kvm_proc.c revision 1.2 1 1.1 cgd /*-
2 1.2 mycroft * Copyright (c) 1994 Charles Hannum.
3 1.1 cgd * Copyright (c) 1989, 1992, 1993
4 1.1 cgd * The Regents of the University of California. All rights reserved.
5 1.1 cgd *
6 1.1 cgd * This code is derived from software developed by the Computer Systems
7 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8 1.1 cgd * BG 91-66 and contributed to Berkeley.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
40 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41 1.1 cgd #endif /* LIBC_SCCS and not lint */
42 1.1 cgd
43 1.1 cgd /*
44 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 1.1 cgd * users of this code, so we've factored it out into a separate module.
46 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 1.1 cgd * most other applications are interested only in open/close/read/nlist).
48 1.1 cgd */
49 1.1 cgd
50 1.1 cgd #include <sys/param.h>
51 1.1 cgd #include <sys/user.h>
52 1.1 cgd #include <sys/proc.h>
53 1.1 cgd #include <sys/exec.h>
54 1.1 cgd #include <sys/stat.h>
55 1.1 cgd #include <sys/ioctl.h>
56 1.1 cgd #include <sys/tty.h>
57 1.1 cgd #include <unistd.h>
58 1.1 cgd #include <nlist.h>
59 1.1 cgd #include <kvm.h>
60 1.1 cgd
61 1.1 cgd #include <vm/vm.h>
62 1.1 cgd #include <vm/vm_param.h>
63 1.1 cgd #include <vm/swap_pager.h>
64 1.1 cgd
65 1.1 cgd #include <sys/sysctl.h>
66 1.1 cgd
67 1.1 cgd #include <limits.h>
68 1.1 cgd #include <db.h>
69 1.1 cgd #include <paths.h>
70 1.1 cgd
71 1.1 cgd #include "kvm_private.h"
72 1.1 cgd
73 1.2 mycroft #define KREAD(kd, addr, obj) \
74 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
75 1.2 mycroft
76 1.2 mycroft int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long, char *));
77 1.2 mycroft
78 1.1 cgd static char *
79 1.1 cgd kvm_readswap(kd, p, va, cnt)
80 1.1 cgd kvm_t *kd;
81 1.1 cgd const struct proc *p;
82 1.1 cgd u_long va;
83 1.1 cgd u_long *cnt;
84 1.1 cgd {
85 1.1 cgd register u_long addr, head;
86 1.2 mycroft register u_long offset;
87 1.1 cgd struct vm_map_entry vme;
88 1.1 cgd struct vm_object vmo;
89 1.1 cgd static char page[NBPG];
90 1.1 cgd
91 1.1 cgd head = (u_long)&p->p_vmspace->vm_map.header;
92 1.1 cgd /*
93 1.1 cgd * Look through the address map for the memory object
94 1.1 cgd * that corresponds to the given virtual address.
95 1.1 cgd * The header just has the entire valid range.
96 1.1 cgd */
97 1.1 cgd addr = head;
98 1.1 cgd while (1) {
99 1.2 mycroft if (KREAD(kd, addr, &vme))
100 1.1 cgd return (0);
101 1.1 cgd
102 1.2 mycroft if (va >= vme.start && va < vme.end &&
103 1.1 cgd vme.object.vm_object != 0)
104 1.1 cgd break;
105 1.1 cgd
106 1.1 cgd addr = (u_long)vme.next;
107 1.2 mycroft if (addr == head)
108 1.1 cgd return (0);
109 1.1 cgd }
110 1.2 mycroft
111 1.1 cgd /*
112 1.1 cgd * We found the right object -- follow shadow links.
