Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.2
      1  1.1      cgd /*-
      2  1.2  mycroft  * Copyright (c) 1994 Charles Hannum.
      3  1.1      cgd  * Copyright (c) 1989, 1992, 1993
      4  1.1      cgd  *	The Regents of the University of California.  All rights reserved.
      5  1.1      cgd  *
      6  1.1      cgd  * This code is derived from software developed by the Computer Systems
      7  1.1      cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
      8  1.1      cgd  * BG 91-66 and contributed to Berkeley.
      9  1.1      cgd  *
     10  1.1      cgd  * Redistribution and use in source and binary forms, with or without
     11  1.1      cgd  * modification, are permitted provided that the following conditions
     12  1.1      cgd  * are met:
     13  1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.1      cgd  *    documentation and/or other materials provided with the distribution.
     18  1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     19  1.1      cgd  *    must display the following acknowledgement:
     20  1.1      cgd  *	This product includes software developed by the University of
     21  1.1      cgd  *	California, Berkeley and its contributors.
     22  1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     23  1.1      cgd  *    may be used to endorse or promote products derived from this software
     24  1.1      cgd  *    without specific prior written permission.
     25  1.1      cgd  *
     26  1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1      cgd  * SUCH DAMAGE.
     37  1.1      cgd  */
     38  1.1      cgd 
     39  1.1      cgd #if defined(LIBC_SCCS) && !defined(lint)
     40  1.1      cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     41  1.1      cgd #endif /* LIBC_SCCS and not lint */
     42  1.1      cgd 
     43  1.1      cgd /*
     44  1.1      cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     45  1.1      cgd  * users of this code, so we've factored it out into a separate module.
     46  1.1      cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     47  1.1      cgd  * most other applications are interested only in open/close/read/nlist).
     48  1.1      cgd  */
     49  1.1      cgd 
     50  1.1      cgd #include <sys/param.h>
     51  1.1      cgd #include <sys/user.h>
     52  1.1      cgd #include <sys/proc.h>
     53  1.1      cgd #include <sys/exec.h>
     54  1.1      cgd #include <sys/stat.h>
     55  1.1      cgd #include <sys/ioctl.h>
     56  1.1      cgd #include <sys/tty.h>
     57  1.1      cgd #include <unistd.h>
     58  1.1      cgd #include <nlist.h>
     59  1.1      cgd #include <kvm.h>
     60  1.1      cgd 
     61  1.1      cgd #include <vm/vm.h>
     62  1.1      cgd #include <vm/vm_param.h>
     63  1.1      cgd #include <vm/swap_pager.h>
     64  1.1      cgd 
     65  1.1      cgd #include <sys/sysctl.h>
     66  1.1      cgd 
     67  1.1      cgd #include <limits.h>
     68  1.1      cgd #include <db.h>
     69  1.1      cgd #include <paths.h>
     70  1.1      cgd 
     71  1.1      cgd #include "kvm_private.h"
     72  1.1      cgd 
     73  1.2  mycroft #define KREAD(kd, addr, obj) \
     74  1.2  mycroft 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     75  1.2  mycroft 
     76  1.2  mycroft int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long, char *));
     77  1.2  mycroft 
     78  1.1      cgd static char *
     79  1.1      cgd kvm_readswap(kd, p, va, cnt)
     80  1.1      cgd 	kvm_t *kd;
     81  1.1      cgd 	const struct proc *p;
     82  1.1      cgd 	u_long va;
     83  1.1      cgd 	u_long *cnt;
     84  1.1      cgd {
     85  1.1      cgd 	register u_long addr, head;
     86  1.2  mycroft 	register u_long offset;
     87  1.1      cgd 	struct vm_map_entry vme;
     88  1.1      cgd 	struct vm_object vmo;
     89  1.1      cgd 	static char page[NBPG];
     90  1.1      cgd 
     91  1.1      cgd 	head = (u_long)&p->p_vmspace->vm_map.header;
     92  1.1      cgd 	/*
     93  1.1      cgd 	 * Look through the address map for the memory object
     94  1.1      cgd 	 * that corresponds to the given virtual address.
     95  1.1      cgd 	 * The header just has the entire valid range.
