kvm_proc.c revision 1.21 1 1.21 perry /* $NetBSD: kvm_proc.c,v 1.21 1998/02/03 19:12:44 perry Exp $ */
2 1.16 thorpej
3 1.1 cgd /*-
4 1.11 mycroft * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 1.1 cgd * Copyright (c) 1989, 1992, 1993
6 1.1 cgd * The Regents of the University of California. All rights reserved.
7 1.1 cgd *
8 1.1 cgd * This code is derived from software developed by the Computer Systems
9 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 1.1 cgd * BG 91-66 and contributed to Berkeley.
11 1.1 cgd *
12 1.1 cgd * Redistribution and use in source and binary forms, with or without
13 1.1 cgd * modification, are permitted provided that the following conditions
14 1.1 cgd * are met:
15 1.1 cgd * 1. Redistributions of source code must retain the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer.
17 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cgd * notice, this list of conditions and the following disclaimer in the
19 1.1 cgd * documentation and/or other materials provided with the distribution.
20 1.1 cgd * 3. All advertising materials mentioning features or use of this software
21 1.1 cgd * must display the following acknowledgement:
22 1.1 cgd * This product includes software developed by the University of
23 1.1 cgd * California, Berkeley and its contributors.
24 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.1 cgd * may be used to endorse or promote products derived from this software
26 1.1 cgd * without specific prior written permission.
27 1.1 cgd *
28 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 cgd * SUCH DAMAGE.
39 1.1 cgd */
40 1.1 cgd
41 1.19 mikel #include <sys/cdefs.h>
42 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
43 1.16 thorpej #if 0
44 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
45 1.16 thorpej #else
46 1.21 perry __RCSID("$NetBSD: kvm_proc.c,v 1.21 1998/02/03 19:12:44 perry Exp $");
47 1.16 thorpej #endif
48 1.1 cgd #endif /* LIBC_SCCS and not lint */
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
52 1.1 cgd * users of this code, so we've factored it out into a separate module.
53 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
54 1.1 cgd * most other applications are interested only in open/close/read/nlist).
55 1.1 cgd */
56 1.1 cgd
57 1.1 cgd #include <sys/param.h>
58 1.1 cgd #include <sys/user.h>
59 1.1 cgd #include <sys/proc.h>
60 1.1 cgd #include <sys/exec.h>
61 1.1 cgd #include <sys/stat.h>
62 1.1 cgd #include <sys/ioctl.h>
63 1.1 cgd #include <sys/tty.h>
64 1.7 cgd #include <stdlib.h>
65 1.10 mycroft #include <string.h>
66 1.1 cgd #include <unistd.h>
67 1.1 cgd #include <nlist.h>
68 1.1 cgd #include <kvm.h>
69 1.1 cgd
70 1.1 cgd #include <vm/vm.h>
71 1.1 cgd #include <vm/vm_param.h>
72 1.1 cgd #include <vm/swap_pager.h>
73 1.1 cgd
74 1.1 cgd #include <sys/sysctl.h>
75 1.1 cgd
76 1.1 cgd #include <limits.h>
77 1.1 cgd #include <db.h>
78 1.1 cgd #include <paths.h>
79 1.1 cgd
80 1.1 cgd #include "kvm_private.h"
81 1.1 cgd
82 1.2 mycroft #define KREAD(kd, addr, obj) \
83 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84 1.2 mycroft
85 1.20 drochner char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
86 1.20 drochner int _kvm_coreinit __P((kvm_t *));
87 1.15 cgd int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
88 1.15 cgd int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
89 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
90 1.15 cgd size_t));
91 1.15 cgd
92 1.15 cgd static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
93 1.15 cgd int));
94 1.15 cgd static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
95 1.15 cgd static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
96 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
97 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
98 1.15 cgd struct kinfo_proc *, int));
99 1.15 cgd static int proc_verify __P((kvm_t *, u_long, const struct proc *));
100 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
101 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
102 1.2 mycroft
103 1.8 mycroft char *
104 1.8 mycroft _kvm_uread(kd, p, va, cnt)
105 1.1 cgd kvm_t *kd;
106 1.1 cgd const struct proc *p;
107 1.1 cgd u_long va;
108 1.1 cgd u_long *cnt;
109 1.1 cgd {
110 1.21 perry u_long addr, head;
111 1.21 perry u_long offset;
112 1.1 cgd struct vm_map_entry vme;
113 1.1 cgd struct vm_object vmo;
114 1.8 mycroft int rv;
115 1.1 cgd
116 1.6 mycroft if (kd->swapspc == 0) {
117 1.6 mycroft kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
118 1.6 mycroft if (kd->swapspc == 0)
119 1.5 deraadt return (0);
120 1.5 deraadt }
121 1.8 mycroft
122 1.1 cgd /*
123 1.1 cgd * Look through the address map for the memory object
124 1.1 cgd * that corresponds to the given virtual address.