113 1.1 cgd */
114 1.1 cgd offset = va - vme.start + vme.offset;
115 1.1 cgd addr = (u_long)vme.object.vm_object;
116 1.1 cgd while (1) {
117 1.2 mycroft if (KREAD(kd, addr, &vmo))
118 1.1 cgd return (0);
119 1.2 mycroft
120 1.2 mycroft /* If there is a pager here, see if it has the page. */
121 1.2 mycroft if (vmo.pager != 0 &&
122 1.2 mycroft _kvm_readfrompager(kd, &vmo, offset, page))
123 1.2 mycroft break;
124 1.2 mycroft
125 1.2 mycroft /* Move down the shadow chain. */
126 1.1 cgd addr = (u_long)vmo.shadow;
127 1.1 cgd if (addr == 0)
128 1.2 mycroft return (0);
129 1.1 cgd offset += vmo.shadow_offset;
130 1.1 cgd }
131 1.2 mycroft
132 1.2 mycroft /* Found the page. */
133 1.2 mycroft offset %= NBPG;
134 1.2 mycroft *cnt = NBPG - offset;
135 1.2 mycroft return (&page[offset]);
136 1.2 mycroft }
137 1.2 mycroft
138 1.2 mycroft int
139 1.2 mycroft _kvm_readfrompager(kd, vmop, offset, buf)
140 1.2 mycroft kvm_t *kd;
141 1.2 mycroft struct vm_object *vmop;
142 1.2 mycroft u_long offset;
143 1.2 mycroft char *buf;
144 1.2 mycroft {
145 1.2 mycroft u_long addr;
146 1.2 mycroft struct pager_struct pager;
147 1.2 mycroft struct swpager swap;
148 1.2 mycroft int ix;
149 1.2 mycroft struct swblock swb;
150 1.2 mycroft register off_t seekpoint;
151 1.2 mycroft
152 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
153 1.2 mycroft addr = (u_long)vmop->pager;
154 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
155 1.1 cgd return (0);
156 1.1 cgd
157 1.2 mycroft /* Read in the swap_pager private data. */
158 1.2 mycroft addr = (u_long)pager.pg_data;
159 1.2 mycroft if (KREAD(kd, addr, &swap))
160 1.1 cgd return (0);
161 1.1 cgd
162 1.1 cgd /*
163 1.2 mycroft * Calculate the paging offset, and make sure it's within the
164 1.2 mycroft * bounds of the pager.
165 1.1 cgd */
166 1.2 mycroft offset += vmop->paging_offset;
167 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
168 1.2 mycroft #if 0
169 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
170 1.1 cgd return (0);
171 1.2 mycroft #else
172 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
173 1.2 mycroft int i;
174 1.2 mycroft printf("BUG BUG BUG BUG:\n");
175 1.2 mycroft printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
176 1.2 mycroft vmop, offset - vmop->paging_offset, vmop->paging_offset,
177 1.2 mycroft vmop->pager, pager.pg_data);
178 1.2 mycroft printf("osize %x bsize %x blocks %x nblocks %x\n",
179 1.2 mycroft swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
180 1.2 mycroft swap.sw_nblocks);
181 1.2 mycroft for (ix = 0; ix < swap.sw_nblocks; ix++) {
182 1.2 mycroft addr = (u_long)&swap.sw_blocks[ix];
183 1.2 mycroft if (KREAD(kd, addr, &swb))
184 1.2 mycroft return (0);
185 1.2 mycroft printf("sw_blocks[%d]: block %x mask %x\n", ix,
186 1.2 mycroft swb.swb_block, swb.swb_mask);
187 1.2 mycroft }
188 1.2 mycroft return (0);
189 1.2 mycroft }
190 1.2 mycroft #endif
191 1.1 cgd
192 1.2 mycroft /* Read in the swap records. */
193 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
194 1.2 mycroft if (KREAD(kd, addr, &swb))
195 1.1 cgd return (0);
196 1.1 cgd
197 1.2 mycroft /* Calculate offset within pager. */
198 1.2 mycroft offset %= dbtob(swap.sw_bsize);
199 1.1 cgd
200 1.2 mycroft /* Check that the page is actually present. */
201 1.2 mycroft if ((swb.swb_mask & (1 << (offset / NBPG))) == 0)
202 1.1 cgd return (0);
203 1.1 cgd
204 1.2 mycroft /* Calculate the physical address and read the page. */
205 1.2 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~PGOFSET);
206 1.2 mycroft if (lseek(kd->swfd, seekpoint, 0) == -1)
207 1.1 cgd return (0);
208 1.2 mycroft if (read(kd->swfd, buf, NBPG) != NBPG)
209 1.1 cgd return (0);
210 1.1 cgd
211 1.2 mycroft return (1);
212 1.1 cgd }
213 1.1 cgd
214 1.1 cgd /*
215 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
216 1.1 cgd * at most maxcnt procs.
