Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.2.2.1
      1      1.1      cgd /*-
      2      1.2  mycroft  * Copyright (c) 1994 Charles Hannum.
      3      1.1      cgd  * Copyright (c) 1989, 1992, 1993
      4      1.1      cgd  *	The Regents of the University of California.  All rights reserved.
      5      1.1      cgd  *
      6      1.1      cgd  * This code is derived from software developed by the Computer Systems
      7      1.1      cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
      8      1.1      cgd  * BG 91-66 and contributed to Berkeley.
      9      1.1      cgd  *
     10      1.1      cgd  * Redistribution and use in source and binary forms, with or without
     11      1.1      cgd  * modification, are permitted provided that the following conditions
     12      1.1      cgd  * are met:
     13      1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     14      1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     15      1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     17      1.1      cgd  *    documentation and/or other materials provided with the distribution.
     18      1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     19      1.1      cgd  *    must display the following acknowledgement:
     20      1.1      cgd  *	This product includes software developed by the University of
     21      1.1      cgd  *	California, Berkeley and its contributors.
     22      1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     23      1.1      cgd  *    may be used to endorse or promote products derived from this software
     24      1.1      cgd  *    without specific prior written permission.
     25      1.1      cgd  *
     26      1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27      1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28      1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29      1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30      1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31      1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32      1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33      1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34      1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35      1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36      1.1      cgd  * SUCH DAMAGE.
     37      1.1      cgd  */
     38      1.1      cgd 
     39      1.1      cgd #if defined(LIBC_SCCS) && !defined(lint)
     40      1.1      cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     41      1.1      cgd #endif /* LIBC_SCCS and not lint */
     42      1.1      cgd 
     43      1.1      cgd /*
     44      1.1      cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     45      1.1      cgd  * users of this code, so we've factored it out into a separate module.
     46      1.1      cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     47      1.1      cgd  * most other applications are interested only in open/close/read/nlist).
     48      1.1      cgd  */
     49      1.1      cgd 
     50      1.1      cgd #include <sys/param.h>
     51      1.1      cgd #include <sys/user.h>
     52      1.1      cgd #include <sys/proc.h>
     53      1.1      cgd #include <sys/exec.h>
     54      1.1      cgd #include <sys/stat.h>
     55      1.1      cgd #include <sys/ioctl.h>
     56      1.1      cgd #include <sys/tty.h>
     57      1.1      cgd #include <unistd.h>
     58      1.1      cgd #include <nlist.h>
     59      1.1      cgd #include <kvm.h>
     60      1.1      cgd 
     61      1.1      cgd #include <vm/vm.h>
     62      1.1      cgd #include <vm/vm_param.h>
     63      1.1      cgd #include <vm/swap_pager.h>
     64      1.1      cgd 
     65      1.1      cgd #include <sys/sysctl.h>
     66      1.1      cgd 
     67      1.1      cgd #include <limits.h>
     68      1.1      cgd #include <db.h>
     69      1.1      cgd #include <paths.h>
     70      1.1      cgd 
     71      1.1      cgd #include "kvm_private.h"
     72      1.1      cgd 
     73      1.2  mycroft #define KREAD(kd, addr, obj) \
     74      1.2  mycroft 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     75      1.2  mycroft 
     76      1.2  mycroft int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long, char *));
     77      1.2  mycroft 
     78      1.1      cgd static char *
     79      1.1      cgd kvm_readswap(kd, p, va, cnt)
     80      1.1      cgd 	kvm_t *kd;
     81      1.1      cgd 	const struct proc *p;
     82      1.1      cgd 	u_long va;
     83      1.1      cgd 	u_long *cnt;
     84      1.1      cgd {
     85      1.1      cgd 	register u_long addr, head;
     86      1.2  mycroft 	register u_long offset;
     87      1.1      cgd 	struct vm_map_entry vme;
     88      1.1      cgd 	struct vm_object vmo;
     89      1.1      cgd 	static char page[NBPG];
     90      1.1      cgd 
     91      1.1      cgd 	head = (u_long)&p->p_vmspace->vm_map.header;
     92      1.1      cgd 	/*
     93      1.1      cgd 	 * Look through the address map for the memory object
     94      1.1      cgd 	 * that corresponds to the given virtual address.
     95      1.1      cgd 	 * The header just has the entire valid range.
