kvm_proc.c revision 1.23 1 1.23 chs /* $NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $ */
2 1.16 thorpej
3 1.1 cgd /*-
4 1.11 mycroft * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 1.1 cgd * Copyright (c) 1989, 1992, 1993
6 1.1 cgd * The Regents of the University of California. All rights reserved.
7 1.1 cgd *
8 1.1 cgd * This code is derived from software developed by the Computer Systems
9 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 1.1 cgd * BG 91-66 and contributed to Berkeley.
11 1.1 cgd *
12 1.1 cgd * Redistribution and use in source and binary forms, with or without
13 1.1 cgd * modification, are permitted provided that the following conditions
14 1.1 cgd * are met:
15 1.1 cgd * 1. Redistributions of source code must retain the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer.
17 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cgd * notice, this list of conditions and the following disclaimer in the
19 1.1 cgd * documentation and/or other materials provided with the distribution.
20 1.1 cgd * 3. All advertising materials mentioning features or use of this software
21 1.1 cgd * must display the following acknowledgement:
22 1.1 cgd * This product includes software developed by the University of
23 1.1 cgd * California, Berkeley and its contributors.
24 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.1 cgd * may be used to endorse or promote products derived from this software
26 1.1 cgd * without specific prior written permission.
27 1.1 cgd *
28 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 cgd * SUCH DAMAGE.
39 1.1 cgd */
40 1.1 cgd
41 1.19 mikel #include <sys/cdefs.h>
42 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
43 1.16 thorpej #if 0
44 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
45 1.16 thorpej #else
46 1.23 chs __RCSID("$NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $");
47 1.16 thorpej #endif
48 1.1 cgd #endif /* LIBC_SCCS and not lint */
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
52 1.1 cgd * users of this code, so we've factored it out into a separate module.
53 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
54 1.1 cgd * most other applications are interested only in open/close/read/nlist).
55 1.1 cgd */
56 1.1 cgd
57 1.1 cgd #include <sys/param.h>
58 1.1 cgd #include <sys/user.h>
59 1.1 cgd #include <sys/proc.h>
60 1.1 cgd #include <sys/exec.h>
61 1.1 cgd #include <sys/stat.h>
62 1.1 cgd #include <sys/ioctl.h>
63 1.1 cgd #include <sys/tty.h>
64 1.7 cgd #include <stdlib.h>
65 1.10 mycroft #include <string.h>
66 1.1 cgd #include <unistd.h>
67 1.1 cgd #include <nlist.h>
68 1.1 cgd #include <kvm.h>
69 1.1 cgd
70 1.1 cgd #include <vm/vm.h>
71 1.1 cgd #include <vm/vm_param.h>
72 1.1 cgd #include <vm/swap_pager.h>
73 1.1 cgd
74 1.23 chs #if defined(UVM)
75 1.23 chs #include <uvm/uvm_extern.h>
76 1.23 chs #endif
77 1.23 chs
78 1.1 cgd #include <sys/sysctl.h>
79 1.1 cgd
80 1.1 cgd #include <limits.h>
81 1.1 cgd #include <db.h>
82 1.1 cgd #include <paths.h>
83 1.1 cgd
84 1.1 cgd #include "kvm_private.h"
85 1.1 cgd
86 1.2 mycroft #define KREAD(kd, addr, obj) \
87 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88 1.2 mycroft
89 1.20 drochner char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
90 1.23 chs #if !defined(UVM)
91 1.20 drochner int _kvm_coreinit __P((kvm_t *));
92 1.15 cgd int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
93 1.15 cgd int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
94 1.23 chs #endif
95 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
96 1.15 cgd size_t));
97 1.15 cgd
98 1.15 cgd static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
99 1.15 cgd int));
100 1.15 cgd static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
101 1.15 cgd static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
102 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
103 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
104 1.15 cgd struct kinfo_proc *, int));
105 1.15 cgd static int proc_verify __P((kvm_t *, u_long, const struct proc *));
106 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
107 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
108 1.2 mycroft
109 1.8 mycroft char *
110 1.8 mycroft _kvm_uread(kd, p, va, cnt)
111 1.1 cgd kvm_t *kd;
112 1.1 cgd const struct proc *p;
113 1.1 cgd u_long va;
114 1.1 cgd u_long *cnt;
115 1.1 cgd {
116 1.21 perry u_long addr, head;
117 1.21 perry u_long offset;
118 1.1 cgd struct vm_map_entry vme;
119 1.23 chs #if defined(UVM)
120 1.23 chs struct vm_amap amap;
121 1.23 chs struct vm_anon *anonp, anon;
122 1.23 chs struct vm_page pg;
123 1.23 chs int slot;
124 1.23 chs #else
125 1.1 cgd struct vm_object vmo;
126 1.8 mycroft int rv;
127 1.23 chs #endif
128 1.1 cgd
129 1.6 mycroft if (kd->swapspc == 0) {
130 1.6 mycroft kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
131 1.6 mycroft if (kd->swapspc == 0)
132 1.5 deraadt return (0);
133 1.5 deraadt }
134 1.8 mycroft
135 1.1 cgd /*
136 1.1 cgd * Look through the address map for the memory object
137 1.1 cgd * that corresponds to the given virtual address.
