Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.23
      1  1.23       chs /*	$NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $	*/
      2  1.16   thorpej 
      3   1.1       cgd /*-
      4  1.11   mycroft  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
      5   1.1       cgd  * Copyright (c) 1989, 1992, 1993
      6   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
      7   1.1       cgd  *
      8   1.1       cgd  * This code is derived from software developed by the Computer Systems
      9   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     10   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     11   1.1       cgd  *
     12   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     13   1.1       cgd  * modification, are permitted provided that the following conditions
     14   1.1       cgd  * are met:
     15   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     17   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     20   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     21   1.1       cgd  *    must display the following acknowledgement:
     22   1.1       cgd  *	This product includes software developed by the University of
     23   1.1       cgd  *	California, Berkeley and its contributors.
     24   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     25   1.1       cgd  *    may be used to endorse or promote products derived from this software
     26   1.1       cgd  *    without specific prior written permission.
     27   1.1       cgd  *
     28   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1       cgd  * SUCH DAMAGE.
     39   1.1       cgd  */
     40   1.1       cgd 
     41  1.19     mikel #include <sys/cdefs.h>
     42   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     43  1.16   thorpej #if 0
     44   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     45  1.16   thorpej #else
     46  1.23       chs __RCSID("$NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $");
     47  1.16   thorpej #endif
     48   1.1       cgd #endif /* LIBC_SCCS and not lint */
     49   1.1       cgd 
     50   1.1       cgd /*
     51   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     52   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     53   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     54   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     55   1.1       cgd  */
     56   1.1       cgd 
     57   1.1       cgd #include <sys/param.h>
     58   1.1       cgd #include <sys/user.h>
     59   1.1       cgd #include <sys/proc.h>
     60   1.1       cgd #include <sys/exec.h>
     61   1.1       cgd #include <sys/stat.h>
     62   1.1       cgd #include <sys/ioctl.h>
     63   1.1       cgd #include <sys/tty.h>
     64   1.7       cgd #include <stdlib.h>
     65  1.10   mycroft #include <string.h>
     66   1.1       cgd #include <unistd.h>
     67   1.1       cgd #include <nlist.h>
     68   1.1       cgd #include <kvm.h>
     69   1.1       cgd 
     70   1.1       cgd #include <vm/vm.h>
     71   1.1       cgd #include <vm/vm_param.h>
     72   1.1       cgd #include <vm/swap_pager.h>
     73   1.1       cgd 
     74  1.23       chs #if defined(UVM)
     75  1.23       chs #include <uvm/uvm_extern.h>
     76  1.23       chs #endif
     77  1.23       chs 
     78   1.1       cgd #include <sys/sysctl.h>
     79   1.1       cgd 
     80   1.1       cgd #include <limits.h>
     81   1.1       cgd #include <db.h>
     82   1.1       cgd #include <paths.h>
     83   1.1       cgd 
     84   1.1       cgd #include "kvm_private.h"
     85   1.1       cgd 
     86   1.2   mycroft #define KREAD(kd, addr, obj) \
     87   1.2   mycroft 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     88   1.2   mycroft 
     89  1.20  drochner char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
     90  1.23       chs #if !defined(UVM)
     91  1.20  drochner int		_kvm_coreinit __P((kvm_t *));
     92  1.15       cgd int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
     93  1.15       cgd int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     94  1.23       chs #endif
     95  1.15       cgd ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
     96  1.15       cgd 		    size_t));
     97  1.15       cgd 
     98  1.15       cgd static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
     99  1.15       cgd 		    int));
    100  1.15       cgd static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    101  1.15       cgd static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    102  1.15       cgd 		    void (*)(struct ps_strings *, u_long *, int *)));