     96  1.1      cgd 	 */
     97  1.1      cgd 	addr = head;
     98  1.1      cgd 	while (1) {
     99  1.2  mycroft 		if (KREAD(kd, addr, &vme))
    100  1.1      cgd 			return (0);
    101  1.1      cgd 
    102  1.2  mycroft 		if (va >= vme.start && va < vme.end &&
    103  1.1      cgd 		    vme.object.vm_object != 0)
    104  1.1      cgd 			break;
    105  1.1      cgd 
    106  1.1      cgd 		addr = (u_long)vme.next;
    107  1.2  mycroft 		if (addr == head)
    108  1.1      cgd 			return (0);
    109  1.1      cgd 	}
    110  1.2  mycroft 
    111  1.1      cgd 	/*
    112  1.1      cgd 	 * We found the right object -- follow shadow links.
    113  1.1      cgd 	 */
    114  1.1      cgd 	offset = va - vme.start + vme.offset;
    115  1.1      cgd 	addr = (u_long)vme.object.vm_object;
    116  1.1      cgd 	while (1) {
    117  1.2  mycroft 		if (KREAD(kd, addr, &vmo))
    118  1.1      cgd 			return (0);
    119  1.2  mycroft 
    120  1.2  mycroft 		/* If there is a pager here, see if it has the page. */
    121  1.2  mycroft 		if (vmo.pager != 0 &&
    122  1.2  mycroft 		    _kvm_readfrompager(kd, &vmo, offset, page))
    123  1.2  mycroft 			break;
    124  1.2  mycroft 
    125  1.2  mycroft 		/* Move down the shadow chain. */
    126  1.1      cgd 		addr = (u_long)vmo.shadow;
    127  1.1      cgd 		if (addr == 0)
    128  1.2  mycroft 			return (0);
    129  1.1      cgd 		offset += vmo.shadow_offset;
    130  1.1      cgd 	}
    131  1.2  mycroft 
    132  1.2  mycroft 	/* Found the page. */
    133  1.2  mycroft 	offset %= NBPG;
    134  1.2  mycroft 	*cnt = NBPG - offset;
    135  1.2  mycroft 	return (&page[offset]);
    136  1.2  mycroft }
    137  1.2  mycroft 
    138  1.2  mycroft int
    139  1.2  mycroft _kvm_readfrompager(kd, vmop, offset, buf)
    140  1.2  mycroft 	kvm_t *kd;
    141  1.2  mycroft 	struct vm_object *vmop;
    142  1.2  mycroft 	u_long offset;
    143  1.2  mycroft 	char *buf;
    144  1.2  mycroft {
    145  1.2  mycroft 	u_long addr;
    146  1.2  mycroft 	struct pager_struct pager;
    147  1.2  mycroft 	struct swpager swap;
    148  1.2  mycroft 	int ix;
    149  1.2  mycroft 	struct swblock swb;
    150  1.2  mycroft 	register off_t seekpoint;
    151  1.2  mycroft 
    152  1.2  mycroft 	/* Read in the pager info and make sure it's a swap device. */
    153  1.2  mycroft 	addr = (u_long)vmop->pager;
    154  1.2  mycroft 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    155  1.1      cgd 		return (0);
    156  1.1      cgd 
    157  1.2  mycroft 	/* Read in the swap_pager private data. */
    158  1.2  mycroft 	addr = (u_long)pager.pg_data;
    159  1.2  mycroft 	if (KREAD(kd, addr, &swap))
    160  1.1      cgd 		return (0);
    161  1.1      cgd 
    162  1.1      cgd 	/*
    163  1.2  mycroft 	 * Calculate the paging offset, and make sure it's within the
    164  1.2  mycroft 	 * bounds of the pager.