217 1.1 cgd */
218 1.1 cgd static int
219 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
220 1.1 cgd kvm_t *kd;
221 1.1 cgd int what, arg;
222 1.1 cgd struct proc *p;
223 1.1 cgd struct kinfo_proc *bp;
224 1.1 cgd int maxcnt;
225 1.1 cgd {
226 1.1 cgd register int cnt = 0;
227 1.1 cgd struct eproc eproc;
228 1.1 cgd struct pgrp pgrp;
229 1.1 cgd struct session sess;
230 1.1 cgd struct tty tty;
231 1.1 cgd struct proc proc;
232 1.1 cgd
233 1.1 cgd for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
234 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
235 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
236 1.1 cgd return (-1);
237 1.1 cgd }
238 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
239 1.1 cgd KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
240 1.1 cgd &eproc.e_ucred);
241 1.1 cgd
242 1.1 cgd switch(what) {
243 1.1 cgd
244 1.1 cgd case KERN_PROC_PID:
245 1.1 cgd if (proc.p_pid != (pid_t)arg)
246 1.1 cgd continue;
247 1.1 cgd break;
248 1.1 cgd
249 1.1 cgd case KERN_PROC_UID:
250 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
251 1.1 cgd continue;
252 1.1 cgd break;
253 1.1 cgd
254 1.1 cgd case KERN_PROC_RUID:
255 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
256 1.1 cgd continue;
257 1.1 cgd break;
258 1.1 cgd }
259 1.1 cgd /*
260 1.1 cgd * We're going to add another proc to the set. If this
261 1.1 cgd * will overflow the buffer, assume the reason is because
262 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
263 1.1 cgd */
264 1.1 cgd if (cnt >= maxcnt) {
265 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
266 1.1 cgd return (-1);
267 1.1 cgd }
268 1.1 cgd /*
269 1.1 cgd * gather eproc
270 1.1 cgd */
271 1.1 cgd eproc.e_paddr = p;
272 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
273 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
274 1.1 cgd proc.p_pgrp);
275 1.1 cgd return (-1);
276 1.1 cgd }
277 1.1 cgd eproc.e_sess = pgrp.pg_session;
278 1.1 cgd eproc.e_pgid = pgrp.pg_id;
279 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
280 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
281 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
282 1.1 cgd pgrp.pg_session);
283 1.1 cgd return (-1);
284 1.1 cgd }
285 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
286 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
287 1.1 cgd _kvm_err(kd, kd->program,
288 1.1 cgd "can't read tty at %x", sess.s_ttyp);
289 1.1 cgd return (-1);
290 1.1 cgd }
291 1.1 cgd eproc.e_tdev = tty.t_dev;
292 1.1 cgd eproc.e_tsess = tty.t_session;
293 1.1 cgd if (tty.t_pgrp != NULL) {
294 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
295 1.1 cgd _kvm_err(kd, kd->program,
296 1.1 cgd "can't read tpgrp at &x",
297 1.1 cgd tty.t_pgrp);
298 1.1 cgd return (-1);
299 1.1 cgd }
300 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
301 1.1 cgd } else
302 1.1 cgd eproc.e_tpgid = -1;
303 1.1 cgd } else
304 1.1 cgd eproc.e_tdev = NODEV;
305 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
306 1.1 cgd if (sess.s_leader == p)
307 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
308 1.1 cgd if (proc.p_wmesg)
309 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
310 1.1 cgd eproc.e_wmesg, WMESGLEN);
311 1.1 cgd
312 1.1 cgd #ifdef sparc
313 1.1 cgd (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
314 1.1 cgd (char *)&eproc.e_vm.vm_rssize,
315 1.1 cgd sizeof(eproc.e_vm.vm_rssize));
316 1.1 cgd (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
317 1.1 cgd (char *)&eproc.e_vm.vm_tsize,
318 1.1 cgd 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */
319 1.1 cgd #else
320 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
321 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
322 1.1 cgd #endif