138 1.1 cgd * The header just has the entire valid range.
139 1.1 cgd */
140 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
141 1.1 cgd addr = head;
142 1.1 cgd while (1) {
143 1.2 mycroft if (KREAD(kd, addr, &vme))
144 1.1 cgd return (0);
145 1.1 cgd
146 1.23 chs #if defined(UVM)
147 1.23 chs if (va >= vme.start && va < vme.end &&
148 1.23 chs vme.aref.ar_amap != NULL)
149 1.23 chs break;
150 1.23 chs
151 1.23 chs #else
152 1.2 mycroft if (va >= vme.start && va < vme.end &&
153 1.1 cgd vme.object.vm_object != 0)
154 1.1 cgd break;
155 1.23 chs #endif
156 1.1 cgd
157 1.1 cgd addr = (u_long)vme.next;
158 1.2 mycroft if (addr == head)
159 1.1 cgd return (0);
160 1.23 chs
161 1.1 cgd }
162 1.23 chs #if defined(UVM)
163 1.2 mycroft
164 1.1 cgd /*
165 1.23 chs * we found the map entry, now to find the object...
166 1.23 chs */
167 1.23 chs if (vme.aref.ar_amap == NULL)
168 1.23 chs return NULL;
169 1.23 chs
170 1.23 chs addr = (u_long)vme.aref.ar_amap;
171 1.23 chs if (KREAD(kd, addr, &amap))
172 1.23 chs return NULL;
173 1.23 chs
174 1.23 chs offset = va - vme.start;
175 1.23 chs slot = offset / kd->nbpg + vme.aref.ar_slotoff;
176 1.23 chs /* sanity-check slot number */
177 1.23 chs if (slot > amap.am_nslot)
178 1.23 chs return NULL;
179 1.23 chs
180 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
181 1.23 chs if (KREAD(kd, addr, &anonp))
182 1.23 chs return NULL;
183 1.23 chs
184 1.23 chs addr = (u_long)anonp;
185 1.23 chs if (KREAD(kd, addr, &anon))
186 1.23 chs return NULL;
187 1.23 chs
188 1.23 chs addr = (u_long)anon.u.an_page;
189 1.23 chs if (addr) {
190 1.23 chs if (KREAD(kd, addr, &pg))
191 1.23 chs return NULL;
192 1.23 chs
193 1.23 chs if (lseek(kd->pmfd, (off_t)pg.phys_addr, SEEK_SET) == -1)
194 1.23 chs return NULL;
195 1.23 chs
196 1.23 chs if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
197 1.23 chs return NULL;
198 1.23 chs }
199 1.23 chs else {
200 1.23 chs if (lseek(kd->swfd, anon.an_swslot * kd->nbpg, SEEK_SET) == -1)
201 1.23 chs return NULL;
202 1.23 chs if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
203 1.23 chs return NULL;
204 1.23 chs }
205 1.23 chs #else
206 1.23 chs /*
207 1.1 cgd * We found the right object -- follow shadow links.
