.1 cgd kvm_t *kd;
484 1.1 cgd int op, arg;
485 1.1 cgd int *cnt;
486 1.1 cgd {
487 1.7 cgd size_t size;
488 1.7 cgd int mib[4], st, nprocs;
489 1.1 cgd
490 1.1 cgd if (kd->procbase != 0) {
491 1.1 cgd free((void *)kd->procbase);
492 1.1 cgd /*
493 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
494 1.1 cgd * kvm_close() will free it again.
495 1.1 cgd */
496 1.1 cgd kd->procbase = 0;
497 1.1 cgd }
498 1.1 cgd if (ISALIVE(kd)) {
499 1.1 cgd size = 0;
500 1.1 cgd mib[0] = CTL_KERN;
501 1.1 cgd mib[1] = KERN_PROC;
502 1.1 cgd mib[2] = op;
503 1.1 cgd mib[3] = arg;
504 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
505 1.1 cgd if (st == -1) {
506 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
507 1.1 cgd return (0);
508 1.1 cgd }
509 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
510 1.1 cgd if (kd->procbase == 0)
511 1.1 cgd return (0);
512 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
513 1.1 cgd if (st == -1) {
514 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
515 1.1 cgd return (0);
516 1.1 cgd }
517 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
518 1.1 cgd _kvm_err(kd, kd->program,
519 1.1 cgd "proc size mismatch (%d total, %d chunks)",
520 1.1 cgd size, sizeof(struct kinfo_proc));
521 1.1 cgd return (0);
522 1.1 cgd }
523 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
524 1.1 cgd } else {
525 1.1 cgd struct nlist nl[4], *p;
526 1.1 cgd
527 1.1 cgd nl[0].n_name = "_nprocs";
528 1.1 cgd nl[1].n_name = "_allproc";
529 1.1 cgd nl[2].n_name = "_zombproc";
530 1.1 cgd nl[3].n_name = 0;
531 1.1 cgd
532 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
533 1.1 cgd for (p = nl; p->n_type != 0; ++p)
534 1.1 cgd ;
535 1.1 cgd _kvm_err(kd, kd->program,
536 1.1 cgd "%s: no such symbol", p->n_name);
537 1.1 cgd return (0);
538 1.1 cgd }
539 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
540 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
541 1.1 cgd return (0);
542 1.1 cgd }
543 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
544 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
545 1.1 cgd if (kd->procbase == 0)
546 1.1 cgd return (0);
547 1.1 cgd
548 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
549 1.1 cgd nl[2].n_value, nprocs);
550 1.1 cgd #ifdef notdef
551 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
552 1.1 cgd (void)realloc(kd->procbase, size);
553 1.1 cgd #endif
554 1.1 cgd }
555 1.1 cgd *cnt = nprocs;
556 1.1 cgd return (kd->procbase);
557 1.1 cgd }
558 1.1 cgd
559 1.1 cgd void
560 1.1 cgd _kvm_freeprocs(kd)
561 1.1 cgd kvm_t *kd;
562 1.1 cgd {
563 1.1 cgd if (kd->procbase) {
564 1.1 cgd free(kd->procbase);
565 1.1 cgd kd->procbase = 0;
566 1.1 cgd }
567 1.1 cgd }
568 1.1 cgd
569 1.1 cgd void *
570 1.1 cgd _kvm_realloc(kd, p, n)
571 1.1 cgd kvm_t *kd;
572 1.1 cgd void *p;
573 1.1 cgd size_t n;
574 1.1 cgd {
575 1.1 cgd void *np = (void *)realloc(p, n);
576 1.1 cgd
577 1.1 cgd if (np == 0)
578 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
579 1.1 cgd return (np);
580 1.1 cgd }
581 1.1 cgd
582 1.1 cgd #ifndef MAX
583 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
584 1.1 cgd #endif
585 1.1 cgd
586 1.1 cgd /*
587 1.1 cgd * Read in an argument vector from the user address space of process p.
588 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
589 1.1 cgd * strings. This is used to read in both the command arguments and
590 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
591 1.1 cgd */
592 1.1 cgd static char **
593 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
594 1.1 cgd kvm_t *kd;
595 1.15 cgd const struct proc *p;
596 1.1 cgd register u_long addr;
597 1.1 cgd register int narg;
598 1.1 cgd register int maxcnt;
599 1.1 cgd {
600 1.10 mycroft register char *np, *cp, *ep, *ap;
601 1.10 mycroft register u_long oaddr = -1;
602 1.1 cgd register int len, cc;
603 1.1 cgd register char **argv;
604 1.1 cgd
605 1.1 cgd /*
606 1.1 cgd * Check that there aren't an unreasonable number of agruments,
607 1.1 cgd * and that the address is in user space.