    165  1.1      cgd 	 */
    166  1.2  mycroft 	offset += vmop->paging_offset;
    167  1.1      cgd 	ix = offset / dbtob(swap.sw_bsize);
    168  1.2  mycroft #if 0
    169  1.1      cgd 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    170  1.1      cgd 		return (0);
    171  1.2  mycroft #else
    172  1.2  mycroft 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    173  1.2  mycroft 		int i;
    174  1.2  mycroft 		printf("BUG BUG BUG BUG:\n");
    175  1.2  mycroft 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    176  1.2  mycroft 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    177  1.2  mycroft 		    vmop->pager, pager.pg_data);
    178  1.2  mycroft 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    179  1.2  mycroft 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    180  1.2  mycroft 		    swap.sw_nblocks);
    181  1.2  mycroft 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    182  1.2  mycroft 			addr = (u_long)&swap.sw_blocks[ix];
    183  1.2  mycroft 			if (KREAD(kd, addr, &swb))
    184  1.2  mycroft 				return (0);
    185  1.2  mycroft 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    186  1.2  mycroft 			    swb.swb_block, swb.swb_mask);
    187  1.2  mycroft 		}
    188  1.2  mycroft 		return (0);
    189  1.2  mycroft 	}
    190  1.2  mycroft #endif
    191  1.1      cgd 
    192  1.2  mycroft 	/* Read in the swap records. */
    193  1.1      cgd 	addr = (u_long)&swap.sw_blocks[ix];
    194  1.2  mycroft 	if (KREAD(kd, addr, &swb))
    195  1.1      cgd 		return (0);
    196  1.1      cgd 
    197  1.2  mycroft 	/* Calculate offset within pager. */
    198  1.2  mycroft 	offset %= dbtob(swap.sw_bsize);
    199  1.1      cgd 
    200  1.2  mycroft 	/* Check that the page is actually present. */
    201  1.2  mycroft 	if ((swb.swb_mask & (1 << (offset / NBPG))) == 0)
    202  1.1      cgd 		return (0);
    203  1.1      cgd 
    204  1.2  mycroft 	/* Calculate the physical address and read the page. */
    205  1.2  mycroft 	seekpoint = dbtob(swb.swb_block) + (offset & ~PGOFSET);
    206  1.2  mycroft 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    207  1.1      cgd 		return (0);
    208  1.2  mycroft 	if (read(kd->swfd, buf, NBPG) != NBPG)
    209  1.1      cgd 		return (0);
    210  1.1      cgd 
    211  1.2  mycroft 	return (1);
    212  1.1      cgd }
    213  1.1      cgd 
    214  1.1      cgd /*
    215  1.1      cgd  * Read proc's from memory file into buffer bp, which has space to hold
    216  1.1      cgd  * at most maxcnt procs.
    217  1.1      cgd  */
    218  1.1      cgd static int
    219  1.1      cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    220  1.1      cgd 	kvm_t *kd;
    221  1.1      cgd 	int what, arg;
    222  1.1      cgd 	struct proc *p;
    223  1.1      cgd 	struct kinfo_proc *bp;
    224  1.1      cgd 	int maxcnt;
    225  1.1      cgd {
    226  1.1      cgd 	register int cnt = 0;
    227  1.1      cgd 	struct eproc eproc;
    228  1.1      cgd 	struct pgrp pgrp;
    229  1.1      cgd 	struct session sess;
    230  1.1      cgd 	struct tty tty;
    231  1.1      cgd 	struct proc proc;
    232  1.1      cgd 
    233  1.1      cgd 	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
    234  1.1      cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    235  1.1      cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    236  1.1      cgd 			return (-1);
    237  1.1      cgd 		}
    238  1.1      cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    239  1.1      cgd 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    240  1.1      cgd 			      &eproc.e_ucred);
    241  1.1      cgd 
    242  1.1      cgd 		switch(what) {
    243  1.1      cgd 
    244  1.1      cgd 		case KERN_PROC_PID:
    245  1.1      cgd 			if (proc.p_pid != (pid_t)arg)
    246  1.1      cgd 				continue;
    247  1.1      cgd 			break;
    248  1.1      cgd 
    249  1.1      cgd 		case KERN_PROC_UID:
    250  1.1      cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    251  1.1      cgd 				continue;
    252  1.1      cgd 			break;
    253  1.1      cgd 
    254  1.1      cgd 		case KERN_PROC_RUID:
    255  1.1      cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    256  1.1      cgd 				continue;
    257  1.1      cgd 			break;
    258  1.1      cgd 		}
    259  1.1      cgd 		/*
    260  1.1      cgd 		 * We're going to add another proc to the set.  If this
    261  1.1      cgd 		 * will overflow the buffer, assume the reason is because
    262  1.1      cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    263  1.1      cgd 		 */
    264  1.1      cgd 		if (cnt >= maxcnt) {
    265  1.1      cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    266  1.1      cgd 			return (-1);
    267  1.1      cgd 		}
    268  1.1      cgd 		/*
    269  1.1      cgd 		 * gather eproc
    270  1.1      cgd 		 */
    271  1.1      cgd 		eproc.e_paddr = p;
    272  1.1      cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    273  1.1      cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    274  1.1      cgd 				 proc.p_pgrp);
    275  1.1      cgd 			return (-1);
    276  1.1      cgd 		}
    277  1.1      cgd 		eproc.e_sess = pgrp.pg_session;
    278  1.1      cgd 		eproc.e_pgid = pgrp.pg_id;
    279  1.1      cgd 		eproc.e_jobc = pgrp.pg_jobc;