125 1.1 cgd * The header just has the entire valid range.
126 1.1 cgd */
127 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
128 1.1 cgd addr = head;
129 1.1 cgd while (1) {
130 1.2 mycroft if (KREAD(kd, addr, &vme))
131 1.1 cgd return (0);
132 1.1 cgd
133 1.2 mycroft if (va >= vme.start && va < vme.end &&
134 1.1 cgd vme.object.vm_object != 0)
135 1.1 cgd break;
136 1.1 cgd
137 1.1 cgd addr = (u_long)vme.next;
138 1.2 mycroft if (addr == head)
139 1.1 cgd return (0);
140 1.1 cgd }
141 1.2 mycroft
142 1.1 cgd /*
143 1.1 cgd * We found the right object -- follow shadow links.
144 1.1 cgd */
145 1.1 cgd offset = va - vme.start + vme.offset;
146 1.1 cgd addr = (u_long)vme.object.vm_object;
147 1.8 mycroft
148 1.1 cgd while (1) {
149 1.8 mycroft /* Try reading the page from core first. */
150 1.8 mycroft if ((rv = _kvm_readfromcore(kd, addr, offset)))
151 1.8 mycroft break;
152 1.8 mycroft
153 1.2 mycroft if (KREAD(kd, addr, &vmo))
154 1.1 cgd return (0);
155 1.2 mycroft
156 1.2 mycroft /* If there is a pager here, see if it has the page. */
157 1.2 mycroft if (vmo.pager != 0 &&
158 1.8 mycroft (rv = _kvm_readfrompager(kd, &vmo, offset)))
159 1.2 mycroft break;
160 1.2 mycroft
161 1.2 mycroft /* Move down the shadow chain. */
162 1.1 cgd addr = (u_long)vmo.shadow;
163 1.1 cgd if (addr == 0)
164 1.2 mycroft return (0);
165 1.1 cgd offset += vmo.shadow_offset;
166 1.1 cgd }
167 1.2 mycroft
168 1.8 mycroft if (rv == -1)
169 1.8 mycroft return (0);
170 1.8 mycroft
171 1.2 mycroft /* Found the page. */
172 1.6 mycroft offset %= kd->nbpg;
173 1.6 mycroft *cnt = kd->nbpg - offset;
174 1.6 mycroft return (&kd->swapspc[offset]);
175 1.2 mycroft }
176 1.2 mycroft
177 1.8 mycroft #define vm_page_hash(kd, object, offset) \
178 1.8 mycroft (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
179 1.8 mycroft
180 1.8 mycroft int
181 1.8 mycroft _kvm_coreinit(kd)
182 1.8 mycroft kvm_t *kd;
183 1.8 mycroft {
184 1.8 mycroft struct nlist nlist[3];
185 1.8 mycroft
186 1.8 mycroft nlist[0].n_name = "_vm_page_buckets";
187 1.8 mycroft nlist[1].n_name = "_vm_page_hash_mask";
188 1.8 mycroft nlist[2].n_name = 0;
189 1.8 mycroft if (kvm_nlist(kd, nlist) != 0)
190 1.8 mycroft return (-1);
191 1.8 mycroft
192 1.8 mycroft if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
193 1.8 mycroft KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
194 1.8 mycroft return (-1);
195 1.8 mycroft