208 1.1 cgd */
209 1.1 cgd offset = va - vme.start + vme.offset;
210 1.1 cgd addr = (u_long)vme.object.vm_object;
211 1.8 mycroft
212 1.1 cgd while (1) {
213 1.8 mycroft /* Try reading the page from core first. */
214 1.8 mycroft if ((rv = _kvm_readfromcore(kd, addr, offset)))
215 1.8 mycroft break;
216 1.8 mycroft
217 1.2 mycroft if (KREAD(kd, addr, &vmo))
218 1.1 cgd return (0);
219 1.2 mycroft
220 1.2 mycroft /* If there is a pager here, see if it has the page. */
221 1.2 mycroft if (vmo.pager != 0 &&
222 1.8 mycroft (rv = _kvm_readfrompager(kd, &vmo, offset)))
223 1.2 mycroft break;
224 1.2 mycroft
225 1.2 mycroft /* Move down the shadow chain. */
226 1.1 cgd addr = (u_long)vmo.shadow;
227 1.1 cgd if (addr == 0)
228 1.2 mycroft return (0);
229 1.1 cgd offset += vmo.shadow_offset;
230 1.1 cgd }
231 1.2 mycroft
232 1.8 mycroft if (rv == -1)
233 1.8 mycroft return (0);
234 1.23 chs #endif
235 1.8 mycroft
236 1.2 mycroft /* Found the page. */
237 1.6 mycroft offset %= kd->nbpg;
238 1.6 mycroft *cnt = kd->nbpg - offset;
239 1.6 mycroft return (&kd->swapspc[offset]);
240 1.2 mycroft }
241 1.2 mycroft
242 1.23 chs #if !defined(UVM)
243 1.23 chs
244 1.8 mycroft #define vm_page_hash(kd, object, offset) \
245 1.8 mycroft (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
246 1.8 mycroft
247 1.8 mycroft int
248 1.8 mycroft _kvm_coreinit(kd)
249 1.8 mycroft kvm_t *kd;
250 1.8 mycroft {
251 1.8 mycroft struct nlist nlist[3];
252 1.8 mycroft
253 1.8 mycroft nlist[0].n_name = "_vm_page_buckets";
254 1.8 mycroft nlist[1].n_name = "_vm_page_hash_mask";
255 1.8 mycroft nlist[2].n_name = 0;
256 1.8 mycroft if (kvm_nlist(kd, nlist) != 0)
257 1.8 mycroft return (-1);
258 1.8 mycroft
259 1.8 mycroft if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
260 1.8 mycroft KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
261 1.8 mycroft return (-1);
262 1.8 mycroft
263 1.8 mycroft return (0);
264 1.8 mycroft }
265 1.8 mycroft
266 1.8 mycroft int
267 1.8 mycroft _kvm_readfromcore(kd, object, offset)
268 1.8 mycroft kvm_t *kd;
269 1.8 mycroft u_long object, offset;
270 1.8 mycroft {
271 1.8 mycroft u_long addr;
272 1.8 mycroft struct pglist bucket;
273 1.8 mycroft struct vm_page mem;
274 1.8 mycroft off_t seekpoint;
275 1.8 mycroft
276 1.8 mycroft if (kd->vm_page_buckets == 0 &&
277 1.8 mycroft _kvm_coreinit(kd))
278 1.8 mycroft return (-1);
279 1.8 mycroft
280 1.8 mycroft addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
281 1.8 mycroft if (KREAD(kd, addr, &bucket))
282 1.8 mycroft return (-1);
283 1.8 mycroft
284 1.8 mycroft addr = (u_long)bucket.tqh_first;
285 1.8 mycroft offset &= ~(kd->nbpg -1);
286 1.8 mycroft while (1) {
287 1.8 mycroft if (addr == 0)
288 1.8 mycroft return (0);
289 1.8 mycroft
290 1.8 mycroft if (KREAD(kd, addr, &mem))
291 1.8 mycroft return (-1);
292 1.8 mycroft
293 1.8 mycroft if ((u_long)mem.object == object &&
294 1.8 mycroft (u_long)mem.offset == offset)
295 1.8 mycroft break;
296 1.8 mycroft
297 1.8 mycroft addr = (u_long)mem.hashq.tqe_next;
298 1.8 mycroft }
299 1.8 mycroft
300 1.8 mycroft seekpoint = mem.phys_addr;
301 1.8 mycroft
302 1.8 mycroft if (lseek(kd->pmfd, seekpoint, 0) == -1)
303 1.8 mycroft return (-1);
304 1.8 mycroft if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
305 1.8 mycroft return (-1);
306 1.8 mycroft
307 1.8 mycroft return (1);
308 1.8 mycroft }
309 1.8 mycroft
310 1.2 mycroft int
311 1.6 mycroft _kvm_readfrompager(kd, vmop, offset)
312 1.2 mycroft kvm_t *kd;
313 1.2 mycroft struct vm_object *vmop;
314 1.2 mycroft u_long offset;
315 1.8 mycroft {
316 1.2 mycroft u_long addr;
317 1.2 mycroft struct pager_struct pager;
318 1.2 mycroft struct swpager swap;
319 1.2 mycroft int ix;
320 1.2 mycroft struct swblock swb;
321 1.8 mycroft off_t seekpoint;
322 1.2 mycroft
323 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
324 1.2 mycroft addr = (u_long)vmop->pager;
325 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
326 1.8 mycroft return (-1);
327 1.1 cgd
328 1.2 mycroft /* Read in the swap_pager private data. */
329 1.2 mycroft addr = (u_long)pager.pg_data;
330 1.2 mycroft if (KREAD(kd, addr, &swap))
331 1.8 mycroft return (-1);
332 1.1 cgd
333 1.1 cgd /*
334 1.2 mycroft * Calculate the paging offset, and make sure it's within the
335 1.2 mycroft * bounds of the pager.