    280  1.1      cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    281  1.1      cgd 			_kvm_err(kd, kd->program, "can't read session at %x",
    282  1.1      cgd 				pgrp.pg_session);
    283  1.1      cgd 			return (-1);
    284  1.1      cgd 		}
    285  1.1      cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    286  1.1      cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    287  1.1      cgd 				_kvm_err(kd, kd->program,
    288  1.1      cgd 					 "can't read tty at %x", sess.s_ttyp);
    289  1.1      cgd 				return (-1);
    290  1.1      cgd 			}
    291  1.1      cgd 			eproc.e_tdev = tty.t_dev;
    292  1.1      cgd 			eproc.e_tsess = tty.t_session;
    293  1.1      cgd 			if (tty.t_pgrp != NULL) {
    294  1.1      cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    295  1.1      cgd 					_kvm_err(kd, kd->program,
    296  1.1      cgd 						 "can't read tpgrp at &x",
    297  1.1      cgd 						tty.t_pgrp);
    298  1.1      cgd 					return (-1);
    299  1.1      cgd 				}
    300  1.1      cgd 				eproc.e_tpgid = pgrp.pg_id;
    301  1.1      cgd 			} else
    302  1.1      cgd 				eproc.e_tpgid = -1;
    303  1.1      cgd 		} else
    304  1.1      cgd 			eproc.e_tdev = NODEV;
    305  1.1      cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    306  1.1      cgd 		if (sess.s_leader == p)
    307  1.1      cgd 			eproc.e_flag |= EPROC_SLEADER;
    308  1.1      cgd 		if (proc.p_wmesg)
    309  1.1      cgd 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    310  1.1      cgd 			    eproc.e_wmesg, WMESGLEN);
    311  1.1      cgd 
    312  1.1      cgd #ifdef sparc
    313  1.1      cgd 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
    314  1.1      cgd 		    (char *)&eproc.e_vm.vm_rssize,
    315  1.1      cgd 		    sizeof(eproc.e_vm.vm_rssize));
    316  1.1      cgd 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
    317  1.1      cgd 		    (char *)&eproc.e_vm.vm_tsize,
    318  1.1      cgd 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
    319  1.1      cgd #else
    320  1.1      cgd 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    321  1.1      cgd 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    322  1.1      cgd #endif
    323  1.1      cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    324  1.1      cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    325  1.1      cgd 
    326  1.1      cgd 		switch (what) {
    327  1.1      cgd 
    328  1.1      cgd 		case KERN_PROC_PGRP:
    329  1.1      cgd 			if (eproc.e_pgid != (pid_t)arg)
    330  1.1      cgd 				continue;
    331  1.1      cgd 			break;
    332  1.1      cgd 
    333  1.1      cgd 		case KERN_PROC_TTY:
    334  1.1      cgd 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    335  1.1      cgd 			     eproc.e_tdev != (dev_t)arg)
    336  1.1      cgd 				continue;
    337  1.1      cgd 			break;
    338  1.1      cgd 		}
    339  1.1      cgd 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    340  1.1      cgd 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    341  1.1      cgd 		++bp;
    342  1.1      cgd 		++cnt;
    343  1.1      cgd 	}
    344  1.1      cgd 	return (cnt);
    345  1.1      cgd }
    346  1.1      cgd 
    347  1.1      cgd /*
    348  1.1      cgd  * Build proc info array by reading in proc list from a crash dump.
    349  1.1      cgd  * Return number of procs read.  maxcnt is the max we will read.
    350  1.1      cgd  */
    351  1.1      cgd static int
    352  1.1      cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    353  1.1      cgd 	kvm_t *kd;
    354  1.1      cgd 	int what, arg;
    355  1.1      cgd 	u_long a_allproc;
    356  1.1      cgd 	u_long a_zombproc;
    357  1.1      cgd 	int maxcnt;
    358  1.1      cgd {
    359  1.1      cgd 	register struct kinfo_proc *bp = kd->procbase;
    360  1.1      cgd 	register int acnt, zcnt;
    361  1.1      cgd 	struct proc *p;
    362  1.1      cgd 
    363  1.1      cgd 	if (KREAD(kd, a_allproc, &p)) {
    364  1.1      cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    365  1.1      cgd 		return (-1);
    366  1.1      cgd 	}
    367  1.1      cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    368  1.1      cgd 	if (acnt < 0)
    369  1.1      cgd 		return (acnt);
    370  1.1      cgd 
    371  1.1      cgd 	if (KREAD(kd, a_zombproc, &p)) {
    372  1.1      cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    373  1.1      cgd 		return (-1);
    374  1.1      cgd 	}
    375  1.1      cgd 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    376  1.1      cgd 	if (zcnt < 0)
    377  1.1      cgd 		zcnt = 0;
    378  1.1      cgd 
    379  1.1      cgd 	return (acnt + zcnt);
    380  1.1      cgd }
    381  1.1      cgd 
    382  1.1      cgd struct kinfo_proc *
    383  1.1      cgd kvm_getprocs(kd, op, arg, cnt)
    384  1.1      cgd 	kvm_t *kd;
    385  1.1      cgd 	int op, arg;
    386  1.1      cgd 	int *cnt;
    387  1.1      cgd {
    388  1.1      cgd 	int mib[4], size, st, nprocs;
    389  1.1      cgd 
    390  1.1      cgd 	if (kd->procbase != 0) {
    391  1.1      cgd 		free((void *)kd->procbase);
    392  1.1      cgd 		/*
    393  1.1      cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    394  1.1      cgd 		 * kvm_close() will free it again.