196 1.8 mycroft return (0);
197 1.8 mycroft }
198 1.8 mycroft
199 1.8 mycroft int
200 1.8 mycroft _kvm_readfromcore(kd, object, offset)
201 1.8 mycroft kvm_t *kd;
202 1.8 mycroft u_long object, offset;
203 1.8 mycroft {
204 1.8 mycroft u_long addr;
205 1.8 mycroft struct pglist bucket;
206 1.8 mycroft struct vm_page mem;
207 1.8 mycroft off_t seekpoint;
208 1.8 mycroft
209 1.8 mycroft if (kd->vm_page_buckets == 0 &&
210 1.8 mycroft _kvm_coreinit(kd))
211 1.8 mycroft return (-1);
212 1.8 mycroft
213 1.8 mycroft addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
214 1.8 mycroft if (KREAD(kd, addr, &bucket))
215 1.8 mycroft return (-1);
216 1.8 mycroft
217 1.8 mycroft addr = (u_long)bucket.tqh_first;
218 1.8 mycroft offset &= ~(kd->nbpg -1);
219 1.8 mycroft while (1) {
220 1.8 mycroft if (addr == 0)
221 1.8 mycroft return (0);
222 1.8 mycroft
223 1.8 mycroft if (KREAD(kd, addr, &mem))
224 1.8 mycroft return (-1);
225 1.8 mycroft
226 1.8 mycroft if ((u_long)mem.object == object &&
227 1.8 mycroft (u_long)mem.offset == offset)
228 1.8 mycroft break;
229 1.8 mycroft
230 1.8 mycroft addr = (u_long)mem.hashq.tqe_next;
231 1.8 mycroft }
232 1.8 mycroft
233 1.8 mycroft seekpoint = mem.phys_addr;
234 1.8 mycroft
235 1.8 mycroft if (lseek(kd->pmfd, seekpoint, 0) == -1)
236 1.8 mycroft return (-1);
237 1.8 mycroft if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
238 1.8 mycroft return (-1);
239 1.8 mycroft
240 1.8 mycroft return (1);
241 1.8 mycroft }
242 1.8 mycroft
243 1.2 mycroft int
244 1.6 mycroft _kvm_readfrompager(kd, vmop, offset)
245 1.2 mycroft kvm_t *kd;
246 1.2 mycroft struct vm_object *vmop;
247 1.2 mycroft u_long offset;
248 1.8 mycroft {
249 1.2 mycroft u_long addr;
250 1.2 mycroft struct pager_struct pager;
251 1.2 mycroft struct swpager swap;
252 1.2 mycroft int ix;
253 1.2 mycroft struct swblock swb;
254 1.8 mycroft off_t seekpoint;
255 1.2 mycroft
256 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
257 1.2 mycroft addr = (u_long)vmop->pager;
258 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
259 1.8 mycroft return (-1);
260 1.1 cgd
261 1.2 mycroft /* Read in the swap_pager private data. */
262 1.2 mycroft addr = (u_long)pager.pg_data;
263 1.2 mycroft if (KREAD(kd, addr, &swap))
264 1.8 mycroft return (-1);
265 1.1 cgd
266 1.1 cgd /*
267 1.2 mycroft * Calculate the paging offset, and make sure it's within the
268 1.2 mycroft * bounds of the pager.