608 1.1 cgd */
609 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
610 1.1 cgd return (0);
611 1.1 cgd
612 1.1 cgd if (kd->argv == 0) {
613 1.1 cgd /*
614 1.1 cgd * Try to avoid reallocs.
615 1.1 cgd */
616 1.1 cgd kd->argc = MAX(narg + 1, 32);
617 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
618 1.1 cgd sizeof(*kd->argv));
619 1.1 cgd if (kd->argv == 0)
620 1.1 cgd return (0);
621 1.1 cgd } else if (narg + 1 > kd->argc) {
622 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
623 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
624 1.1 cgd sizeof(*kd->argv));
625 1.1 cgd if (kd->argv == 0)
626 1.1 cgd return (0);
627 1.1 cgd }
628 1.1 cgd if (kd->argspc == 0) {
629 1.6 mycroft kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
630 1.1 cgd if (kd->argspc == 0)
631 1.1 cgd return (0);
632 1.6 mycroft kd->arglen = kd->nbpg;
633 1.1 cgd }
634 1.10 mycroft if (kd->argbuf == 0) {
635 1.10 mycroft kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
636 1.10 mycroft if (kd->argbuf == 0)
637 1.10 mycroft return (0);
638 1.10 mycroft }
639 1.10 mycroft cc = sizeof(char *) * narg;
640 1.10 mycroft if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
641 1.10 mycroft return (0);
642 1.10 mycroft ap = np = kd->argspc;
643 1.1 cgd argv = kd->argv;
644 1.1 cgd len = 0;
645 1.1 cgd /*
646 1.1 cgd * Loop over pages, filling in the argument vector.
647 1.1 cgd */
648 1.10 mycroft while (argv < kd->argv + narg && *argv != 0) {
649 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
650 1.10 mycroft if (addr != oaddr) {
651 1.10 mycroft if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
652 1.10 mycroft kd->nbpg)
653 1.10 mycroft return (0);
654 1.10 mycroft oaddr = addr;
655 1.10 mycroft }
656 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
657 1.10 mycroft cp = kd->argbuf + addr;
658 1.10 mycroft cc = kd->nbpg - addr;
659 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
660 1.1 cgd cc = maxcnt - len;;
661 1.10 mycroft ep = memchr(cp, '\0', cc);
662 1.10 mycroft if (ep != 0)
663 1.10 mycroft cc = ep - cp + 1;
664 1.1 cgd if (len + cc > kd->arglen) {
665 1.1 cgd register int off;
666 1.1 cgd register char **pp;
667 1.1 cgd register char *op = kd->argspc;
668 1.1 cgd
669 1.1 cgd kd->arglen *= 2;
670 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
671 1.1 cgd kd->arglen);
672 1.1 cgd if (kd->argspc == 0)
673 1.1 cgd return (0);
674 1.1 cgd /*
675 1.1 cgd * Adjust argv pointers in case realloc moved
676 1.1 cgd * the string space.
677 1.1 cgd */
678 1.1 cgd off = kd->argspc - op;
679 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
680 1.1 cgd *pp += off;
681 1.12 mycroft ap += off;
682 1.12 mycroft np += off;
683 1.1 cgd }
684 1.10 mycroft memcpy(np, cp, cc);
685 1.10 mycroft np += cc;
686 1.1 cgd len += cc;
687 1.10 mycroft if (ep != 0) {
688 1.10 mycroft *argv++ = ap;
689 1.10 mycroft ap = np;
690 1.10 mycroft } else
691 1.10 mycroft *argv += cc;
692 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
693 1.1 cgd /*
694 1.1 cgd * We're stopping prematurely. Terminate the
695 1.10 mycroft * current string.
696 1.1 cgd */
697 1.10 mycroft if (ep == 0) {
698 1.10 mycroft *np = '\0';
699 1.14 mycroft *argv++ = ap;
700 1.10 mycroft }
701 1.10 mycroft break;
702 1.1 cgd }
703 1.1 cgd }
704 1.10 mycroft /* Make sure argv is terminated. */
705 1.10 mycroft *argv = 0;
706 1.10 mycroft return (kd->argv);
707 1.1 cgd }
708 1.1 cgd
709 1.1 cgd static void
710 1.1 cgd ps_str_a(p, addr, n)
711 1.1 cgd struct ps_strings *p;
712 1.1 cgd u_long *addr;
713 1.1 cgd int *n;
714 1.1 cgd {
715 1.1 cgd *addr = (u_long)p->ps_argvstr;
716 1.1 cgd *n = p->ps_nargvstr;
717 1.1 cgd }
718 1.1 cgd
719 1.1 cgd static void
720 1.1 cgd ps_str_e(p, addr, n)
721 1.1 cgd struct ps_strings *p;
722 1.1 cgd u_long *addr;
723 1.1 cgd int *n;
724 1.1 cgd {
725 1.1 cgd *addr = (u_long)p->ps_envstr;
726 1.1 cgd *n = p->ps_nenvstr;
727 1.1 cgd }
728 1.1 cgd
729 1.1 cgd /*
730 1.1 cgd * Determine if the proc indicated by p is still active.