    395  1.1      cgd 		 */
    396  1.1      cgd 		kd->procbase = 0;
    397  1.1      cgd 	}
    398  1.1      cgd 	if (ISALIVE(kd)) {
    399  1.1      cgd 		size = 0;
    400  1.1      cgd 		mib[0] = CTL_KERN;
    401  1.1      cgd 		mib[1] = KERN_PROC;
    402  1.1      cgd 		mib[2] = op;
    403  1.1      cgd 		mib[3] = arg;
    404  1.1      cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    405  1.1      cgd 		if (st == -1) {
    406  1.1      cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    407  1.1      cgd 			return (0);
    408  1.1      cgd 		}
    409  1.1      cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    410  1.1      cgd 		if (kd->procbase == 0)
    411  1.1      cgd 			return (0);
    412  1.1      cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    413  1.1      cgd 		if (st == -1) {
    414  1.1      cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    415  1.1      cgd 			return (0);
    416  1.1      cgd 		}
    417  1.1      cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    418  1.1      cgd 			_kvm_err(kd, kd->program,
    419  1.1      cgd 				"proc size mismatch (%d total, %d chunks)",
    420  1.1      cgd 				size, sizeof(struct kinfo_proc));
    421  1.1      cgd 			return (0);
    422  1.1      cgd 		}
    423  1.1      cgd 		nprocs = size / sizeof(struct kinfo_proc);
    424  1.1      cgd 	} else {
    425  1.1      cgd 		struct nlist nl[4], *p;
    426  1.1      cgd 
    427  1.1      cgd 		nl[0].n_name = "_nprocs";
    428  1.1      cgd 		nl[1].n_name = "_allproc";
    429  1.1      cgd 		nl[2].n_name = "_zombproc";
    430  1.1      cgd 		nl[3].n_name = 0;
    431  1.1      cgd 
    432  1.1      cgd 		if (kvm_nlist(kd, nl) != 0) {
    433  1.1      cgd 			for (p = nl; p->n_type != 0; ++p)
    434  1.1      cgd 				;
    435  1.1      cgd 			_kvm_err(kd, kd->program,
    436  1.1      cgd 				 "%s: no such symbol", p->n_name);
    437  1.1      cgd 			return (0);
    438  1.1      cgd 		}
    439  1.1      cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    440  1.1      cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    441  1.1      cgd 			return (0);
    442  1.1      cgd 		}
    443  1.1      cgd 		size = nprocs * sizeof(struct kinfo_proc);
    444  1.1      cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    445  1.1      cgd 		if (kd->procbase == 0)
    446  1.1      cgd 			return (0);
    447  1.1      cgd 
    448  1.1      cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    449  1.1      cgd 				      nl[2].n_value, nprocs);
    450  1.1      cgd #ifdef notdef
    451  1.1      cgd 		size = nprocs * sizeof(struct kinfo_proc);
    452  1.1      cgd 		(void)realloc(kd->procbase, size);
    453  1.1      cgd #endif
    454  1.1      cgd 	}
    455  1.1      cgd 	*cnt = nprocs;
    456  1.1      cgd 	return (kd->procbase);
    457  1.1      cgd }
    458  1.1      cgd 
    459  1.1      cgd void
    460  1.1      cgd _kvm_freeprocs(kd)
    461  1.1      cgd 	kvm_t *kd;
    462  1.1      cgd {
    463  1.1      cgd 	if (kd->procbase) {
    464  1.1      cgd 		free(kd->procbase);
    465  1.1      cgd 		kd->procbase = 0;
    466  1.1      cgd 	}
    467  1.1      cgd }
    468  1.1      cgd 
    469  1.1      cgd void *
    470  1.1      cgd _kvm_realloc(kd, p, n)
    471  1.1      cgd 	kvm_t *kd;
    472  1.1      cgd 	void *p;
    473  1.1      cgd 	size_t n;
    474  1.1      cgd {
    475  1.1      cgd 	void *np = (void *)realloc(p, n);
    476  1.1      cgd 
    477  1.1      cgd 	if (np == 0)
    478  1.1      cgd 		_kvm_err(kd, kd->program, "out of memory");
    479  1.1      cgd 	return (np);
    480  1.1      cgd }
    481  1.1      cgd 
    482  1.1      cgd #ifndef MAX
    483  1.1      cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
    484  1.1      cgd #endif
    485  1.1      cgd 
    486  1.1      cgd /*
    487  1.1      cgd  * Read in an argument vector from the user address space of process p.