269 1.1 cgd */
270 1.2 mycroft offset += vmop->paging_offset;
271 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
272 1.2 mycroft #if 0
273 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
274 1.8 mycroft return (-1);
275 1.2 mycroft #else
276 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
277 1.2 mycroft int i;
278 1.2 mycroft printf("BUG BUG BUG BUG:\n");
279 1.17 mikel printf("object %p offset %lx pgoffset %lx ",
280 1.17 mikel vmop, offset - vmop->paging_offset,
281 1.17 mikel (u_long)vmop->paging_offset);
282 1.17 mikel printf("pager %p swpager %p\n",
283 1.2 mycroft vmop->pager, pager.pg_data);
284 1.17 mikel printf("osize %lx bsize %x blocks %p nblocks %x\n",
285 1.17 mikel (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
286 1.2 mycroft swap.sw_nblocks);
287 1.20 drochner for (i = 0; i < swap.sw_nblocks; i++) {
288 1.20 drochner addr = (u_long)&swap.sw_blocks[i];
289 1.2 mycroft if (KREAD(kd, addr, &swb))
290 1.2 mycroft return (0);
291 1.20 drochner printf("sw_blocks[%d]: block %x mask %x\n", i,
292 1.2 mycroft swb.swb_block, swb.swb_mask);
293 1.2 mycroft }
294 1.8 mycroft return (-1);
295 1.2 mycroft }
296 1.2 mycroft #endif
297 1.1 cgd
298 1.2 mycroft /* Read in the swap records. */
299 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
300 1.2 mycroft if (KREAD(kd, addr, &swb))
301 1.8 mycroft return (-1);
302 1.1 cgd
303 1.2 mycroft /* Calculate offset within pager. */
304 1.2 mycroft offset %= dbtob(swap.sw_bsize);
305 1.1 cgd
306 1.2 mycroft /* Check that the page is actually present. */
307 1.6 mycroft if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
308 1.1 cgd return (0);
309 1.1 cgd
310 1.8 mycroft if (!ISALIVE(kd))
311 1.8 mycroft return (-1);
312 1.8 mycroft
313 1.2 mycroft /* Calculate the physical address and read the page. */
314 1.6 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
315 1.8 mycroft
316 1.2 mycroft if (lseek(kd->swfd, seekpoint, 0) == -1)
317 1.8 mycroft return (-1);
318 1.6 mycroft if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
319 1.8 mycroft return (-1);
320 1.1 cgd
321 1.2 mycroft return (1);
322 1.1 cgd }
323 1.1 cgd
324 1.1 cgd /*
325 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
326 1.1 cgd * at most maxcnt procs.
327 1.1 cgd */
328 1.1 cgd static int
329 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
330 1.1 cgd kvm_t *kd;
331 1.1 cgd int what, arg;
332 1.1 cgd struct proc *p;
333 1.1 cgd struct kinfo_proc *bp;
334 1.1 cgd int maxcnt;
335 1.1 cgd {
336 1.21 perry int cnt = 0;
337 1.1 cgd struct eproc eproc;
338 1.1 cgd struct pgrp pgrp;
339 1.1 cgd struct session sess;
340 1.1 cgd struct tty tty;
341 1.1 cgd struct proc proc;
342 1.1 cgd
343 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
344 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
345 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
346 1.1 cgd return (-1);
347 1.1 cgd }
348 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
349 1.20 drochner (void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
350 1.1 cgd &eproc.e_ucred);
351 1.1 cgd
352 1.1 cgd switch(what) {
353 1.1 cgd
354 1.1 cgd case KERN_PROC_PID:
355 1.1 cgd if (proc.p_pid != (pid_t)arg)
356 1.1 cgd continue;
357 1.1 cgd break;
358 1.1 cgd
359 1.1 cgd case KERN_PROC_UID:
360 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
361 1.1 cgd continue;
362 1.1 cgd break;
363 1.1 cgd
364 1.1 cgd case KERN_PROC_RUID:
365 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
366 1.1 cgd continue;
367 1.1 cgd break;
368 1.1 cgd }
369 1.1 cgd /*
370 1.1 cgd * We're going to add another proc to the set. If this
371 1.1 cgd * will overflow the buffer, assume the reason is because
372 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
373 1.1 cgd */
374 1.1 cgd if (cnt >= maxcnt) {
375 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
376 1.1 cgd return (-1);
377 1.1 cgd }
378 1.1 cgd /*
379 1.1 cgd * gather eproc
380 1.1 cgd */