     96      1.1      cgd 	 */
     97      1.1      cgd 	addr = head;
     98      1.1      cgd 	while (1) {
     99      1.2  mycroft 		if (KREAD(kd, addr, &vme))
    100      1.1      cgd 			return (0);
    101      1.1      cgd 
    102      1.2  mycroft 		if (va >= vme.start && va < vme.end &&
    103      1.1      cgd 		    vme.object.vm_object != 0)
    104      1.1      cgd 			break;
    105      1.1      cgd 
    106      1.1      cgd 		addr = (u_long)vme.next;
    107      1.2  mycroft 		if (addr == head)
    108      1.1      cgd 			return (0);
    109      1.1      cgd 	}
    110      1.2  mycroft 
    111      1.1      cgd 	/*
    112      1.1      cgd 	 * We found the right object -- follow shadow links.
    113      1.1      cgd 	 */
    114      1.1      cgd 	offset = va - vme.start + vme.offset;
    115      1.1      cgd 	addr = (u_long)vme.object.vm_object;
    116      1.1      cgd 	while (1) {
    117      1.2  mycroft 		if (KREAD(kd, addr, &vmo))
    118      1.1      cgd 			return (0);
    119      1.2  mycroft 
    120      1.2  mycroft 		/* If there is a pager here, see if it has the page. */
    121      1.2  mycroft 		if (vmo.pager != 0 &&
    122      1.2  mycroft 		    _kvm_readfrompager(kd, &vmo, offset, page))
    123      1.2  mycroft 			break;
    124      1.2  mycroft 
    125      1.2  mycroft 		/* Move down the shadow chain. */
    126      1.1      cgd 		addr = (u_long)vmo.shadow;
    127      1.1      cgd 		if (addr == 0)
    128      1.2  mycroft 			return (0);
    129      1.1      cgd 		offset += vmo.shadow_offset;
    130      1.1      cgd 	}
    131      1.2  mycroft 
    132      1.2  mycroft 	/* Found the page. */
    133      1.2  mycroft 	offset %= NBPG;
    134      1.2  mycroft 	*cnt = NBPG - offset;
    135      1.2  mycroft 	return (&page[offset]);
    136      1.2  mycroft }
    137      1.2  mycroft 
    138      1.2  mycroft int
    139      1.2  mycroft _kvm_readfrompager(kd, vmop, offset, buf)
    140      1.2  mycroft 	kvm_t *kd;
    141      1.2  mycroft 	struct vm_object *vmop;
    142      1.2  mycroft 	u_long offset;
    143      1.2  mycroft 	char *buf;
    144      1.2  mycroft {
    145      1.2  mycroft 	u_long addr;
    146      1.2  mycroft 	struct pager_struct pager;
    147      1.2  mycroft 	struct swpager swap;
    148      1.2  mycroft 	int ix;
    149      1.2  mycroft 	struct swblock swb;
    150      1.2  mycroft 	register off_t seekpoint;
    151      1.2  mycroft 
    152      1.2  mycroft 	/* Read in the pager info and make sure it's a swap device. */
    153      1.2  mycroft 	addr = (u_long)vmop->pager;
    154      1.2  mycroft 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    155      1.1      cgd 		return (0);
    156      1.1      cgd 
    157      1.2  mycroft 	/* Read in the swap_pager private data. */
    158      1.2  mycroft 	addr = (u_long)pager.pg_data;
    159      1.2  mycroft 	if (KREAD(kd, addr, &swap))
    160      1.1      cgd 		return (0);
    161      1.1      cgd 
    162      1.1      cgd 	/*
    163      1.2  mycroft 	 * Calculate the paging offset, and make sure it's within the
    164      1.2  mycroft 	 * bounds of the pager.