323 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
324 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
325 1.1 cgd
326 1.1 cgd switch (what) {
327 1.1 cgd
328 1.1 cgd case KERN_PROC_PGRP:
329 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
330 1.1 cgd continue;
331 1.1 cgd break;
332 1.1 cgd
333 1.1 cgd case KERN_PROC_TTY:
334 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
335 1.1 cgd eproc.e_tdev != (dev_t)arg)
336 1.1 cgd continue;
337 1.1 cgd break;
338 1.1 cgd }
339 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
340 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
341 1.1 cgd ++bp;
342 1.1 cgd ++cnt;
343 1.1 cgd }
344 1.1 cgd return (cnt);
345 1.1 cgd }
346 1.1 cgd
347 1.1 cgd /*
348 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
349 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
350 1.1 cgd */
351 1.1 cgd static int
352 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
353 1.1 cgd kvm_t *kd;
354 1.1 cgd int what, arg;
355 1.1 cgd u_long a_allproc;
356 1.1 cgd u_long a_zombproc;
357 1.1 cgd int maxcnt;
358 1.1 cgd {
359 1.1 cgd register struct kinfo_proc *bp = kd->procbase;
360 1.1 cgd register int acnt, zcnt;
361 1.1 cgd struct proc *p;
362 1.1 cgd
363 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
364 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
365 1.1 cgd return (-1);
366 1.1 cgd }
367 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
368 1.1 cgd if (acnt < 0)
369 1.1 cgd return (acnt);
370 1.1 cgd
371 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
372 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
373 1.1 cgd return (-1);
374 1.1 cgd }
375 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
376 1.1 cgd if (zcnt < 0)
377 1.1 cgd zcnt = 0;
378 1.1 cgd
379 1.1 cgd return (acnt + zcnt);
380 1.1 cgd }
381 1.1 cgd
382 1.1 cgd struct kinfo_proc *
383 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
384 1.1 cgd kvm_t *kd;
385 1.1 cgd int op, arg;
386 1.1 cgd int *cnt;
387 1.1 cgd {
388 1.1 cgd int mib[4], size, st, nprocs;
389 1.1 cgd
390 1.1 cgd if (kd->procbase != 0) {
391 1.1 cgd free((void *)kd->procbase);
392 1.1 cgd /*
393 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
394 1.1 cgd * kvm_close() will free it again.
395 1.1 cgd */
396 1.1 cgd kd->procbase = 0;
397 1.1 cgd }
398 1.1 cgd if (ISALIVE(kd)) {
399 1.1 cgd size = 0;
400 1.1 cgd mib[0] = CTL_KERN;
401 1.1 cgd mib[1] = KERN_PROC;
402 1.1 cgd mib[2] = op;
403 1.1 cgd mib[3] = arg;
404 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
405 1.1 cgd if (st == -1) {
406 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
407 1.1 cgd return (0);
408 1.1 cgd }
409 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
410 1.1 cgd if (kd->procbase == 0)
411 1.1 cgd return (0);
412 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
413 1.1 cgd if (st == -1) {
414 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
415 1.1 cgd return (0);
416 1.1 cgd }
417 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
418 1.1 cgd _kvm_err(kd, kd->program,
419 1.1 cgd "proc size mismatch (%d total, %d chunks)",
420 1.1 cgd size, sizeof(struct kinfo_proc));
421 1.1 cgd return (0);
422 1.1 cgd }
423 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
424 1.1 cgd } else {
425 1.1 cgd struct nlist nl[4], *p;
426 1.1 cgd
427 1.1 cgd nl[0].n_name = "_nprocs";
428 1.1 cgd nl[1].n_name = "_allproc";
429 1.1 cgd nl[2].n_name = "_zombproc";
430 1.1 cgd nl[3].n_name = 0;
431 1.1 cgd
432 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
433 1.1 cgd for (p = nl; p->n_type != 0; ++p)
434 1.1 cgd ;
435 1.1 cgd _kvm_err(kd, kd->program,
436 1.1 cgd "%s: no such symbol", p->n_name);
437 1.1 cgd return (0);
438 1.1 cgd }
439 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