336 1.1 cgd */
337 1.2 mycroft offset += vmop->paging_offset;
338 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
339 1.2 mycroft #if 0
340 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
341 1.8 mycroft return (-1);
342 1.2 mycroft #else
343 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
344 1.2 mycroft int i;
345 1.2 mycroft printf("BUG BUG BUG BUG:\n");
346 1.17 mikel printf("object %p offset %lx pgoffset %lx ",
347 1.17 mikel vmop, offset - vmop->paging_offset,
348 1.17 mikel (u_long)vmop->paging_offset);
349 1.17 mikel printf("pager %p swpager %p\n",
350 1.2 mycroft vmop->pager, pager.pg_data);
351 1.17 mikel printf("osize %lx bsize %x blocks %p nblocks %x\n",
352 1.17 mikel (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
353 1.2 mycroft swap.sw_nblocks);
354 1.20 drochner for (i = 0; i < swap.sw_nblocks; i++) {
355 1.20 drochner addr = (u_long)&swap.sw_blocks[i];
356 1.2 mycroft if (KREAD(kd, addr, &swb))
357 1.2 mycroft return (0);
358 1.20 drochner printf("sw_blocks[%d]: block %x mask %x\n", i,
359 1.2 mycroft swb.swb_block, swb.swb_mask);
360 1.2 mycroft }
361 1.8 mycroft return (-1);
362 1.2 mycroft }
363 1.2 mycroft #endif
364 1.1 cgd
365 1.2 mycroft /* Read in the swap records. */
366 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
367 1.2 mycroft if (KREAD(kd, addr, &swb))
368 1.8 mycroft return (-1);
369 1.1 cgd
370 1.2 mycroft /* Calculate offset within pager. */
371 1.2 mycroft offset %= dbtob(swap.sw_bsize);
372 1.1 cgd
373 1.2 mycroft /* Check that the page is actually present. */
374 1.6 mycroft if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
375 1.1 cgd return (0);
376 1.1 cgd
377 1.8 mycroft if (!ISALIVE(kd))
378 1.8 mycroft return (-1);
379 1.8 mycroft
380 1.2 mycroft /* Calculate the physical address and read the page. */
381 1.6 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
382 1.8 mycroft
383 1.2 mycroft if (lseek(kd->swfd, seekpoint, 0) == -1)
384 1.8 mycroft return (-1);
385 1.6 mycroft if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
386 1.8 mycroft return (-1);
387 1.1 cgd
388 1.2 mycroft return (1);
389 1.1 cgd }
390 1.23 chs #endif /* !defined(UVM) */
391 1.1 cgd
392 1.1 cgd /*
393 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
394 1.1 cgd * at most maxcnt procs.
395 1.1 cgd */
396 1.1 cgd static int
397 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
398 1.1 cgd kvm_t *kd;
399 1.1 cgd int what, arg;
400 1.1 cgd struct proc *p;
401 1.1 cgd struct kinfo_proc *bp;
402 1.1 cgd int maxcnt;
403 1.1 cgd {
404 1.21 perry int cnt = 0;
405 1.1 cgd struct eproc eproc;
406 1.1 cgd struct pgrp pgrp;
407 1.1 cgd struct session sess;
408 1.1 cgd struct tty tty;
409 1.1 cgd struct proc proc;
410 1.1 cgd
411 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
412 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
413 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
414 1.1 cgd return (-1);
415 1.1 cgd }
416 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
417 1.20 drochner (void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
418 1.1 cgd &eproc.e_ucred);
419 1.1 cgd
420 1.1 cgd switch(what) {
421 1.1 cgd
422 1.1 cgd case KERN_PROC_PID:
423 1.1 cgd if (proc.p_pid != (pid_t)arg)
424 1.1 cgd continue;
425 1.1 cgd break;
426 1.1 cgd
427 1.1 cgd case KERN_PROC_UID:
428 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
429 1.1 cgd continue;
430 1.1 cgd break;
431 1.1 cgd
432 1.1 cgd case KERN_PROC_RUID:
433 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
434 1.1 cgd continue;
435 1.1 cgd break;
436 1.1 cgd }
437 1.1 cgd /*
438 1.1 cgd * We're going to add another proc to the set. If this
439 1.1 cgd * will overflow the buffer, assume the reason is because
440 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
441 1.1 cgd */
442 1.1 cgd if (cnt >= maxcnt) {
443 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
444 1.1 cgd return (-1);
445 1.1 cgd }
446 1.1 cgd /*
447 1.1 cgd * gather eproc