    103  1.15       cgd static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    104  1.15       cgd 		    struct kinfo_proc *, int));
    105  1.15       cgd static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    106  1.15       cgd static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    107  1.15       cgd static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    108   1.2   mycroft 
    109   1.8   mycroft char *
    110   1.8   mycroft _kvm_uread(kd, p, va, cnt)
    111   1.1       cgd 	kvm_t *kd;
    112   1.1       cgd 	const struct proc *p;
    113   1.1       cgd 	u_long va;
    114   1.1       cgd 	u_long *cnt;
    115   1.1       cgd {
    116  1.21     perry 	u_long addr, head;
    117  1.21     perry 	u_long offset;
    118   1.1       cgd 	struct vm_map_entry vme;
    119  1.23       chs #if defined(UVM)
    120  1.23       chs 	struct vm_amap amap;
    121  1.23       chs 	struct vm_anon *anonp, anon;
    122  1.23       chs 	struct vm_page pg;
    123  1.23       chs 	int slot;
    124  1.23       chs #else
    125   1.1       cgd 	struct vm_object vmo;
    126   1.8   mycroft 	int rv;
    127  1.23       chs #endif
    128   1.1       cgd 
    129   1.6   mycroft 	if (kd->swapspc == 0) {
    130   1.6   mycroft 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    131   1.6   mycroft 		if (kd->swapspc == 0)
    132   1.5   deraadt 			return (0);
    133   1.5   deraadt 	}
    134   1.8   mycroft 
    135   1.1       cgd 	/*
    136   1.1       cgd 	 * Look through the address map for the memory object
    137   1.1       cgd 	 * that corresponds to the given virtual address.
    138   1.1       cgd 	 * The header just has the entire valid range.
    139   1.1       cgd 	 */
    140   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    141   1.1       cgd 	addr = head;
    142   1.1       cgd 	while (1) {
    143   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    144   1.1       cgd 			return (0);
    145   1.1       cgd 
    146  1.23       chs #if defined(UVM)
    147  1.23       chs 		if (va >= vme.start && va < vme.end &&
    148  1.23       chs 		    vme.aref.ar_amap != NULL)
    149  1.23       chs 			break;
    150  1.23       chs 
    151  1.23       chs #else
    152   1.2   mycroft 		if (va >= vme.start && va < vme.end &&
    153   1.1       cgd 		    vme.object.vm_object != 0)
    154   1.1       cgd 			break;
    155  1.23       chs #endif
    156   1.1       cgd 
    157   1.1       cgd 		addr = (u_long)vme.next;
    158   1.2   mycroft 		if (addr == head)
    159   1.1       cgd 			return (0);
    160  1.23       chs 
    161   1.1       cgd 	}
    162  1.23       chs #if defined(UVM)
    163   1.2   mycroft 
    164   1.1       cgd 	/*
    165  1.23       chs 	 * we found the map entry, now to find the object...
    166  1.23       chs 	 */
    167  1.23       chs 	if (vme.aref.ar_amap == NULL)
    168  1.23       chs 		return NULL;
    169  1.23       chs 
    170  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    171  1.23       chs 	if (KREAD(kd, addr, &amap))
    172  1.23       chs 		return NULL;
    173  1.23       chs 
    174  1.23       chs 	offset = va - vme.start;
    175  1.23       chs 	slot = offset / kd->nbpg + vme.aref.ar_slotoff;
    176  1.23       chs 	/* sanity-check slot number */
    177  1.23       chs 	if (slot  > amap.am_nslot)
    178  1.23       chs 		return NULL;
    179  1.23       chs 
    180  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    181  1.23       chs 	if (KREAD(kd, addr, &anonp))
    182  1.23       chs 		return NULL;
    183  1.23       chs 
    184  1.23       chs 	addr = (u_long)anonp;
    185  1.23       chs 	if (KREAD(kd, addr, &anon))
    186  1.23       chs 		return NULL;
    187  1.23       chs 
    188  1.23       chs 	addr = (u_long)anon.u.an_page;
    189  1.23       chs 	if (addr) {
    190  1.23       chs 		if (KREAD(kd, addr, &pg))
    191  1.23       chs 			return NULL;
    192  1.23       chs 
    193  1.23       chs 		if (lseek(kd->pmfd, (off_t)pg.phys_addr, SEEK_SET) == -1)
    194  1.23       chs 			return NULL;
    195  1.23       chs 
    196  1.23       chs 		if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    197  1.23       chs 			return NULL;
    198  1.23       chs 	}
    199  1.23       chs 	else {
    200  1.23       chs 		if (lseek(kd->swfd, anon.an_swslot * kd->nbpg, SEEK_SET) == -1)
    201  1.23       chs 			return NULL;
    202  1.23       chs 		if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    203  1.23       chs 			return NULL;
    204  1.23       chs 	}
    205  1.23       chs #else
    206  1.23       chs 	/*
    207   1.1       cgd 	 * We found the right object -- follow shadow links.