440 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
441 1.1 cgd return (0);
442 1.1 cgd }
443 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
444 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
445 1.1 cgd if (kd->procbase == 0)
446 1.1 cgd return (0);
447 1.1 cgd
448 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
449 1.1 cgd nl[2].n_value, nprocs);
450 1.1 cgd #ifdef notdef
451 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
452 1.1 cgd (void)realloc(kd->procbase, size);
453 1.1 cgd #endif
454 1.1 cgd }
455 1.1 cgd *cnt = nprocs;
456 1.1 cgd return (kd->procbase);
457 1.1 cgd }
458 1.1 cgd
459 1.1 cgd void
460 1.1 cgd _kvm_freeprocs(kd)
461 1.1 cgd kvm_t *kd;
462 1.1 cgd {
463 1.1 cgd if (kd->procbase) {
464 1.1 cgd free(kd->procbase);
465 1.1 cgd kd->procbase = 0;
466 1.1 cgd }
467 1.1 cgd }
468 1.1 cgd
469 1.1 cgd void *
470 1.1 cgd _kvm_realloc(kd, p, n)
471 1.1 cgd kvm_t *kd;
472 1.1 cgd void *p;
473 1.1 cgd size_t n;
474 1.1 cgd {
475 1.1 cgd void *np = (void *)realloc(p, n);
476 1.1 cgd
477 1.1 cgd if (np == 0)
478 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
479 1.1 cgd return (np);
480 1.1 cgd }
481 1.1 cgd
482 1.1 cgd #ifndef MAX
483 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
484 1.1 cgd #endif
485 1.1 cgd
486 1.1 cgd /*
487 1.1 cgd * Read in an argument vector from the user address space of process p.
488 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
489 1.1 cgd * strings. This is used to read in both the command arguments and
490 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
491 1.1 cgd */
492 1.1 cgd static char **
493 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
494 1.1 cgd kvm_t *kd;
495 1.1 cgd struct proc *p;
496 1.1 cgd register u_long addr;
497 1.1 cgd register int narg;
498 1.1 cgd register int maxcnt;
499 1.1 cgd {
500 1.1 cgd register char *cp;
501 1.1 cgd register int len, cc;
502 1.1 cgd register char **argv;
503 1.1 cgd
504 1.1 cgd /*
505 1.1 cgd * Check that there aren't an unreasonable number of agruments,
506 1.1 cgd * and that the address is in user space.
507 1.1 cgd */
508 1.1 cgd if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
509 1.1 cgd return (0);
510 1.1 cgd
511 1.1 cgd if (kd->argv == 0) {
512 1.1 cgd /*
513 1.1 cgd * Try to avoid reallocs.
514 1.1 cgd */
515 1.1 cgd kd->argc = MAX(narg + 1, 32);
516 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
517 1.1 cgd sizeof(*kd->argv));
518 1.1 cgd if (kd->argv == 0)
519 1.1 cgd return (0);
520 1.1 cgd } else if (narg + 1 > kd->argc) {
521 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
522 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
523 1.1 cgd sizeof(*kd->argv));
524 1.1 cgd if (kd->argv == 0)
525 1.1 cgd return (0);
526 1.1 cgd }
527 1.1 cgd if (kd->argspc == 0) {
528 1.1 cgd kd->argspc = (char *)_kvm_malloc(kd, NBPG);
529 1.1 cgd if (kd->argspc == 0)
530 1.1 cgd return (0);
531 1.1 cgd kd->arglen = NBPG;
532 1.1 cgd }
533 1.1 cgd cp = kd->argspc;
534 1.1 cgd argv = kd->argv;
535 1.1 cgd *argv = cp;
536 1.1 cgd len = 0;
537 1.1 cgd /*
538 1.1 cgd * Loop over pages, filling in the argument vector.
539 1.1 cgd */
540 1.1 cgd while (addr < VM_MAXUSER_ADDRESS) {
541 1.1 cgd cc = NBPG - (addr & PGOFSET);
542 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
543 1.1 cgd cc = maxcnt - len;;
544 1.1 cgd if (len + cc > kd->arglen) {
545 1.1 cgd register int off;
546 1.1 cgd register char **pp;
547 1.1 cgd register char *op = kd->argspc;
548 1.1 cgd
549 1.1 cgd kd->arglen *= 2;
550 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
551 1.1 cgd kd->arglen);
552 1.1 cgd if (kd->argspc == 0)
553 1.1 cgd return (0);
554 1.1 cgd cp = &kd->argspc[len];
555 1.1 cgd /*
556 1.1 cgd * Adjust argv pointers in case realloc moved
557 1.1 cgd * the string space.