448 1.1 cgd */
449 1.1 cgd eproc.e_paddr = p;
450 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
451 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
452 1.1 cgd proc.p_pgrp);
453 1.1 cgd return (-1);
454 1.1 cgd }
455 1.1 cgd eproc.e_sess = pgrp.pg_session;
456 1.1 cgd eproc.e_pgid = pgrp.pg_id;
457 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
458 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
459 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
460 1.1 cgd pgrp.pg_session);
461 1.1 cgd return (-1);
462 1.1 cgd }
463 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
464 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
465 1.1 cgd _kvm_err(kd, kd->program,
466 1.1 cgd "can't read tty at %x", sess.s_ttyp);
467 1.1 cgd return (-1);
468 1.1 cgd }
469 1.1 cgd eproc.e_tdev = tty.t_dev;
470 1.1 cgd eproc.e_tsess = tty.t_session;
471 1.1 cgd if (tty.t_pgrp != NULL) {
472 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
473 1.1 cgd _kvm_err(kd, kd->program,
474 1.1 cgd "can't read tpgrp at &x",
475 1.1 cgd tty.t_pgrp);
476 1.1 cgd return (-1);
477 1.1 cgd }
478 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
479 1.1 cgd } else
480 1.1 cgd eproc.e_tpgid = -1;
481 1.1 cgd } else
482 1.1 cgd eproc.e_tdev = NODEV;
483 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
484 1.1 cgd if (sess.s_leader == p)
485 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
486 1.1 cgd if (proc.p_wmesg)
487 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
488 1.1 cgd eproc.e_wmesg, WMESGLEN);
489 1.1 cgd
490 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
491 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
492 1.9 pk
493 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
494 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
495 1.1 cgd
496 1.1 cgd switch (what) {
497 1.1 cgd
498 1.1 cgd case KERN_PROC_PGRP:
499 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
500 1.1 cgd continue;
501 1.1 cgd break;
502 1.1 cgd
503 1.1 cgd case KERN_PROC_TTY:
504 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
505 1.1 cgd eproc.e_tdev != (dev_t)arg)
506 1.1 cgd continue;
507 1.1 cgd break;
508 1.1 cgd }
509 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
510 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
511 1.1 cgd ++bp;
512 1.1 cgd ++cnt;
513 1.1 cgd }
514 1.1 cgd return (cnt);
515 1.1 cgd }
516 1.1 cgd
517 1.1 cgd /*
518 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
519 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
520 1.1 cgd */
521 1.1 cgd static int
522 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
523 1.1 cgd kvm_t *kd;
524 1.1 cgd int what, arg;
525 1.1 cgd u_long a_allproc;
526 1.1 cgd u_long a_zombproc;
527 1.1 cgd int maxcnt;
528 1.1 cgd {
529 1.21 perry struct kinfo_proc *bp = kd->procbase;
530 1.21 perry int acnt, zcnt;
531 1.1 cgd struct proc *p;
532 1.1 cgd
533 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
534 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
535 1.1 cgd return (-1);
536 1.1 cgd }
537 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
538 1.1 cgd if (acnt < 0)
539 1.1 cgd return (acnt);
540 1.1 cgd
541 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
542 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
543 1.1 cgd return (-1);
544 1.1 cgd }
545 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
546 1.1 cgd if (zcnt < 0)
547 1.1 cgd zcnt = 0;
548 1.1 cgd
549 1.1 cgd return (acnt + zcnt);
550 1.1 cgd }
551 1.1 cgd
552 1.1 cgd struct kinfo_proc *
553 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
554 1.1 cgd kvm_t *kd;
555 1.1 cgd int op, arg;
556 1.1 cgd int *cnt;
557 1.1 cgd {
558 1.7 cgd size_t size;
559 1.7 cgd int mib[4], st, nprocs;
560 1.1 cgd
561 1.1 cgd if (kd->procbase != 0) {
562 1.1 cgd free((void *)kd->procbase);
563 1.1 cgd /*
564 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
565 1.1 cgd * kvm_close() will free it again.