381 1.1 cgd eproc.e_paddr = p;
382 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
383 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
384 1.1 cgd proc.p_pgrp);
385 1.1 cgd return (-1);
386 1.1 cgd }
387 1.1 cgd eproc.e_sess = pgrp.pg_session;
388 1.1 cgd eproc.e_pgid = pgrp.pg_id;
389 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
390 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
391 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
392 1.1 cgd pgrp.pg_session);
393 1.1 cgd return (-1);
394 1.1 cgd }
395 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
396 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
397 1.1 cgd _kvm_err(kd, kd->program,
398 1.1 cgd "can't read tty at %x", sess.s_ttyp);
399 1.1 cgd return (-1);
400 1.1 cgd }
401 1.1 cgd eproc.e_tdev = tty.t_dev;
402 1.1 cgd eproc.e_tsess = tty.t_session;
403 1.1 cgd if (tty.t_pgrp != NULL) {
404 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
405 1.1 cgd _kvm_err(kd, kd->program,
406 1.1 cgd "can't read tpgrp at &x",
407 1.1 cgd tty.t_pgrp);
408 1.1 cgd return (-1);
409 1.1 cgd }
410 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
411 1.1 cgd } else
412 1.1 cgd eproc.e_tpgid = -1;
413 1.1 cgd } else
414 1.1 cgd eproc.e_tdev = NODEV;
415 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
416 1.1 cgd if (sess.s_leader == p)
417 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
418 1.1 cgd if (proc.p_wmesg)
419 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
420 1.1 cgd eproc.e_wmesg, WMESGLEN);
421 1.1 cgd
422 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
423 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
424 1.9 pk
425 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
426 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
427 1.1 cgd
428 1.1 cgd switch (what) {
429 1.1 cgd
430 1.1 cgd case KERN_PROC_PGRP:
431 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
432 1.1 cgd continue;
433 1.1 cgd break;
434 1.1 cgd
435 1.1 cgd case KERN_PROC_TTY:
436 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
437 1.1 cgd eproc.e_tdev != (dev_t)arg)
438 1.1 cgd continue;
439 1.1 cgd break;
440 1.1 cgd }
441 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
442 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
443 1.1 cgd ++bp;
444 1.1 cgd ++cnt;
445 1.1 cgd }
446 1.1 cgd return (cnt);
447 1.1 cgd }
448 1.1 cgd
449 1.1 cgd /*
450 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
451 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
452 1.1 cgd */
453 1.1 cgd static int
454 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
455 1.1 cgd kvm_t *kd;
456 1.1 cgd int what, arg;
457 1.1 cgd u_long a_allproc;
458 1.1 cgd u_long a_zombproc;
459 1.1 cgd int maxcnt;
460 1.1 cgd {
461 1.21 perry struct kinfo_proc *bp = kd->procbase;
462 1.21 perry int acnt, zcnt;
463 1.1 cgd struct proc *p;
464 1.1 cgd
465 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
466 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
467 1.1 cgd return (-1);
468 1.1 cgd }
469 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
470 1.1 cgd if (acnt < 0)
471 1.1 cgd return (acnt);
472 1.1 cgd
473 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
474 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
475 1.1 cgd return (-1);
476 1.1 cgd }
477 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
478 1.1 cgd if (zcnt < 0)
479 1.1 cgd zcnt = 0;
480 1.1 cgd
481 1.1 cgd return (acnt + zcnt);
482 1.1 cgd }
483 1.1 cgd
484 1.1 cgd struct kinfo_proc *
485 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
486 1.1 cgd kvm_t *kd;
487 1.1 cgd int op, arg;
488 1.1 cgd int *cnt;
489 1.1 cgd {
490 1.7 cgd size_t size;
491 1.7 cgd int mib[4], st, nprocs;
492 1.1 cgd
493 1.1 cgd if (kd->procbase != 0) {
494 1.1 cgd free((void *)kd->procbase);
495 1.1 cgd /*
496 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
497 1.1 cgd * kvm_close() will free it again.