    488  1.1      cgd  * addr if the user-space base address of narg null-terminated contiguous
    489  1.1      cgd  * strings.  This is used to read in both the command arguments and
    490  1.1      cgd  * environment strings.  Read at most maxcnt characters of strings.
    491  1.1      cgd  */
    492  1.1      cgd static char **
    493  1.1      cgd kvm_argv(kd, p, addr, narg, maxcnt)
    494  1.1      cgd 	kvm_t *kd;
    495  1.1      cgd 	struct proc *p;
    496  1.1      cgd 	register u_long addr;
    497  1.1      cgd 	register int narg;
    498  1.1      cgd 	register int maxcnt;
    499  1.1      cgd {
    500  1.1      cgd 	register char *cp;
    501  1.1      cgd 	register int len, cc;
    502  1.1      cgd 	register char **argv;
    503  1.1      cgd 
    504  1.1      cgd 	/*
    505  1.1      cgd 	 * Check that there aren't an unreasonable number of agruments,
    506  1.1      cgd 	 * and that the address is in user space.
    507  1.1      cgd 	 */
    508  1.1      cgd 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    509  1.1      cgd 		return (0);
    510  1.1      cgd 
    511  1.1      cgd 	if (kd->argv == 0) {
    512  1.1      cgd 		/*
    513  1.1      cgd 		 * Try to avoid reallocs.
    514  1.1      cgd 		 */
    515  1.1      cgd 		kd->argc = MAX(narg + 1, 32);
    516  1.1      cgd 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    517  1.1      cgd 						sizeof(*kd->argv));
    518  1.1      cgd 		if (kd->argv == 0)
    519  1.1      cgd 			return (0);
    520  1.1      cgd 	} else if (narg + 1 > kd->argc) {
    521  1.1      cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    522  1.1      cgd 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    523  1.1      cgd 						sizeof(*kd->argv));
    524  1.1      cgd 		if (kd->argv == 0)
    525  1.1      cgd 			return (0);
    526  1.1      cgd 	}
    527  1.1      cgd 	if (kd->argspc == 0) {
    528  1.1      cgd 		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
    529  1.1      cgd 		if (kd->argspc == 0)
    530  1.1      cgd 			return (0);
    531  1.1      cgd 		kd->arglen = NBPG;
    532  1.1      cgd 	}
    533  1.1      cgd 	cp = kd->argspc;
    534  1.1      cgd 	argv = kd->argv;
    535  1.1      cgd 	*argv = cp;
    536  1.1      cgd 	len = 0;
    537  1.1      cgd 	/*
    538  1.1      cgd 	 * Loop over pages, filling in the argument vector.
    539  1.1      cgd 	 */
    540  1.1      cgd 	while (addr < VM_MAXUSER_ADDRESS) {
    541  1.1      cgd 		cc = NBPG - (addr & PGOFSET);
    542  1.1      cgd 		if (maxcnt > 0 && cc > maxcnt - len)
    543  1.1      cgd 			cc = maxcnt - len;;
    544  1.1      cgd 		if (len + cc > kd->arglen) {
    545  1.1      cgd 			register int off;
    546  1.1      cgd 			register char **pp;
    547  1.1      cgd 			register char *op = kd->argspc;
    548  1.1      cgd 
    549  1.1      cgd 			kd->arglen *= 2;
    550  1.1      cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    551  1.1      cgd 							  kd->arglen);
    552  1.1      cgd 			if (kd->argspc == 0)
    553  1.1      cgd 				return (0);
    554  1.1      cgd 			cp = &kd->argspc[len];
    555  1.1      cgd 			/*
    556  1.1      cgd 			 * Adjust argv pointers in case realloc moved
    557  1.1      cgd 			 * the string space.