566 1.1 cgd */
567 1.1 cgd kd->procbase = 0;
568 1.1 cgd }
569 1.1 cgd if (ISALIVE(kd)) {
570 1.1 cgd size = 0;
571 1.1 cgd mib[0] = CTL_KERN;
572 1.1 cgd mib[1] = KERN_PROC;
573 1.1 cgd mib[2] = op;
574 1.1 cgd mib[3] = arg;
575 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
576 1.1 cgd if (st == -1) {
577 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
578 1.1 cgd return (0);
579 1.1 cgd }
580 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
581 1.1 cgd if (kd->procbase == 0)
582 1.1 cgd return (0);
583 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
584 1.1 cgd if (st == -1) {
585 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
586 1.1 cgd return (0);
587 1.1 cgd }
588 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
589 1.1 cgd _kvm_err(kd, kd->program,
590 1.1 cgd "proc size mismatch (%d total, %d chunks)",
591 1.1 cgd size, sizeof(struct kinfo_proc));
592 1.1 cgd return (0);
593 1.1 cgd }
594 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
595 1.1 cgd } else {
596 1.1 cgd struct nlist nl[4], *p;
597 1.1 cgd
598 1.1 cgd nl[0].n_name = "_nprocs";
599 1.1 cgd nl[1].n_name = "_allproc";
600 1.1 cgd nl[2].n_name = "_zombproc";
601 1.1 cgd nl[3].n_name = 0;
602 1.1 cgd
603 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
604 1.1 cgd for (p = nl; p->n_type != 0; ++p)
605 1.1 cgd ;
606 1.1 cgd _kvm_err(kd, kd->program,
607 1.1 cgd "%s: no such symbol", p->n_name);
608 1.1 cgd return (0);
609 1.1 cgd }
610 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
611 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
612 1.1 cgd return (0);
613 1.1 cgd }
614 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
615 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
616 1.1 cgd if (kd->procbase == 0)
617 1.1 cgd return (0);
618 1.1 cgd
619 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
620 1.1 cgd nl[2].n_value, nprocs);
621 1.1 cgd #ifdef notdef
622 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
623 1.1 cgd (void)realloc(kd->procbase, size);
624 1.1 cgd #endif
625 1.1 cgd }
626 1.1 cgd *cnt = nprocs;
627 1.1 cgd return (kd->procbase);
628 1.1 cgd }
629 1.1 cgd
630 1.1 cgd void
631 1.1 cgd _kvm_freeprocs(kd)
632 1.1 cgd kvm_t *kd;
633 1.1 cgd {
634 1.1 cgd if (kd->procbase) {
635 1.1 cgd free(kd->procbase);
636 1.1 cgd kd->procbase = 0;
637 1.1 cgd }
638 1.1 cgd }
639 1.1 cgd
640 1.1 cgd void *
641 1.1 cgd _kvm_realloc(kd, p, n)
642 1.1 cgd kvm_t *kd;
643 1.1 cgd void *p;
644 1.1 cgd size_t n;
645 1.1 cgd {
646 1.1 cgd void *np = (void *)realloc(p, n);
647 1.1 cgd
648 1.1 cgd if (np == 0)
649 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
650 1.1 cgd return (np);
651 1.1 cgd }
652 1.1 cgd
653 1.1 cgd #ifndef MAX
654 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
655 1.1 cgd #endif
656 1.1 cgd
657 1.1 cgd /*
658 1.1 cgd * Read in an argument vector from the user address space of process p.
659 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
660 1.1 cgd * strings. This is used to read in both the command arguments and
661 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
662 1.1 cgd */
663 1.1 cgd static char **
664 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
665 1.1 cgd kvm_t *kd;
666 1.15 cgd const struct proc *p;
667 1.21 perry u_long addr;
668 1.21 perry int narg;
669 1.21 perry int maxcnt;
670 1.21 perry {
671 1.21 perry char *np, *cp, *ep, *ap;
672 1.21 perry u_long oaddr = -1;
673 1.21 perry int len, cc;
674 1.21 perry char **argv;
675 1.1 cgd
676 1.1 cgd /*
677 1.1 cgd * Check that there aren't an unreasonable number of agruments,
678 1.1 cgd * and that the address is in user space.
679 1.1 cgd */
680 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
681 1.1 cgd return (0);
682 1.1 cgd
683 1.1 cgd if (kd->argv == 0) {
684 1.1 cgd /*
685 1.1 cgd * Try to avoid reallocs.