558 1.1 cgd */
559 1.1 cgd off = kd->argspc - op;
560 1.1 cgd for (pp = kd->argv; pp < argv; ++pp)
561 1.1 cgd *pp += off;
562 1.1 cgd }
563 1.1 cgd if (kvm_uread(kd, p, addr, cp, cc) != cc)
564 1.1 cgd /* XXX */
565 1.1 cgd return (0);
566 1.1 cgd len += cc;
567 1.1 cgd addr += cc;
568 1.1 cgd
569 1.1 cgd if (maxcnt == 0 && len > 16 * NBPG)
570 1.1 cgd /* sanity */
571 1.1 cgd return (0);
572 1.1 cgd
573 1.1 cgd while (--cc >= 0) {
574 1.1 cgd if (*cp++ == 0) {
575 1.1 cgd if (--narg <= 0) {
576 1.1 cgd *++argv = 0;
577 1.1 cgd return (kd->argv);
578 1.1 cgd } else
579 1.1 cgd *++argv = cp;
580 1.1 cgd }
581 1.1 cgd }
582 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
583 1.1 cgd /*
584 1.1 cgd * We're stopping prematurely. Terminate the
585 1.1 cgd * argv and current string.
586 1.1 cgd */
587 1.1 cgd *++argv = 0;
588 1.1 cgd *cp = 0;
589 1.1 cgd return (kd->argv);
590 1.1 cgd }
591 1.1 cgd }
592 1.1 cgd }
593 1.1 cgd
594 1.1 cgd static void
595 1.1 cgd ps_str_a(p, addr, n)
596 1.1 cgd struct ps_strings *p;
597 1.1 cgd u_long *addr;
598 1.1 cgd int *n;
599 1.1 cgd {
600 1.1 cgd *addr = (u_long)p->ps_argvstr;
601 1.1 cgd *n = p->ps_nargvstr;
602 1.1 cgd }
603 1.1 cgd
604 1.1 cgd static void
605 1.1 cgd ps_str_e(p, addr, n)
606 1.1 cgd struct ps_strings *p;
607 1.1 cgd u_long *addr;
608 1.1 cgd int *n;
609 1.1 cgd {
610 1.1 cgd *addr = (u_long)p->ps_envstr;
611 1.1 cgd *n = p->ps_nenvstr;
612 1.1 cgd }
613 1.1 cgd
614 1.1 cgd /*
615 1.1 cgd * Determine if the proc indicated by p is still active.
616 1.1 cgd * This test is not 100% foolproof in theory, but chances of
617 1.1 cgd * being wrong are very low.
618 1.1 cgd */
619 1.1 cgd static int
620 1.1 cgd proc_verify(kd, kernp, p)
621 1.1 cgd kvm_t *kd;
622 1.1 cgd u_long kernp;
623 1.1 cgd const struct proc *p;
624 1.1 cgd {
625 1.1 cgd struct proc kernproc;
626 1.1 cgd
627 1.1 cgd /*
628 1.1 cgd * Just read in the whole proc. It's not that big relative
629 1.1 cgd * to the cost of the read system call.
630 1.1 cgd */
631 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
632 1.1 cgd sizeof(kernproc))
633 1.1 cgd return (0);
634 1.1 cgd return (p->p_pid == kernproc.p_pid &&
635 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
636 1.1 cgd }
637 1.1 cgd
638 1.1 cgd static char **
639 1.1 cgd kvm_doargv(kd, kp, nchr, info)
640 1.1 cgd kvm_t *kd;
641 1.1 cgd const struct kinfo_proc *kp;
642 1.1 cgd int nchr;
643 1.1 cgd int (*info)(struct ps_strings*, u_long *, int *);
644 1.1 cgd {
645 1.1 cgd register const struct proc *p = &kp->kp_proc;
646 1.1 cgd register char **ap;
647 1.1 cgd u_long addr;
648 1.1 cgd int cnt;
649 1.1 cgd struct ps_strings arginfo;
650 1.1 cgd
651 1.1 cgd /*
652 1.1 cgd * Pointers are stored at the top of the user stack.