498 1.1 cgd */
499 1.1 cgd kd->procbase = 0;
500 1.1 cgd }
501 1.1 cgd if (ISALIVE(kd)) {
502 1.1 cgd size = 0;
503 1.1 cgd mib[0] = CTL_KERN;
504 1.1 cgd mib[1] = KERN_PROC;
505 1.1 cgd mib[2] = op;
506 1.1 cgd mib[3] = arg;
507 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
508 1.1 cgd if (st == -1) {
509 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
510 1.1 cgd return (0);
511 1.1 cgd }
512 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
513 1.1 cgd if (kd->procbase == 0)
514 1.1 cgd return (0);
515 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
516 1.1 cgd if (st == -1) {
517 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
518 1.1 cgd return (0);
519 1.1 cgd }
520 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
521 1.1 cgd _kvm_err(kd, kd->program,
522 1.1 cgd "proc size mismatch (%d total, %d chunks)",
523 1.1 cgd size, sizeof(struct kinfo_proc));
524 1.1 cgd return (0);
525 1.1 cgd }
526 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
527 1.1 cgd } else {
528 1.1 cgd struct nlist nl[4], *p;
529 1.1 cgd
530 1.1 cgd nl[0].n_name = "_nprocs";
531 1.1 cgd nl[1].n_name = "_allproc";
532 1.1 cgd nl[2].n_name = "_zombproc";
533 1.1 cgd nl[3].n_name = 0;
534 1.1 cgd
535 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
536 1.1 cgd for (p = nl; p->n_type != 0; ++p)
537 1.1 cgd ;
538 1.1 cgd _kvm_err(kd, kd->program,
539 1.1 cgd "%s: no such symbol", p->n_name);
540 1.1 cgd return (0);
541 1.1 cgd }
542 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
543 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
544 1.1 cgd return (0);
545 1.1 cgd }
546 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
547 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
548 1.1 cgd if (kd->procbase == 0)
549 1.1 cgd return (0);
550 1.1 cgd
551 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
552 1.1 cgd nl[2].n_value, nprocs);
553 1.1 cgd #ifdef notdef
554 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
555 1.1 cgd (void)realloc(kd->procbase, size);
556 1.1 cgd #endif
557 1.1 cgd }
558 1.1 cgd *cnt = nprocs;
559 1.1 cgd return (kd->procbase);
560 1.1 cgd }
561 1.1 cgd
562 1.1 cgd void
563 1.1 cgd _kvm_freeprocs(kd)
564 1.1 cgd kvm_t *kd;
565 1.1 cgd {
566 1.1 cgd if (kd->procbase) {
567 1.1 cgd free(kd->procbase);
568 1.1 cgd kd->procbase = 0;
569 1.1 cgd }
570 1.1 cgd }
571 1.1 cgd
572 1.1 cgd void *
573 1.1 cgd _kvm_realloc(kd, p, n)
574 1.1 cgd kvm_t *kd;
575 1.1 cgd void *p;
576 1.1 cgd size_t n;
577 1.1 cgd {
578 1.1 cgd void *np = (void *)realloc(p, n);
579 1.1 cgd
580 1.1 cgd if (np == 0)
581 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
582 1.1 cgd return (np);
583 1.1 cgd }
584 1.1 cgd
585 1.1 cgd #ifndef MAX
586 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
587 1.1 cgd #endif
588 1.1 cgd
589 1.1 cgd /*
590 1.1 cgd * Read in an argument vector from the user address space of process p.
591 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
592 1.1 cgd * strings. This is used to read in both the command arguments and
593 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
594 1.1 cgd */
595 1.1 cgd static char **
596 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
597 1.1 cgd kvm_t *kd;
598 1.15 cgd const struct proc *p;
599 1.21 perry u_long addr;
600 1.21 perry int narg;
601 1.21 perry int maxcnt;
602 1.21 perry {
603 1.21 perry char *np, *cp, *ep, *ap;
604 1.21 perry u_long oaddr = -1;
605 1.21 perry int len, cc;
606 1.21 perry char **argv;
607 1.1 cgd
608 1.1 cgd /*
609 1.1 cgd * Check that there aren't an unreasonable number of agruments,
610 1.1 cgd * and that the address is in user space.
611 1.1 cgd */
612 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
613 1.1 cgd return (0);
614 1.1 cgd
615 1.1 cgd if (kd->argv == 0) {
616 1.1 cgd /*
617 1.1 cgd * Try to avoid reallocs.
618 1.1 cgd */
619 1.1 cgd kd->argc = MAX(narg + 1, 32);
620 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
621 1.1 cgd sizeof(*kd->argv));
622 1.1 cgd if (kd->argv == 0)
623 1.1 cgd return (0);
624 1.1 cgd } else if (narg + 1 > kd->argc) {
625 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
626 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
627 1.1 cgd sizeof(*kd->argv));
628 1.1 cgd if (kd->argv == 0)
629 1.1 cgd return (0);
630 1.1 cgd }
631 1.1 cgd if (kd->argspc == 0) {
632 1.6 mycroft kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
633 1.1 cgd if (kd->argspc == 0)
634 1.1 cgd return (0);
635 1.6 mycroft kd->arglen = kd->nbpg;
636 1.1 cgd }
637 1.10 mycroft if (kd->argbuf == 0) {
638 1.10 mycroft kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
639 1.10 mycroft if (kd->argbuf == 0)
640 1.10 mycroft return (0);
641 1.10 mycroft }
642 1.10 mycroft cc = sizeof(char *) * narg;
643 1.10 mycroft if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
644 1.10 mycroft return (0);
645 1.10 mycroft ap = np = kd->argspc;
646 1.1 cgd argv = kd->argv;
647 1.1 cgd len = 0;
648 1.1 cgd /*
649 1.1 cgd * Loop over pages, filling in the argument vector.