686 1.1 cgd */
687 1.1 cgd kd->argc = MAX(narg + 1, 32);
688 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
689 1.1 cgd sizeof(*kd->argv));
690 1.1 cgd if (kd->argv == 0)
691 1.1 cgd return (0);
692 1.1 cgd } else if (narg + 1 > kd->argc) {
693 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
694 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
695 1.1 cgd sizeof(*kd->argv));
696 1.1 cgd if (kd->argv == 0)
697 1.1 cgd return (0);
698 1.1 cgd }
699 1.1 cgd if (kd->argspc == 0) {
700 1.6 mycroft kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
701 1.1 cgd if (kd->argspc == 0)
702 1.1 cgd return (0);
703 1.6 mycroft kd->arglen = kd->nbpg;
704 1.1 cgd }
705 1.10 mycroft if (kd->argbuf == 0) {
706 1.10 mycroft kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
707 1.10 mycroft if (kd->argbuf == 0)
708 1.10 mycroft return (0);
709 1.10 mycroft }
710 1.10 mycroft cc = sizeof(char *) * narg;
711 1.10 mycroft if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
712 1.10 mycroft return (0);
713 1.10 mycroft ap = np = kd->argspc;
714 1.1 cgd argv = kd->argv;
715 1.1 cgd len = 0;
716 1.1 cgd /*
717 1.1 cgd * Loop over pages, filling in the argument vector.
718 1.1 cgd */
719 1.10 mycroft while (argv < kd->argv + narg && *argv != 0) {
720 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
721 1.10 mycroft if (addr != oaddr) {
722 1.10 mycroft if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
723 1.10 mycroft kd->nbpg)
724 1.10 mycroft return (0);
725 1.10 mycroft oaddr = addr;
726 1.10 mycroft }
727 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
728 1.10 mycroft cp = kd->argbuf + addr;
729 1.10 mycroft cc = kd->nbpg - addr;
730 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
731 1.1 cgd cc = maxcnt - len;;
732 1.10 mycroft ep = memchr(cp, '\0', cc);
733 1.10 mycroft if (ep != 0)
734 1.10 mycroft cc = ep - cp + 1;
735 1.1 cgd if (len + cc > kd->arglen) {
736 1.21 perry int off;
737 1.21 perry char **pp;
738 1.21 perry char *op = kd->argspc;
739 1.1 cgd
740 1.1 cgd kd->arglen *= 2;
741 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
742 1.1 cgd kd->arglen);
743 1.1 cgd if (kd->argspc == 0)
744 1.1 cgd return (0);
745 1.1 cgd /*
746 1.1 cgd * Adjust argv pointers in case realloc moved
747 1.1 cgd * the string space.
748 1.1 cgd */
749 1.1 cgd off = kd->argspc - op;
750 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
751 1.1 cgd *pp += off;
752 1.12 mycroft ap += off;
753 1.12 mycroft np += off;
754 1.1 cgd }
755 1.10 mycroft memcpy(np, cp, cc);
756 1.10 mycroft np += cc;
757 1.1 cgd len += cc;
758 1.10 mycroft if (ep != 0) {
759 1.10 mycroft *argv++ = ap;
760 1.10 mycroft ap = np;
761 1.10 mycroft } else
762 1.10 mycroft *argv += cc;
763 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
764 1.1 cgd /*
765 1.1 cgd * We're stopping prematurely. Terminate the
766 1.10 mycroft * current string.
767 1.1 cgd */
768 1.10 mycroft if (ep == 0) {
769 1.10 mycroft *np = '\0';
770 1.14 mycroft *argv++ = ap;
771 1.10 mycroft }
772 1.10 mycroft break;
773 1.1 cgd }
774 1.1 cgd }
775 1.10 mycroft /* Make sure argv is terminated. */
776 1.10 mycroft *argv = 0;
777 1.10 mycroft return (kd->argv);
778 1.1 cgd }
779 1.1 cgd
780 1.1 cgd static void
781 1.1 cgd ps_str_a(p, addr, n)
782 1.1 cgd struct ps_strings *p;
783 1.1 cgd u_long *addr;
784 1.1 cgd int *n;
785 1.1 cgd {
786 1.1 cgd *addr = (u_long)p->ps_argvstr;
787 1.1 cgd *n = p->ps_nargvstr;
788 1.1 cgd }
789 1.1 cgd
790 1.1 cgd static void
791 1.1 cgd ps_str_e(p, addr, n)
792 1.1 cgd struct ps_strings *p;
793 1.1 cgd u_long *addr;
794 1.1 cgd int *n;
795 1.1 cgd {
796 1.1 cgd *addr = (u_long)p->ps_envstr;
797 1.1 cgd *n = p->ps_nenvstr;
798 1.1 cgd }
799 1.1 cgd
800 1.1 cgd /*
801 1.1 cgd * Determine if the proc indicated by p is still active.