    208   1.1       cgd 	 */
    209   1.1       cgd 	offset = va - vme.start + vme.offset;
    210   1.1       cgd 	addr = (u_long)vme.object.vm_object;
    211   1.8   mycroft 
    212   1.1       cgd 	while (1) {
    213   1.8   mycroft 		/* Try reading the page from core first. */
    214   1.8   mycroft 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    215   1.8   mycroft 			break;
    216   1.8   mycroft 
    217   1.2   mycroft 		if (KREAD(kd, addr, &vmo))
    218   1.1       cgd 			return (0);
    219   1.2   mycroft 
    220   1.2   mycroft 		/* If there is a pager here, see if it has the page. */
    221   1.2   mycroft 		if (vmo.pager != 0 &&
    222   1.8   mycroft 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    223   1.2   mycroft 			break;
    224   1.2   mycroft 
    225   1.2   mycroft 		/* Move down the shadow chain. */
    226   1.1       cgd 		addr = (u_long)vmo.shadow;
    227   1.1       cgd 		if (addr == 0)
    228   1.2   mycroft 			return (0);
    229   1.1       cgd 		offset += vmo.shadow_offset;
    230   1.1       cgd 	}
    231   1.2   mycroft 
    232   1.8   mycroft 	if (rv == -1)
    233   1.8   mycroft 		return (0);
    234  1.23       chs #endif
    235   1.8   mycroft 
    236   1.2   mycroft 	/* Found the page. */
    237   1.6   mycroft 	offset %= kd->nbpg;
    238   1.6   mycroft 	*cnt = kd->nbpg - offset;
    239   1.6   mycroft 	return (&kd->swapspc[offset]);
    240   1.2   mycroft }
    241   1.2   mycroft 
    242  1.23       chs #if !defined(UVM)
    243  1.23       chs 
    244   1.8   mycroft #define	vm_page_hash(kd, object, offset) \
    245   1.8   mycroft 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    246   1.8   mycroft 
    247   1.8   mycroft int
    248   1.8   mycroft _kvm_coreinit(kd)
    249   1.8   mycroft 	kvm_t *kd;
    250   1.8   mycroft {
    251   1.8   mycroft 	struct nlist nlist[3];
    252   1.8   mycroft 
    253   1.8   mycroft 	nlist[0].n_name = "_vm_page_buckets";
    254   1.8   mycroft 	nlist[1].n_name = "_vm_page_hash_mask";
    255   1.8   mycroft 	nlist[2].n_name = 0;
    256   1.8   mycroft 	if (kvm_nlist(kd, nlist) != 0)
    257   1.8   mycroft 		return (-1);
    258   1.8   mycroft 
    259   1.8   mycroft 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    260   1.8   mycroft 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    261   1.8   mycroft 		return (-1);
    262   1.8   mycroft 
    263   1.8   mycroft 	return (0);
    264   1.8   mycroft }
    265   1.8   mycroft 
    266   1.8   mycroft int
    267   1.8   mycroft _kvm_readfromcore(kd, object, offset)
    268   1.8   mycroft 	kvm_t *kd;
    269   1.8   mycroft 	u_long object, offset;
    270   1.8   mycroft {
    271   1.8   mycroft 	u_long addr;
    272   1.8   mycroft 	struct pglist bucket;