650 1.1 cgd */
651 1.10 mycroft while (argv < kd->argv + narg && *argv != 0) {
652 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
653 1.10 mycroft if (addr != oaddr) {
654 1.10 mycroft if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
655 1.10 mycroft kd->nbpg)
656 1.10 mycroft return (0);
657 1.10 mycroft oaddr = addr;
658 1.10 mycroft }
659 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
660 1.10 mycroft cp = kd->argbuf + addr;
661 1.10 mycroft cc = kd->nbpg - addr;
662 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
663 1.1 cgd cc = maxcnt - len;;
664 1.10 mycroft ep = memchr(cp, '\0', cc);
665 1.10 mycroft if (ep != 0)
666 1.10 mycroft cc = ep - cp + 1;
667 1.1 cgd if (len + cc > kd->arglen) {
668 1.21 perry int off;
669 1.21 perry char **pp;
670 1.21 perry char *op = kd->argspc;
671 1.1 cgd
672 1.1 cgd kd->arglen *= 2;
673 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
674 1.1 cgd kd->arglen);
675 1.1 cgd if (kd->argspc == 0)
676 1.1 cgd return (0);
677 1.1 cgd /*
678 1.1 cgd * Adjust argv pointers in case realloc moved
679 1.1 cgd * the string space.
680 1.1 cgd */
681 1.1 cgd off = kd->argspc - op;
682 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
683 1.1 cgd *pp += off;
684 1.12 mycroft ap += off;
685 1.12 mycroft np += off;
686 1.1 cgd }
687 1.10 mycroft memcpy(np, cp, cc);
688 1.10 mycroft np += cc;
689 1.1 cgd len += cc;
690 1.10 mycroft if (ep != 0) {
691 1.10 mycroft *argv++ = ap;
692 1.10 mycroft ap = np;
693 1.10 mycroft } else
694 1.10 mycroft *argv += cc;
695 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
696 1.1 cgd /*
697 1.1 cgd * We're stopping prematurely. Terminate the
698 1.10 mycroft * current string.
699 1.1 cgd */
700 1.10 mycroft if (ep == 0) {
701 1.10 mycroft *np = '\0';
702 1.14 mycroft *argv++ = ap;
703 1.10 mycroft }
704 1.10 mycroft break;
705 1.1 cgd }
706 1.1 cgd }
707 1.10 mycroft /* Make sure argv is terminated. */
708 1.10 mycroft *argv = 0;
709 1.10 mycroft return (kd->argv);
710 1.1 cgd }
711 1.1 cgd
712 1.1 cgd static void
713 1.1 cgd ps_str_a(p, addr, n)
714 1.1 cgd struct ps_strings *p;
715 1.1 cgd u_long *addr;
716 1.1 cgd int *n;
717 1.1 cgd {
718 1.1 cgd *addr = (u_long)p->ps_argvstr;
719 1.1 cgd *n = p->ps_nargvstr;
720 1.1 cgd }
721 1.1 cgd
722 1.1 cgd static void
723 1.1 cgd ps_str_e(p, addr, n)
724 1.1 cgd struct ps_strings *p;
725 1.1 cgd u_long *addr;
726 1.1 cgd int *n;
727 1.1 cgd {
728 1.1 cgd *addr = (u_long)p->ps_envstr;
729 1.1 cgd *n = p->ps_nenvstr;
730 1.1 cgd }
731 1.1 cgd
732 1.1 cgd /*
733 1.1 cgd * Determine if the proc indicated by p is still active.
734 1.1 cgd * This test is not 100% foolproof in theory, but chances of
735 1.1 cgd * being wrong are very low.