653 1.1 cgd */
654 1.1 cgd if (p->p_stat == SZOMB ||
655 1.1 cgd kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
656 1.1 cgd sizeof(arginfo)) != sizeof(arginfo))
657 1.1 cgd return (0);
658 1.1 cgd
659 1.1 cgd (*info)(&arginfo, &addr, &cnt);
660 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
661 1.1 cgd /*
662 1.1 cgd * For live kernels, make sure this process didn't go away.
663 1.1 cgd */
664 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
665 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
666 1.1 cgd ap = 0;
667 1.1 cgd return (ap);
668 1.1 cgd }
669 1.1 cgd
670 1.1 cgd /*
671 1.1 cgd * Get the command args. This code is now machine independent.
672 1.1 cgd */
673 1.1 cgd char **
674 1.1 cgd kvm_getargv(kd, kp, nchr)
675 1.1 cgd kvm_t *kd;
676 1.1 cgd const struct kinfo_proc *kp;
677 1.1 cgd int nchr;
678 1.1 cgd {
679 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
680 1.1 cgd }
681 1.1 cgd
682 1.1 cgd char **
683 1.1 cgd kvm_getenvv(kd, kp, nchr)
684 1.1 cgd kvm_t *kd;
685 1.1 cgd const struct kinfo_proc *kp;
686 1.1 cgd int nchr;
687 1.1 cgd {
688 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
689 1.1 cgd }
690 1.1 cgd
691 1.1 cgd /*
692 1.1 cgd * Read from user space. The user context is given by p.
693 1.1 cgd */
694 1.1 cgd ssize_t
695 1.1 cgd kvm_uread(kd, p, uva, buf, len)
696 1.1 cgd kvm_t *kd;
697 1.1 cgd register struct proc *p;
698 1.1 cgd register u_long uva;
699 1.1 cgd register char *buf;
700 1.1 cgd register size_t len;
701 1.1 cgd {
702 1.1 cgd register char *cp;
703 1.1 cgd
704 1.1 cgd cp = buf;
705 1.1 cgd while (len > 0) {
706 1.1 cgd u_long pa;
707 1.1 cgd register int cc;
708 1.1 cgd
709 1.1 cgd cc = _kvm_uvatop(kd, p, uva, &pa);
710 1.1 cgd if (cc > 0) {
711 1.1 cgd if (cc > len)
712 1.1 cgd cc = len;
713 1.1 cgd errno = 0;
714 1.1 cgd if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
715 1.1 cgd _kvm_err(kd, 0, "invalid address (%x)", uva);
716 1.1 cgd break;
717 1.1 cgd }
718 1.1 cgd cc = read(kd->pmfd, cp, cc);
719 1.1 cgd if (cc < 0) {
720 1.1 cgd _kvm_syserr(kd, 0, _PATH_MEM);
721 1.1 cgd break;
722 1.1 cgd } else if (cc < len) {
723 1.1 cgd _kvm_err(kd, kd->program, "short read");
724 1.1 cgd break;
725 1.1 cgd }
726 1.1 cgd } else if (ISALIVE(kd)) {
727 1.1 cgd /* try swap */
728 1.1 cgd register char *dp;
729 1.1 cgd int cnt;
730 1.1 cgd
731 1.1 cgd dp = kvm_readswap(kd, p, uva, &cnt);
732 1.1 cgd if (dp == 0) {
733 1.1 cgd _kvm_err(kd, 0, "invalid address (%x)", uva);
734 1.1 cgd return (0);
735 1.1 cgd }
736 1.1 cgd cc = MIN(cnt, len);
737 1.1 cgd bcopy(dp, cp, cc);
738 1.1 cgd } else
739 1.1 cgd break;
740 1.1 cgd cp += cc;
741 1.1 cgd uva += cc;
742 1.1 cgd len -= cc;
743 1.1 cgd }
744 1.1 cgd return (ssize_t)(cp - buf);
745 1.1 cgd }
746