731 1.1 cgd * This test is not 100% foolproof in theory, but chances of
732 1.1 cgd * being wrong are very low.
733 1.1 cgd */
734 1.1 cgd static int
735 1.1 cgd proc_verify(kd, kernp, p)
736 1.1 cgd kvm_t *kd;
737 1.1 cgd u_long kernp;
738 1.1 cgd const struct proc *p;
739 1.1 cgd {
740 1.1 cgd struct proc kernproc;
741 1.1 cgd
742 1.1 cgd /*
743 1.1 cgd * Just read in the whole proc. It's not that big relative
744 1.1 cgd * to the cost of the read system call.
745 1.1 cgd */
746 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
747 1.1 cgd sizeof(kernproc))
748 1.1 cgd return (0);
749 1.1 cgd return (p->p_pid == kernproc.p_pid &&
750 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
751 1.1 cgd }
752 1.1 cgd
753 1.1 cgd static char **
754 1.1 cgd kvm_doargv(kd, kp, nchr, info)
755 1.1 cgd kvm_t *kd;
756 1.1 cgd const struct kinfo_proc *kp;
757 1.1 cgd int nchr;
758 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
759 1.1 cgd {
760 1.1 cgd register const struct proc *p = &kp->kp_proc;
761 1.1 cgd register char **ap;
762 1.1 cgd u_long addr;
763 1.1 cgd int cnt;
764 1.1 cgd struct ps_strings arginfo;
765 1.1 cgd
766 1.1 cgd /*
767 1.1 cgd * Pointers are stored at the top of the user stack.
768 1.1 cgd */
769 1.18 gwr if (p->p_stat == SZOMB)
770 1.18 gwr return (0);
771 1.18 gwr cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
772 1.18 gwr (char *)&arginfo, sizeof(arginfo));
773 1.18 gwr if (cnt != sizeof(arginfo))
774 1.1 cgd return (0);
775 1.1 cgd
776 1.1 cgd (*info)(&arginfo, &addr, &cnt);
777 1.3 mycroft if (cnt == 0)
778 1.3 mycroft return (0);
779 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
780 1.1 cgd /*
781 1.1 cgd * For live kernels, make sure this process didn't go away.
782 1.1 cgd */
783 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
784 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
785 1.1 cgd ap = 0;
786 1.1 cgd return (ap);
787 1.1 cgd }
788 1.1 cgd
789 1.1 cgd /*
790 1.1 cgd * Get the command args. This code is now machine independent.
791 1.1 cgd */
792 1.1 cgd char **
793 1.1 cgd kvm_getargv(kd, kp, nchr)
794 1.1 cgd kvm_t *kd;
795 1.1 cgd const struct kinfo_proc *kp;
796 1.1 cgd int nchr;
797 1.1 cgd {
798 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
799 1.1 cgd }
800 1.1 cgd
801 1.1 cgd char **
802 1.1 cgd kvm_getenvv(kd, kp, nchr)
803 1.1 cgd kvm_t *kd;
804 1.1 cgd const struct kinfo_proc *kp;
805 1.1 cgd int nchr;
806 1.1 cgd {
807 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
808 1.1 cgd }
809 1.1 cgd
810 1.1 cgd /*
811 1.1 cgd * Read from user space. The user context is given by p.
812 1.1 cgd */
813 1.1 cgd ssize_t
814 1.1 cgd kvm_uread(kd, p, uva, buf, len)
815 1.1 cgd kvm_t *kd;
816 1.7 cgd register const struct proc *p;
817 1.1 cgd register u_long uva;
818 1.1 cgd register char *buf;
819 1.1 cgd register size_t len;
820 1.1 cgd {
821 1.1 cgd register char *cp;
822 1.1 cgd
823 1.1 cgd cp = buf;
824 1.1 cgd while (len > 0) {
825 1.1 cgd register int cc;
826 1.8 mycroft register char *dp;
827 1.15 cgd u_long cnt;
828 1.8 mycroft
829 1.8 mycroft dp = _kvm_uread(kd, p, uva, &cnt);
830 1.8 mycroft if (dp == 0) {
831 1.8 mycroft _kvm_err(kd, 0, "invalid address (%x)", uva);
832 1.8 mycroft return (0);
833 1.8 mycroft }
834 1.8 mycroft cc = MIN(cnt, len);
835 1.8 mycroft bcopy(dp, cp, cc);
836 1.8 mycroft
837 1.1 cgd cp += cc;
838 1.1 cgd uva += cc;
839 1.1 cgd len -= cc;
840 1.1 cgd }
841 1.1 cgd return (ssize_t)(cp - buf);
842 1.1 cgd }
843