736 1.1 cgd */
737 1.1 cgd static int
738 1.1 cgd proc_verify(kd, kernp, p)
739 1.1 cgd kvm_t *kd;
740 1.1 cgd u_long kernp;
741 1.1 cgd const struct proc *p;
742 1.1 cgd {
743 1.1 cgd struct proc kernproc;
744 1.1 cgd
745 1.1 cgd /*
746 1.1 cgd * Just read in the whole proc. It's not that big relative
747 1.1 cgd * to the cost of the read system call.
748 1.1 cgd */
749 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
750 1.1 cgd sizeof(kernproc))
751 1.1 cgd return (0);
752 1.1 cgd return (p->p_pid == kernproc.p_pid &&
753 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
754 1.1 cgd }
755 1.1 cgd
756 1.1 cgd static char **
757 1.1 cgd kvm_doargv(kd, kp, nchr, info)
758 1.1 cgd kvm_t *kd;
759 1.1 cgd const struct kinfo_proc *kp;
760 1.1 cgd int nchr;
761 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
762 1.1 cgd {
763 1.21 perry const struct proc *p = &kp->kp_proc;
764 1.21 perry char **ap;
765 1.1 cgd u_long addr;
766 1.1 cgd int cnt;
767 1.1 cgd struct ps_strings arginfo;
768 1.1 cgd
769 1.1 cgd /*
770 1.1 cgd * Pointers are stored at the top of the user stack.
771 1.1 cgd */
772 1.18 gwr if (p->p_stat == SZOMB)
773 1.18 gwr return (0);
774 1.18 gwr cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
775 1.18 gwr (char *)&arginfo, sizeof(arginfo));
776 1.18 gwr if (cnt != sizeof(arginfo))
777 1.1 cgd return (0);
778 1.1 cgd
779 1.1 cgd (*info)(&arginfo, &addr, &cnt);
780 1.3 mycroft if (cnt == 0)
781 1.3 mycroft return (0);
782 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
783 1.1 cgd /*
784 1.1 cgd * For live kernels, make sure this process didn't go away.
785 1.1 cgd */
786 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
787 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
788 1.1 cgd ap = 0;
789 1.1 cgd return (ap);
790 1.1 cgd }
791 1.1 cgd
792 1.1 cgd /*
793 1.1 cgd * Get the command args. This code is now machine independent.
794 1.1 cgd */
795 1.1 cgd char **
796 1.1 cgd kvm_getargv(kd, kp, nchr)
797 1.1 cgd kvm_t *kd;
798 1.1 cgd const struct kinfo_proc *kp;
799 1.1 cgd int nchr;
800 1.1 cgd {
801 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
802 1.1 cgd }
803 1.1 cgd
804 1.1 cgd char **
805 1.1 cgd kvm_getenvv(kd, kp, nchr)
806 1.1 cgd kvm_t *kd;
807 1.1 cgd const struct kinfo_proc *kp;
808 1.1 cgd int nchr;
809 1.1 cgd {
810 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
811 1.1 cgd }
812 1.1 cgd
813 1.1 cgd /*
814 1.1 cgd * Read from user space. The user context is given by p.
815 1.1 cgd */
816 1.1 cgd ssize_t
817 1.1 cgd kvm_uread(kd, p, uva, buf, len)
818 1.1 cgd kvm_t *kd;
819 1.21 perry const struct proc *p;
820 1.21 perry u_long uva;
821 1.21 perry char *buf;
822 1.21 perry size_t len;
823 1.1 cgd {
824 1.21 perry char *cp;
825 1.1 cgd
826 1.1 cgd cp = buf;
827 1.1 cgd while (len > 0) {
828 1.21 perry int cc;
829 1.21 perry char *dp;
830 1.15 cgd u_long cnt;
831 1.8 mycroft
832 1.8 mycroft dp = _kvm_uread(kd, p, uva, &cnt);
833 1.8 mycroft if (dp == 0) {
834 1.8 mycroft _kvm_err(kd, 0, "invalid address (%x)", uva);
835 1.8 mycroft return (0);
836 1.8 mycroft }
837 1.8 mycroft cc = MIN(cnt, len);
838 1.8 mycroft bcopy(dp, cp, cc);
839 1.8 mycroft
840 1.1 cgd cp += cc;
841 1.1 cgd uva += cc;
842 1.1 cgd len -= cc;
843 1.1 cgd }
844 1.1 cgd return (ssize_t)(cp - buf);
845 1.1 cgd }
846