    165      1.1      cgd 	 */
    166      1.2  mycroft 	offset += vmop->paging_offset;
    167      1.1      cgd 	ix = offset / dbtob(swap.sw_bsize);
    168      1.2  mycroft #if 0
    169      1.1      cgd 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    170      1.1      cgd 		return (0);
    171      1.2  mycroft #else
    172      1.2  mycroft 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    173      1.2  mycroft 		int i;
    174      1.2  mycroft 		printf("BUG BUG BUG BUG:\n");
    175      1.2  mycroft 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    176      1.2  mycroft 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    177      1.2  mycroft 		    vmop->pager, pager.pg_data);
    178      1.2  mycroft 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    179      1.2  mycroft 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    180      1.2  mycroft 		    swap.sw_nblocks);
    181      1.2  mycroft 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    182      1.2  mycroft 			addr = (u_long)&swap.sw_blocks[ix];
    183      1.2  mycroft 			if (KREAD(kd, addr, &swb))
    184      1.2  mycroft 				return (0);
    185      1.2  mycroft 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    186      1.2  mycroft 			    swb.swb_block, swb.swb_mask);
    187      1.2  mycroft 		}
    188      1.2  mycroft 		return (0);
    189      1.2  mycroft 	}
    190      1.2  mycroft #endif
    191      1.1      cgd 
    192      1.2  mycroft 	/* Read in the swap records. */
    193      1.1      cgd 	addr = (u_long)&swap.sw_blocks[ix];
    194      1.2  mycroft 	if (KREAD(kd, addr, &swb))
    195      1.1      cgd 		return (0);
    196      1.1      cgd 
    197      1.2  mycroft 	/* Calculate offset within pager. */
    198      1.2  mycroft 	offset %= dbtob(swap.sw_bsize);
    199      1.1      cgd 
    200      1.2  mycroft 	/* Check that the page is actually present. */
    201      1.2  mycroft 	if ((swb.swb_mask & (1 << (offset / NBPG))) == 0)
    202      1.1      cgd 		return (0);
    203      1.1      cgd 
    204      1.2  mycroft 	/* Calculate the physical address and read the page. */
    205      1.2  mycroft 	seekpoint = dbtob(swb.swb_block) + (offset & ~PGOFSET);
    206      1.2  mycroft 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    207      1.1      cgd 		return (0);
    208      1.2  mycroft 	if (read(kd->swfd, buf, NBPG) != NBPG)
    209      1.1      cgd 		return (0);
    210      1.1      cgd 
    211      1.2  mycroft 	return (1);
    212      1.1      cgd }
    213      1.1      cgd 
    214      1.1      cgd /*
    215      1.1      cgd  * Read proc's from memory file into buffer bp, which has space to hold
    216      1.1      cgd  * at most maxcnt procs.
    217      1.1      cgd  */
    218      1.1      cgd static int
    219      1.1      cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    220      1.1      cgd 	kvm_t *kd;
    221      1.1      cgd 	int what, arg;
    222      1.1      cgd 	struct proc *p;
    223      1.1      cgd 	struct kinfo_proc *bp;
    224      1.1      cgd 	int maxcnt;
    225      1.1      cgd {
    226      1.1      cgd 	register int cnt = 0;
    227      1.1      cgd 	struct eproc eproc;
    228      1.1      cgd 	struct pgrp pgrp;
    229      1.1      cgd 	struct session sess;
    230      1.1      cgd 	struct tty tty;
    231      1.1      cgd 	struct proc proc;
    232      1.1      cgd 
    233      1.1      cgd 	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
    234      1.1      cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    235      1.1      cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    236      1.1      cgd 			return (-1);
    237      1.1      cgd 		}
    238      1.1      cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    239      1.1      cgd 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    240      1.1      cgd 			      &eproc.e_ucred);
    241      1.1      cgd 
    242      1.1      cgd 		switch(what) {
    243      1.1      cgd 
    244      1.1      cgd 		case KERN_PROC_PID:
    245      1.1      cgd 			if (proc.p_pid != (pid_t)arg)
    246      1.1      cgd 				continue;
    247      1.1      cgd 			break;
    248      1.1      cgd 
    249      1.1      cgd 		case KERN_PROC_UID:
    250      1.1      cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    251      1.1      cgd 				continue;
    252      1.1      cgd 			break;
    253      1.1      cgd 
    254      1.1      cgd 		case KERN_PROC_RUID:
    255      1.1      cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    256      1.1      cgd 				continue;
    257      1.1      cgd 			break;
    258      1.1      cgd 		}
    259      1.1      cgd 		/*
    260      1.1      cgd 		 * We're going to add another proc to the set.  If this
    261      1.1      cgd 		 * will overflow the buffer, assume the reason is because
    262      1.1      cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    263      1.1      cgd 		 */
    264      1.1      cgd 		if (cnt >= maxcnt) {
    265      1.1      cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    266      1.1      cgd 			return (-1);
    267      1.1      cgd 		}
    268      1.1      cgd 		/*
    269      1.1      cgd 		 * gather eproc
    270      1.1      cgd 		 */
    271      1.1      cgd 		eproc.e_paddr = p;
    272      1.1      cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    273      1.1      cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    274      1.1      cgd 				 proc.p_pgrp);
    275      1.1      cgd 			return (-1);
    276      1.1      cgd 		}
    277      1.1      cgd 		eproc.e_sess = pgrp.pg_session;
    278      1.1      cgd 		eproc.e_pgid = pgrp.pg_id;
    279      1.1      cgd 		eproc.e_jobc = pgrp.pg_jobc;