    558  1.1      cgd 			 */
    559  1.1      cgd 			off = kd->argspc - op;
    560  1.1      cgd 			for (pp = kd->argv; pp < argv; ++pp)
    561  1.1      cgd 				*pp += off;
    562  1.1      cgd 		}
    563  1.1      cgd 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
    564  1.1      cgd 			/* XXX */
    565  1.1      cgd 			return (0);
    566  1.1      cgd 		len += cc;
    567  1.1      cgd 		addr += cc;
    568  1.1      cgd 
    569  1.1      cgd 		if (maxcnt == 0 && len > 16 * NBPG)
    570  1.1      cgd 			/* sanity */
    571  1.1      cgd 			return (0);
    572  1.1      cgd 
    573  1.1      cgd 		while (--cc >= 0) {
    574  1.1      cgd 			if (*cp++ == 0) {
    575  1.1      cgd 				if (--narg <= 0) {
    576  1.1      cgd 					*++argv = 0;
    577  1.1      cgd 					return (kd->argv);
    578  1.1      cgd 				} else
    579  1.1      cgd 					*++argv = cp;
    580  1.1      cgd 			}
    581  1.1      cgd 		}
    582  1.1      cgd 		if (maxcnt > 0 && len >= maxcnt) {
    583  1.1      cgd 			/*
    584  1.1      cgd 			 * We're stopping prematurely.  Terminate the
    585  1.1      cgd 			 * argv and current string.
    586  1.1      cgd 			 */
    587  1.1      cgd 			*++argv = 0;
    588  1.1      cgd 			*cp = 0;
    589  1.1      cgd 			return (kd->argv);
    590  1.1      cgd 		}
    591  1.1      cgd 	}
    592  1.1      cgd }
    593  1.1      cgd 
    594  1.1      cgd static void
    595  1.1      cgd ps_str_a(p, addr, n)
    596  1.1      cgd 	struct ps_strings *p;
    597  1.1      cgd 	u_long *addr;
    598  1.1      cgd 	int *n;
    599  1.1      cgd {
    600  1.1      cgd 	*addr = (u_long)p->ps_argvstr;
    601  1.1      cgd 	*n = p->ps_nargvstr;
    602  1.1      cgd }
    603  1.1      cgd 
    604  1.1      cgd static void
    605  1.1      cgd ps_str_e(p, addr, n)
    606  1.1      cgd 	struct ps_strings *p;
    607  1.1      cgd 	u_long *addr;
    608  1.1      cgd 	int *n;
    609  1.1      cgd {
    610  1.1      cgd 	*addr = (u_long)p->ps_envstr;
    611  1.1      cgd 	*n = p->ps_nenvstr;
    612  1.1      cgd }
    613  1.1      cgd 
    614  1.1      cgd /*
    615  1.1      cgd  * Determine if the proc indicated by p is still active.
    616  1.1      cgd  * This test is not 100% foolproof in theory, but chances of
    617  1.1      cgd  * being wrong are very low.
    618  1.1      cgd  */
    619  1.1      cgd static int
    620  1.1      cgd proc_verify(kd, kernp, p)
    621  1.1      cgd 	kvm_t *kd;
    622  1.1      cgd 	u_long kernp;
    623  1.1      cgd 	const struct proc *p;
    624  1.1      cgd {
    625  1.1      cgd 	struct proc kernproc;
    626  1.1      cgd 
    627  1.1      cgd 	/*
    628  1.1      cgd 	 * Just read in the whole proc.  It's not that big relative
    629  1.1      cgd 	 * to the cost of the read system call.
    630  1.1      cgd 	 */
    631  1.1      cgd 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    632  1.1      cgd 	    sizeof(kernproc))
    633  1.1      cgd 		return (0);
    634  1.1      cgd 	return (p->p_pid == kernproc.p_pid &&
    635  1.1      cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    636  1.1      cgd }
    637  1.1      cgd 
    638  1.1      cgd static char **
    639  1.1      cgd kvm_doargv(kd, kp, nchr, info)
    640  1.1      cgd 	kvm_t *kd;
    641  1.1      cgd 	const struct kinfo_proc *kp;
    642  1.1      cgd 	int nchr;
    643  1.1      cgd 	int (*info)(struct ps_strings*, u_long *, int *);
    644  1.1      cgd {
    645  1.1      cgd 	register const struct proc *p = &kp->kp_proc;
    646  1.1      cgd 	register char **ap;
    647  1.1      cgd 	u_long addr;
    648  1.1      cgd 	int cnt;
    649  1.1      cgd 	struct ps_strings arginfo;
    650  1.1      cgd 
    651  1.1      cgd 	/*
    652  1.1      cgd 	 * Pointers are stored at the top of the user stack.