802 1.1 cgd * This test is not 100% foolproof in theory, but chances of
803 1.1 cgd * being wrong are very low.
804 1.1 cgd */
805 1.1 cgd static int
806 1.1 cgd proc_verify(kd, kernp, p)
807 1.1 cgd kvm_t *kd;
808 1.1 cgd u_long kernp;
809 1.1 cgd const struct proc *p;
810 1.1 cgd {
811 1.1 cgd struct proc kernproc;
812 1.1 cgd
813 1.1 cgd /*
814 1.1 cgd * Just read in the whole proc. It's not that big relative
815 1.1 cgd * to the cost of the read system call.
816 1.1 cgd */
817 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
818 1.1 cgd sizeof(kernproc))
819 1.1 cgd return (0);
820 1.1 cgd return (p->p_pid == kernproc.p_pid &&
821 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
822 1.1 cgd }
823 1.1 cgd
824 1.1 cgd static char **
825 1.1 cgd kvm_doargv(kd, kp, nchr, info)
826 1.1 cgd kvm_t *kd;
827 1.1 cgd const struct kinfo_proc *kp;
828 1.1 cgd int nchr;
829 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
830 1.1 cgd {
831 1.21 perry const struct proc *p = &kp->kp_proc;
832 1.21 perry char **ap;
833 1.1 cgd u_long addr;
834 1.1 cgd int cnt;
835 1.1 cgd struct ps_strings arginfo;
836 1.1 cgd
837 1.1 cgd /*
838 1.1 cgd * Pointers are stored at the top of the user stack.
839 1.1 cgd */
840 1.18 gwr if (p->p_stat == SZOMB)
841 1.18 gwr return (0);
842 1.18 gwr cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
843 1.18 gwr (char *)&arginfo, sizeof(arginfo));
844 1.18 gwr if (cnt != sizeof(arginfo))
845 1.1 cgd return (0);
846 1.1 cgd
847 1.1 cgd (*info)(&arginfo, &addr, &cnt);
848 1.3 mycroft if (cnt == 0)
849 1.3 mycroft return (0);
850 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
851 1.1 cgd /*
852 1.1 cgd * For live kernels, make sure this process didn't go away.
853 1.1 cgd */
854 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
855 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
856 1.1 cgd ap = 0;
857 1.1 cgd return (ap);
858 1.1 cgd }
859 1.1 cgd
860 1.1 cgd /*
861 1.1 cgd * Get the command args. This code is now machine independent.
862 1.1 cgd */
863 1.1 cgd char **
864 1.1 cgd kvm_getargv(kd, kp, nchr)
865 1.1 cgd kvm_t *kd;
866 1.1 cgd const struct kinfo_proc *kp;
867 1.1 cgd int nchr;
868 1.1 cgd {
869 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
870 1.1 cgd }
871 1.1 cgd
872 1.1 cgd char **
873 1.1 cgd kvm_getenvv(kd, kp, nchr)
874 1.1 cgd kvm_t *kd;
875 1.1 cgd const struct kinfo_proc *kp;
876 1.1 cgd int nchr;
877 1.1 cgd {
878 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
879 1.1 cgd }
880 1.1 cgd
881 1.1 cgd /*
882 1.1 cgd * Read from user space. The user context is given by p.
883 1.1 cgd */
884 1.1 cgd ssize_t
885 1.1 cgd kvm_uread(kd, p, uva, buf, len)
886 1.1 cgd kvm_t *kd;
887 1.21 perry const struct proc *p;
888 1.21 perry u_long uva;
889 1.21 perry char *buf;
890 1.21 perry size_t len;
891 1.1 cgd {
892 1.21 perry char *cp;
893 1.1 cgd
894 1.1 cgd cp = buf;
895 1.1 cgd while (len > 0) {
896 1.21 perry int cc;
897 1.21 perry char *dp;
898 1.15 cgd u_long cnt;
899 1.8 mycroft
900 1.8 mycroft dp = _kvm_uread(kd, p, uva, &cnt);
901 1.8 mycroft if (dp == 0) {
902 1.8 mycroft _kvm_err(kd, 0, "invalid address (%x)", uva);
903 1.8 mycroft return (0);
904 1.8 mycroft }
905 1.8 mycroft cc = MIN(cnt, len);
906 1.8 mycroft bcopy(dp, cp, cc);
907 1.8 mycroft
908 1.1 cgd cp += cc;
909 1.1 cgd uva += cc;
910 1.1 cgd len -= cc;
911 1.1 cgd }
912 1.1 cgd return (ssize_t)(cp - buf);
913 1.1 cgd }
914