    280      1.1      cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    281      1.1      cgd 			_kvm_err(kd, kd->program, "can't read session at %x",
    282      1.1      cgd 				pgrp.pg_session);
    283      1.1      cgd 			return (-1);
    284      1.1      cgd 		}
    285      1.1      cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    286      1.1      cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    287      1.1      cgd 				_kvm_err(kd, kd->program,
    288      1.1      cgd 					 "can't read tty at %x", sess.s_ttyp);
    289      1.1      cgd 				return (-1);
    290      1.1      cgd 			}
    291      1.1      cgd 			eproc.e_tdev = tty.t_dev;
    292      1.1      cgd 			eproc.e_tsess = tty.t_session;
    293      1.1      cgd 			if (tty.t_pgrp != NULL) {
    294      1.1      cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    295      1.1      cgd 					_kvm_err(kd, kd->program,
    296      1.1      cgd 						 "can't read tpgrp at &x",
    297      1.1      cgd 						tty.t_pgrp);
    298      1.1      cgd 					return (-1);
    299      1.1      cgd 				}
    300      1.1      cgd 				eproc.e_tpgid = pgrp.pg_id;
    301      1.1      cgd 			} else
    302      1.1      cgd 				eproc.e_tpgid = -1;
    303      1.1      cgd 		} else
    304      1.1      cgd 			eproc.e_tdev = NODEV;
    305      1.1      cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    306      1.1      cgd 		if (sess.s_leader == p)
    307      1.1      cgd 			eproc.e_flag |= EPROC_SLEADER;
    308      1.1      cgd 		if (proc.p_wmesg)
    309      1.1      cgd 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    310      1.1      cgd 			    eproc.e_wmesg, WMESGLEN);
    311      1.1      cgd 
    312      1.1      cgd #ifdef sparc
    313      1.1      cgd 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
    314      1.1      cgd 		    (char *)&eproc.e_vm.vm_rssize,
    315      1.1      cgd 		    sizeof(eproc.e_vm.vm_rssize));
    316      1.1      cgd 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
    317      1.1      cgd 		    (char *)&eproc.e_vm.vm_tsize,
    318      1.1      cgd 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
    319      1.1      cgd #else
    320      1.1      cgd 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    321      1.1      cgd 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    322      1.1      cgd #endif
    323      1.1      cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    324      1.1      cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    325      1.1      cgd 
    326      1.1      cgd 		switch (what) {
    327      1.1      cgd 
    328      1.1      cgd 		case KERN_PROC_PGRP:
    329      1.1      cgd 			if (eproc.e_pgid != (pid_t)arg)
    330      1.1      cgd 				continue;
    331      1.1      cgd 			break;
    332      1.1      cgd 
    333      1.1      cgd 		case KERN_PROC_TTY:
    334      1.1      cgd 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    335      1.1      cgd 			     eproc.e_tdev != (dev_t)arg)
    336      1.1      cgd 				continue;
    337      1.1      cgd 			break;
    338      1.1      cgd 		}
    339      1.1      cgd 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    340      1.1      cgd 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    341      1.1      cgd 		++bp;
    342      1.1      cgd 		++cnt;
    343      1.1      cgd 	}
    344      1.1      cgd 	return (cnt);
    345      1.1      cgd }
    346      1.1      cgd 
    347      1.1      cgd /*
    348      1.1      cgd  * Build proc info array by reading in proc list from a crash dump.
    349      1.1      cgd  * Return number of procs read.  maxcnt is the max we will read.
    350      1.1      cgd  */
    351      1.1      cgd static int
    352      1.1      cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    353      1.1      cgd 	kvm_t *kd;
    354      1.1      cgd 	int what, arg;
    355      1.1      cgd 	u_long a_allproc;
    356      1.1      cgd 	u_long a_zombproc;
    357      1.1      cgd 	int maxcnt;
    358      1.1      cgd {
    359      1.1      cgd 	register struct kinfo_proc *bp = kd->procbase;
    360      1.1      cgd 	register int acnt, zcnt;
    361      1.1      cgd 	struct proc *p;
    362      1.1      cgd 
    363      1.1      cgd 	if (KREAD(kd, a_allproc, &p)) {
    364      1.1      cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    365      1.1      cgd 		return (-1);
    366      1.1      cgd 	}
    367      1.1      cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    368      1.1      cgd 	if (acnt < 0)
    369      1.1      cgd 		return (acnt);
    370      1.1      cgd 
    371      1.1      cgd 	if (KREAD(kd, a_zombproc, &p)) {
    372      1.1      cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    373      1.1      cgd 		return (-1);
    374      1.1      cgd 	}
    375      1.1      cgd 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    376      1.1      cgd 	if (zcnt < 0)
    377      1.1      cgd 		zcnt = 0;
    378      1.1      cgd 
    379      1.1      cgd 	return (acnt + zcnt);
    380      1.1      cgd }
    381      1.1      cgd 
    382      1.1      cgd struct kinfo_proc *
    383      1.1      cgd kvm_getprocs(kd, op, arg, cnt)
    384      1.1      cgd 	kvm_t *kd;
    385      1.1      cgd 	int op, arg;
    386      1.1      cgd 	int *cnt;
    387      1.1      cgd {
    388      1.1      cgd 	int mib[4], size, st, nprocs;
    389      1.1      cgd 
    390      1.1      cgd 	if (kd->procbase != 0) {
    391      1.1      cgd 		free((void *)kd->procbase);
    392      1.1      cgd 		/*
    393      1.1      cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    394      1.1      cgd 		 * kvm_close() will free it again.