    653  1.1      cgd 	 */
    654  1.1      cgd 	if (p->p_stat == SZOMB ||
    655  1.1      cgd 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    656  1.1      cgd 		      sizeof(arginfo)) != sizeof(arginfo))
    657  1.1      cgd 		return (0);
    658  1.1      cgd 
    659  1.1      cgd 	(*info)(&arginfo, &addr, &cnt);
    660  1.1      cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    661  1.1      cgd 	/*
    662  1.1      cgd 	 * For live kernels, make sure this process didn't go away.
    663  1.1      cgd 	 */
    664  1.1      cgd 	if (ap != 0 && ISALIVE(kd) &&
    665  1.1      cgd 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    666  1.1      cgd 		ap = 0;
    667  1.1      cgd 	return (ap);
    668  1.1      cgd }
    669  1.1      cgd 
    670  1.1      cgd /*
    671  1.1      cgd  * Get the command args.  This code is now machine independent.
    672  1.1      cgd  */
    673  1.1      cgd char **
    674  1.1      cgd kvm_getargv(kd, kp, nchr)
    675  1.1      cgd 	kvm_t *kd;
    676  1.1      cgd 	const struct kinfo_proc *kp;
    677  1.1      cgd 	int nchr;
    678  1.1      cgd {
    679  1.1      cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    680  1.1      cgd }
    681  1.1      cgd 
    682  1.1      cgd char **
    683  1.1      cgd kvm_getenvv(kd, kp, nchr)
    684  1.1      cgd 	kvm_t *kd;
    685  1.1      cgd 	const struct kinfo_proc *kp;
    686  1.1      cgd 	int nchr;
    687  1.1      cgd {
    688  1.1      cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    689  1.1      cgd }
    690  1.1      cgd 
    691  1.1      cgd /*
    692  1.1      cgd  * Read from user space.  The user context is given by p.
    693  1.1      cgd  */
    694  1.1      cgd ssize_t
    695  1.1      cgd kvm_uread(kd, p, uva, buf, len)
    696  1.1      cgd 	kvm_t *kd;
    697  1.1      cgd 	register struct proc *p;
    698  1.1      cgd 	register u_long uva;
    699  1.1      cgd 	register char *buf;
    700  1.1      cgd 	register size_t len;
    701  1.1      cgd {
    702  1.1      cgd 	register char *cp;
    703  1.1      cgd 
    704  1.1      cgd 	cp = buf;
    705  1.1      cgd 	while (len > 0) {
    706  1.1      cgd 		u_long pa;
    707  1.1      cgd 		register int cc;
    708  1.1      cgd 
    709  1.1      cgd 		cc = _kvm_uvatop(kd, p, uva, &pa);
    710  1.1      cgd 		if (cc > 0) {
    711  1.1      cgd 			if (cc > len)
    712  1.1      cgd 				cc = len;
    713  1.1      cgd 			errno = 0;
    714  1.1      cgd 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
    715  1.1      cgd 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    716  1.1      cgd 				break;
    717  1.1      cgd 			}
    718  1.1      cgd 			cc = read(kd->pmfd, cp, cc);
    719  1.1      cgd 			if (cc < 0) {
    720  1.1      cgd 				_kvm_syserr(kd, 0, _PATH_MEM);
    721  1.1      cgd 				break;
    722  1.1      cgd 			} else if (cc < len) {
    723  1.1      cgd 				_kvm_err(kd, kd->program, "short read");
    724  1.1      cgd 				break;
    725  1.1      cgd 			}
    726  1.1      cgd 		} else if (ISALIVE(kd)) {
    727  1.1      cgd 			/* try swap */
    728  1.1      cgd 			register char *dp;
    729  1.1      cgd 			int cnt;
    730  1.1      cgd 
    731  1.1      cgd 			dp = kvm_readswap(kd, p, uva, &cnt);
    732  1.1      cgd 			if (dp == 0) {
    733  1.1      cgd 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    734  1.1      cgd 				return (0);
    735  1.1      cgd 			}
    736  1.1      cgd 			cc = MIN(cnt, len);
    737  1.1      cgd 			bcopy(dp, cp, cc);
    738  1.1      cgd 		} else
    739  1.1      cgd 			break;
    740  1.1      cgd 		cp += cc;
    741  1.1      cgd 		uva += cc;
    742  1.1      cgd 		len -= cc;
    743  1.1      cgd 	}
    744  1.1      cgd 	return (ssize_t)(cp - buf);
    745  1.1      cgd }
    746