    273   1.8   mycroft 	struct vm_page mem;
    274   1.8   mycroft 	off_t seekpoint;
    275   1.8   mycroft 
    276   1.8   mycroft 	if (kd->vm_page_buckets == 0 &&
    277   1.8   mycroft 	    _kvm_coreinit(kd))
    278   1.8   mycroft 		return (-1);
    279   1.8   mycroft 
    280   1.8   mycroft 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    281   1.8   mycroft 	if (KREAD(kd, addr, &bucket))
    282   1.8   mycroft 		return (-1);
    283   1.8   mycroft 
    284   1.8   mycroft 	addr = (u_long)bucket.tqh_first;
    285   1.8   mycroft 	offset &= ~(kd->nbpg -1);
    286   1.8   mycroft 	while (1) {
    287   1.8   mycroft 		if (addr == 0)
    288   1.8   mycroft 			return (0);
    289   1.8   mycroft 
    290   1.8   mycroft 		if (KREAD(kd, addr, &mem))
    291   1.8   mycroft 			return (-1);
    292   1.8   mycroft 
    293   1.8   mycroft 		if ((u_long)mem.object == object &&
    294   1.8   mycroft 		    (u_long)mem.offset == offset)
    295   1.8   mycroft 			break;
    296   1.8   mycroft 
    297   1.8   mycroft 		addr = (u_long)mem.hashq.tqe_next;
    298   1.8   mycroft 	}
    299   1.8   mycroft 
    300   1.8   mycroft 	seekpoint = mem.phys_addr;
    301   1.8   mycroft 
    302   1.8   mycroft 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
    303   1.8   mycroft 		return (-1);
    304   1.8   mycroft 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    305   1.8   mycroft 		return (-1);
    306   1.8   mycroft 
    307   1.8   mycroft 	return (1);
    308   1.8   mycroft }
    309   1.8   mycroft 
    310   1.2   mycroft int
    311   1.6   mycroft _kvm_readfrompager(kd, vmop, offset)
    312   1.2   mycroft 	kvm_t *kd;
    313   1.2   mycroft 	struct vm_object *vmop;
    314   1.2   mycroft 	u_long offset;
    315   1.8   mycroft {
    316   1.2   mycroft 	u_long addr;
    317   1.2   mycroft 	struct pager_struct pager;
    318   1.2   mycroft 	struct swpager swap;
    319   1.2   mycroft 	int ix;
    320   1.2   mycroft 	struct swblock swb;
    321   1.8   mycroft 	off_t seekpoint;
    322   1.2   mycroft 
    323   1.2   mycroft 	/* Read in the pager info and make sure it's a swap device. */
    324   1.2   mycroft 	addr = (u_long)vmop->pager;
    325   1.2   mycroft 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    326   1.8   mycroft 		return (-1);
    327   1.1       cgd 
    328   1.2   mycroft 	/* Read in the swap_pager private data. */
    329   1.2   mycroft 	addr = (u_long)pager.pg_data;
    330   1.2   mycroft 	if (KREAD(kd, addr, &swap))
    331   1.8   mycroft 		return (-1);
    332   1.1       cgd 
    333   1.1       cgd 	/*
    334   1.2   mycroft 	 * Calculate the paging offset, and make sure it's within the
    335   1.2   mycroft 	 * bounds of the pager.