    395      1.1      cgd 		 */
    396      1.1      cgd 		kd->procbase = 0;
    397      1.1      cgd 	}
    398      1.1      cgd 	if (ISALIVE(kd)) {
    399      1.1      cgd 		size = 0;
    400      1.1      cgd 		mib[0] = CTL_KERN;
    401      1.1      cgd 		mib[1] = KERN_PROC;
    402      1.1      cgd 		mib[2] = op;
    403      1.1      cgd 		mib[3] = arg;
    404      1.1      cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    405      1.1      cgd 		if (st == -1) {
    406      1.1      cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    407      1.1      cgd 			return (0);
    408      1.1      cgd 		}
    409      1.1      cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    410      1.1      cgd 		if (kd->procbase == 0)
    411      1.1      cgd 			return (0);
    412      1.1      cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    413      1.1      cgd 		if (st == -1) {
    414      1.1      cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    415      1.1      cgd 			return (0);
    416      1.1      cgd 		}
    417      1.1      cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    418      1.1      cgd 			_kvm_err(kd, kd->program,
    419      1.1      cgd 				"proc size mismatch (%d total, %d chunks)",
    420      1.1      cgd 				size, sizeof(struct kinfo_proc));
    421      1.1      cgd 			return (0);
    422      1.1      cgd 		}
    423      1.1      cgd 		nprocs = size / sizeof(struct kinfo_proc);
    424      1.1      cgd 	} else {
    425      1.1      cgd 		struct nlist nl[4], *p;
    426      1.1      cgd 
    427      1.1      cgd 		nl[0].n_name = "_nprocs";
    428      1.1      cgd 		nl[1].n_name = "_allproc";
    429      1.1      cgd 		nl[2].n_name = "_zombproc";
    430      1.1      cgd 		nl[3].n_name = 0;
    431      1.1      cgd 
    432      1.1      cgd 		if (kvm_nlist(kd, nl) != 0) {
    433      1.1      cgd 			for (p = nl; p->n_type != 0; ++p)
    434      1.1      cgd 				;
    435      1.1      cgd 			_kvm_err(kd, kd->program,
    436      1.1      cgd 				 "%s: no such symbol", p->n_name);
    437      1.1      cgd 			return (0);
    438      1.1      cgd 		}
    439      1.1      cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    440      1.1      cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    441      1.1      cgd 			return (0);
    442      1.1      cgd 		}
    443      1.1      cgd 		size = nprocs * sizeof(struct kinfo_proc);
    444      1.1      cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    445      1.1      cgd 		if (kd->procbase == 0)
    446      1.1      cgd 			return (0);
    447      1.1      cgd 
    448      1.1      cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    449      1.1      cgd 				      nl[2].n_value, nprocs);
    450      1.1      cgd #ifdef notdef
    451      1.1      cgd 		size = nprocs * sizeof(struct kinfo_proc);
    452      1.1      cgd 		(void)realloc(kd->procbase, size);
    453      1.1      cgd #endif
    454      1.1      cgd 	}
    455      1.1      cgd 	*cnt = nprocs;
    456      1.1      cgd 	return (kd->procbase);
    457      1.1      cgd }
    458      1.1      cgd 
    459      1.1      cgd void
    460      1.1      cgd _kvm_freeprocs(kd)
    461      1.1      cgd 	kvm_t *kd;
    462      1.1      cgd {
    463      1.1      cgd 	if (kd->procbase) {
    464      1.1      cgd 		free(kd->procbase);
    465      1.1      cgd 		kd->procbase = 0;
    466      1.1      cgd 	}
    467      1.1      cgd }
    468      1.1      cgd 
    469      1.1      cgd void *
    470      1.1      cgd _kvm_realloc(kd, p, n)
    471      1.1      cgd 	kvm_t *kd;
    472      1.1      cgd 	void *p;
    473      1.1      cgd 	size_t n;
    474      1.1      cgd {
    475      1.1      cgd 	void *np = (void *)realloc(p, n);
    476      1.1      cgd 
    477      1.1      cgd 	if (np == 0)
    478      1.1      cgd 		_kvm_err(kd, kd->program, "out of memory");
    479      1.1      cgd 	return (np);
    480      1.1      cgd }
    481      1.1      cgd 
    482      1.1      cgd #ifndef MAX
    483      1.1      cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
    484      1.1      cgd #endif
    485      1.1      cgd 
    486      1.1      cgd /*
    487      1.1      cgd  * Read in an argument vector from the user address space of process p.
    488      1.1      cgd  * addr if the user-space base address of narg null-terminated contiguous
    489      1.1      cgd  * strings.  This is used to read in both the command arguments and
    490      1.1      cgd  * environment strings.  Read at most maxcnt characters of strings.
    491      1.1      cgd  */
    492      1.1      cgd static char **
    493      1.1      cgd kvm_argv(kd, p, addr, narg, maxcnt)
    494      1.1      cgd 	kvm_t *kd;
    495      1.1      cgd 	struct proc *p;
    496      1.1      cgd 	register u_long addr;
    497      1.1      cgd 	register int narg;
    498      1.1      cgd 	register int maxcnt;
    499      1.1      cgd {
    500      1.1      cgd 	register char *cp;
    501      1.1      cgd 	register int len, cc;
    502      1.1      cgd 	register char **argv;
    503      1.1      cgd 
    504      1.1      cgd 	/*
    505      1.1      cgd 	 * Check that there aren't an unreasonable number of agruments,
    506      1.1      cgd 	 * and that the address is in user space.
    507      1.1      cgd 	 */
    508      1.1      cgd 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    509      1.1      cgd 		return (0);
    510      1.1      cgd 
    511      1.1      cgd 	if (kd->argv == 0) {
    512      1.1      cgd 		/*
    513      1.1      cgd 		 * Try to avoid reallocs.
    514      1.1      cgd 		 */
    515      1.1      cgd 		kd->argc = MAX(narg + 1, 32);
    516      1.1      cgd 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    517      1.1      cgd 						sizeof(*kd->argv));
    518      1.1      cgd 		if (kd->argv == 0)
    519      1.1      cgd 			return (0);
    520      1.1      cgd 	} else if (narg + 1 > kd->argc) {
    521      1.1      cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    522      1.1      cgd 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    523      1.1      cgd 						sizeof(*kd->argv));
    524      1.1      cgd 		if (kd->argv == 0)
    525      1.1      cgd 			return (0);
    526      1.1      cgd 	}
    527      1.1      cgd 	if (kd->argspc == 0) {
    528      1.1      cgd 		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
    529      1.1      cgd 		if (kd->argspc == 0)
    530      1.1      cgd 			return (0);
    531      1.1      cgd 		kd->arglen = NBPG;
    532      1.1      cgd 	}
    533      1.1      cgd 	cp = kd->argspc;
    534      1.1      cgd 	argv = kd->argv;
    535      1.1      cgd 	*argv = cp;
    536      1.1      cgd 	len = 0;
    537      1.1      cgd 	/*
    538      1.1      cgd 	 * Loop over pages, filling in the argument vector.
    539      1.1      cgd 	 */
    540      1.1      cgd 	while (addr < VM_MAXUSER_ADDRESS) {
    541      1.1      cgd 		cc = NBPG - (addr & PGOFSET);
    542      1.1      cgd 		if (maxcnt > 0 && cc > maxcnt - len)
    543      1.1      cgd 			cc = maxcnt - len;;
    544      1.1      cgd 		if (len + cc > kd->arglen) {
    545      1.1      cgd 			register int off;
    546      1.1      cgd 			register char **pp;
    547      1.1      cgd 			register char *op = kd->argspc;
    548      1.1      cgd 
    549      1.1      cgd 			kd->arglen *= 2;
    550      1.1      cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    551      1.1      cgd 							  kd->arglen);
    552      1.1      cgd 			if (kd->argspc == 0)
    553      1.1      cgd 				return (0);
    554      1.1      cgd 			cp = &kd->argspc[len];
    555      1.1      cgd 			/*
    556      1.1      cgd 			 * Adjust argv pointers in case realloc moved
    557      1.1      cgd 			 * the string space.