    336   1.1       cgd 	 */
    337   1.2   mycroft 	offset += vmop->paging_offset;
    338   1.1       cgd 	ix = offset / dbtob(swap.sw_bsize);
    339   1.2   mycroft #if 0
    340   1.1       cgd 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    341   1.8   mycroft 		return (-1);
    342   1.2   mycroft #else
    343   1.2   mycroft 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    344   1.2   mycroft 		int i;
    345   1.2   mycroft 		printf("BUG BUG BUG BUG:\n");
    346  1.17     mikel 		printf("object %p offset %lx pgoffset %lx ",
    347  1.17     mikel 		    vmop, offset - vmop->paging_offset,
    348  1.17     mikel 		    (u_long)vmop->paging_offset);
    349  1.17     mikel 		printf("pager %p swpager %p\n",
    350   1.2   mycroft 		    vmop->pager, pager.pg_data);
    351  1.17     mikel 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    352  1.17     mikel 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    353   1.2   mycroft 		    swap.sw_nblocks);
    354  1.20  drochner 		for (i = 0; i < swap.sw_nblocks; i++) {
    355  1.20  drochner 			addr = (u_long)&swap.sw_blocks[i];
    356   1.2   mycroft 			if (KREAD(kd, addr, &swb))
    357   1.2   mycroft 				return (0);
    358  1.20  drochner 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    359   1.2   mycroft 			    swb.swb_block, swb.swb_mask);
    360   1.2   mycroft 		}
    361   1.8   mycroft 		return (-1);
    362   1.2   mycroft 	}
    363   1.2   mycroft #endif
    364   1.1       cgd 
    365   1.2   mycroft 	/* Read in the swap records. */
    366   1.1       cgd 	addr = (u_long)&swap.sw_blocks[ix];
    367   1.2   mycroft 	if (KREAD(kd, addr, &swb))
    368   1.8   mycroft 		return (-1);
    369   1.1       cgd 
    370   1.2   mycroft 	/* Calculate offset within pager. */
    371   1.2   mycroft 	offset %= dbtob(swap.sw_bsize);
    372   1.1       cgd 
    373   1.2   mycroft 	/* Check that the page is actually present. */
    374   1.6   mycroft 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    375   1.1       cgd 		return (0);
    376   1.1       cgd 
    377   1.8   mycroft 	if (!ISALIVE(kd))
    378   1.8   mycroft 		return (-1);
    379   1.8   mycroft 
    380   1.2   mycroft 	/* Calculate the physical address and read the page. */
    381   1.6   mycroft 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    382   1.8   mycroft 
    383   1.2   mycroft 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    384   1.8   mycroft 		return (-1);
    385   1.6   mycroft 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    386   1.8   mycroft 		return (-1);
    387   1.1       cgd 
    388   1.2   mycroft 	return (1);
    389   1.1       cgd }
    390  1.23       chs #endif /* !defined(UVM) */
    391   1.1       cgd 
    392   1.1       cgd /*
    393   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    394   1.1       cgd  * at most maxcnt procs.
    395   1.1       cgd  */
    396   1.1       cgd static int
    397   1.1       cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    398   1.1       cgd 	kvm_t *kd;
    399   1.1       cgd 	int what, arg;
    400   1.1       cgd 	struct proc *p;
    401   1.1       cgd 	struct kinfo_proc *bp;
    402   1.1       cgd 	int maxcnt;
    403   1.1       cgd {
    404  1.21     perry 	int cnt = 0;
    405   1.1       cgd 	struct eproc eproc;
    406   1.1       cgd 	struct pgrp pgrp;
    407   1.1       cgd 	struct session sess;
    408   1.1       cgd 	struct tty tty;
    409   1.1       cgd 	struct proc proc;
    410   1.1       cgd 
    411   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    412   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    413   1.1       cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    414   1.1       cgd 			return (-1);
    415   1.1       cgd 		}
    416   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    417  1.20  drochner 			(void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    418   1.1       cgd 			      &eproc.e_ucred);
    419   1.1       cgd 
    420   1.1       cgd 		switch(what) {
    421   1.1       cgd 
    422   1.1       cgd 		case KERN_PROC_PID:
    423   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    424   1.1       cgd 				continue;
    425   1.1       cgd 			break;
    426   1.1       cgd 
    427   1.1       cgd 		case KERN_PROC_UID:
    428   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    429   1.1       cgd 				continue;
    430   1.1       cgd 			break;
    431   1.1       cgd 
    432   1.1       cgd 		case KERN_PROC_RUID:
    433   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    434   1.1       cgd 				continue;
    435   1.1       cgd 			break;
    436   1.1       cgd 		}
    437   1.1       cgd 		/*
    438   1.1       cgd 		 * We're going to add another proc to the set.  If this
    439   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    440   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    441   1.1       cgd 		 */
    442   1.1       cgd 		if (cnt >= maxcnt) {