    558      1.1      cgd 			 */
    559      1.1      cgd 			off = kd->argspc - op;
    560      1.1      cgd 			for (pp = kd->argv; pp < argv; ++pp)
    561      1.1      cgd 				*pp += off;
    562      1.1      cgd 		}
    563      1.1      cgd 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
    564      1.1      cgd 			/* XXX */
    565      1.1      cgd 			return (0);
    566      1.1      cgd 		len += cc;
    567      1.1      cgd 		addr += cc;
    568      1.1      cgd 
    569      1.1      cgd 		if (maxcnt == 0 && len > 16 * NBPG)
    570      1.1      cgd 			/* sanity */
    571      1.1      cgd 			return (0);
    572      1.1      cgd 
    573      1.1      cgd 		while (--cc >= 0) {
    574      1.1      cgd 			if (*cp++ == 0) {
    575      1.1      cgd 				if (--narg <= 0) {
    576      1.1      cgd 					*++argv = 0;
    577      1.1      cgd 					return (kd->argv);
    578      1.1      cgd 				} else
    579      1.1      cgd 					*++argv = cp;
    580      1.1      cgd 			}
    581      1.1      cgd 		}
    582      1.1      cgd 		if (maxcnt > 0 && len >= maxcnt) {
    583      1.1      cgd 			/*
    584      1.1      cgd 			 * We're stopping prematurely.  Terminate the
    585      1.1      cgd 			 * argv and current string.
    586      1.1      cgd 			 */
    587      1.1      cgd 			*++argv = 0;
    588      1.1      cgd 			*cp = 0;
    589      1.1      cgd 			return (kd->argv);
    590      1.1      cgd 		}
    591      1.1      cgd 	}
    592      1.1      cgd }
    593      1.1      cgd 
    594      1.1      cgd static void
    595      1.1      cgd ps_str_a(p, addr, n)
    596      1.1      cgd 	struct ps_strings *p;
    597      1.1      cgd 	u_long *addr;
    598      1.1      cgd 	int *n;
    599      1.1      cgd {
    600      1.1      cgd 	*addr = (u_long)p->ps_argvstr;
    601      1.1      cgd 	*n = p->ps_nargvstr;
    602      1.1      cgd }
    603      1.1      cgd 
    604      1.1      cgd static void
    605      1.1      cgd ps_str_e(p, addr, n)
    606      1.1      cgd 	struct ps_strings *p;
    607      1.1      cgd 	u_long *addr;
    608      1.1      cgd 	int *n;
    609      1.1      cgd {
    610      1.1      cgd 	*addr = (u_long)p->ps_envstr;
    611      1.1      cgd 	*n = p->ps_nenvstr;
    612      1.1      cgd }
    613      1.1      cgd 
    614      1.1      cgd /*
    615      1.1      cgd  * Determine if the proc indicated by p is still active.
    616      1.1      cgd  * This test is not 100% foolproof in theory, but chances of
    617      1.1      cgd  * being wrong are very low.
    618      1.1      cgd  */
    619      1.1      cgd static int
    620      1.1      cgd proc_verify(kd, kernp, p)
    621      1.1      cgd 	kvm_t *kd;
    622      1.1      cgd 	u_long kernp;
    623      1.1      cgd 	const struct proc *p;
    624      1.1      cgd {
    625      1.1      cgd 	struct proc kernproc;
    626      1.1      cgd 
    627      1.1      cgd 	/*
    628      1.1      cgd 	 * Just read in the whole proc.  It's not that big relative
    629      1.1      cgd 	 * to the cost of the read system call.
    630      1.1      cgd 	 */
    631      1.1      cgd 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    632      1.1      cgd 	    sizeof(kernproc))
    633      1.1      cgd 		return (0);
    634      1.1      cgd 	return (p->p_pid == kernproc.p_pid &&
    635      1.1      cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    636      1.1      cgd }
    637      1.1      cgd 
    638      1.1      cgd static char **
    639      1.1      cgd kvm_doargv(kd, kp, nchr, info)
    640      1.1      cgd 	kvm_t *kd;
    641      1.1      cgd 	const struct kinfo_proc *kp;
    642      1.1      cgd 	int nchr;
    643      1.1      cgd 	int (*info)(struct ps_strings*, u_long *, int *);
    644      1.1      cgd {
    645      1.1      cgd 	register const struct proc *p = &kp->kp_proc;
    646      1.1      cgd 	register char **ap;
    647      1.1      cgd 	u_long addr;
    648      1.1      cgd 	int cnt;
    649      1.1      cgd 	struct ps_strings arginfo;
    650      1.1      cgd 
    651      1.1      cgd 	/*
    652      1.1      cgd 	 * Pointers are stored at the top of the user stack.
    653      1.1      cgd 	 */
    654      1.1      cgd 	if (p->p_stat == SZOMB ||
    655      1.1      cgd 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    656      1.1      cgd 		      sizeof(arginfo)) != sizeof(arginfo))
    657      1.1      cgd 		return (0);
    658      1.1      cgd 
    659      1.1      cgd 	(*info)(&arginfo, &addr, &cnt);
    660  1.2.2.1  mycroft 	if (cnt == 0)
    661  1.2.2.1  mycroft 		return (0);
    662      1.1      cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    663      1.1      cgd 	/*
    664      1.1      cgd 	 * For live kernels, make sure this process didn't go away.
    665      1.1      cgd 	 */
    666      1.1      cgd 	if (ap != 0 && ISALIVE(kd) &&
    667      1.1      cgd 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    668      1.1      cgd 		ap = 0;
    669      1.1      cgd 	return (ap);
    670      1.1      cgd }
    671      1.1      cgd 
    672      1.1      cgd /*
    673      1.1      cgd  * Get the command args.  This code is now machine independent.
    674      1.1      cgd  */
    675      1.1      cgd char **
    676      1.1      cgd kvm_getargv(kd, kp, nchr)
    677      1.1      cgd 	kvm_t *kd;
    678      1.1      cgd 	const struct kinfo_proc *kp;
    679      1.1      cgd 	int nchr;
    680      1.1      cgd {
    681      1.1      cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    682      1.1      cgd }
    683      1.1      cgd 
    684      1.1      cgd char **
    685      1.1      cgd kvm_getenvv(kd, kp, nchr)
    686      1.1      cgd 	kvm_t *kd;
    687      1.1      cgd 	const struct kinfo_proc *kp;
    688      1.1      cgd 	int nchr;
    689      1.1      cgd {
    690      1.1      cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    691      1.1      cgd }
    692      1.1      cgd 
    693      1.1      cgd /*
    694      1.1      cgd  * Read from user space.  The user context is given by p.
    695      1.1      cgd  */
    696      1.1      cgd ssize_t
    697      1.1      cgd kvm_uread(kd, p, uva, buf, len)
    698      1.1      cgd 	kvm_t *kd;
    699      1.1      cgd 	register struct proc *p;
    700      1.1      cgd 	register u_long uva;
    701      1.1      cgd 	register char *buf;
    702      1.1      cgd 	register size_t len;
    703      1.1      cgd {
    704      1.1      cgd 	register char *cp;
    705      1.1      cgd 
    706      1.1      cgd 	cp = buf;
    707      1.1      cgd 	while (len > 0) {
    708      1.1      cgd 		u_long pa;
    709      1.1      cgd 		register int cc;
    710      1.1      cgd 
    711      1.1      cgd 		cc = _kvm_uvatop(kd, p, uva, &pa);
    712      1.1      cgd 		if (cc > 0) {
    713      1.1      cgd 			if (cc > len)
    714      1.1      cgd 				cc = len;
    715      1.1      cgd 			errno = 0;
    716      1.1      cgd 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
    717      1.1      cgd 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    718      1.1      cgd 				break;
    719      1.1      cgd 			}
    720      1.1      cgd 			cc = read(kd->pmfd, cp, cc);
    721      1.1      cgd 			if (cc < 0) {
    722      1.1      cgd 				_kvm_syserr(kd, 0, _PATH_MEM);
    723      1.1      cgd 				break;
    724      1.1      cgd 			} else if (cc < len) {
    725      1.1      cgd 				_kvm_err(kd, kd->program, "short read");
    726      1.1      cgd 				break;
    727      1.1      cgd 			}
    728      1.1      cgd 		} else if (ISALIVE(kd)) {
    729      1.1      cgd 			/* try swap */
    730      1.1      cgd 			register char *dp;
    731      1.1      cgd 			int cnt;
    732      1.1      cgd 
    733      1.1      cgd 			dp = kvm_readswap(kd, p, uva, &cnt);
    734      1.1      cgd 			if (dp == 0) {
    735      1.1      cgd 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    736      1.1      cgd 				return (0);
    737      1.1      cgd 			}
    738      1.1      cgd 			cc = MIN(cnt, len);
    739      1.1      cgd 			bcopy(dp, cp, cc);
    740      1.1      cgd 		} else
    741      1.1      cgd 			break;
    742      1.1      cgd 		cp += cc;
    743      1.1      cgd 		uva += cc;
    744      1.1      cgd 		len -= cc;
    745      1.1      cgd 	}
    746      1.1      cgd 	return (ssize_t)(cp - buf);
    747      1.1      cgd }
    748