    443   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    444   1.1       cgd 			return (-1);
    445   1.1       cgd 		}
    446   1.1       cgd 		/*
    447   1.1       cgd 		 * gather eproc
    448   1.1       cgd 		 */
    449   1.1       cgd 		eproc.e_paddr = p;
    450   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    451   1.1       cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    452   1.1       cgd 				 proc.p_pgrp);
    453   1.1       cgd 			return (-1);
    454   1.1       cgd 		}
    455   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    456   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    457   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    458   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    459   1.1       cgd 			_kvm_err(kd, kd->program, "can't read session at %x",
    460   1.1       cgd 				pgrp.pg_session);
    461   1.1       cgd 			return (-1);
    462   1.1       cgd 		}
    463   1.1       cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    464   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    465   1.1       cgd 				_kvm_err(kd, kd->program,
    466   1.1       cgd 					 "can't read tty at %x", sess.s_ttyp);
    467   1.1       cgd 				return (-1);
    468   1.1       cgd 			}
    469   1.1       cgd 			eproc.e_tdev = tty.t_dev;
    470   1.1       cgd 			eproc.e_tsess = tty.t_session;
    471   1.1       cgd 			if (tty.t_pgrp != NULL) {
    472   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    473   1.1       cgd 					_kvm_err(kd, kd->program,
    474   1.1       cgd 						 "can't read tpgrp at &x",
    475   1.1       cgd 						tty.t_pgrp);
    476   1.1       cgd 					return (-1);
    477   1.1       cgd 				}
    478   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    479   1.1       cgd 			} else
    480   1.1       cgd 				eproc.e_tpgid = -1;
    481   1.1       cgd 		} else
    482   1.1       cgd 			eproc.e_tdev = NODEV;
    483   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    484   1.1       cgd 		if (sess.s_leader == p)
    485   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    486   1.1       cgd 		if (proc.p_wmesg)
    487   1.1       cgd 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    488   1.1       cgd 			    eproc.e_wmesg, WMESGLEN);
    489   1.1       cgd 
    490   1.1       cgd 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    491   1.1       cgd 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    492   1.9        pk 
    493   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    494   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    495   1.1       cgd 
    496   1.1       cgd 		switch (what) {
    497   1.1       cgd 
    498   1.1       cgd 		case KERN_PROC_PGRP:
    499   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    500   1.1       cgd 				continue;
    501   1.1       cgd 			break;
    502   1.1       cgd 
    503   1.1       cgd 		case KERN_PROC_TTY:
    504   1.1       cgd 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    505   1.1       cgd 			     eproc.e_tdev != (dev_t)arg)
    506   1.1       cgd 				continue;
    507   1.1       cgd 			break;
    508   1.1       cgd 		}
    509   1.1       cgd 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    510   1.1       cgd 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    511   1.1       cgd 		++bp;
    512   1.1       cgd 		++cnt;
    513   1.1       cgd 	}
    514   1.1       cgd 	return (cnt);
    515   1.1       cgd }
    516   1.1       cgd 
    517   1.1       cgd /*
    518   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    519   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    520   1.1       cgd  */
    521   1.1       cgd static int
    522   1.1       cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    523   1.1       cgd 	kvm_t *kd;
    524   1.1       cgd 	int what, arg;
    525   1.1       cgd 	u_long a_allproc;
    526   1.1       cgd 	u_long a_zombproc;
    527   1.1       cgd 	int maxcnt;
    528   1.1       cgd {
    529  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    530  1.21     perry 	int acnt, zcnt;
    531   1.1       cgd 	struct proc *p;
    532   1.1       cgd 
    533   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    534   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    535   1.1       cgd 		return (-1);
    536   1.1       cgd 	}
    537   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    538   1.1       cgd 	if (acnt < 0)
    539   1.1       cgd 		return (acnt);
    540   1.1       cgd 
    541   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    542   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    543   1.1       cgd 		return (-1);
    544   1.1       cgd 	}
    545   1.1       cgd 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    546   1.1       cgd 	if (zcnt < 0)
    547   1.1       cgd 		zcnt = 0;
    548   1.1       cgd 
    549   1.1       cgd 	return (acnt + zcnt);
    550   1.1       cgd }
    551   1.1       cgd 
    552   1.1       cgd struct kinfo_proc *
    553   1.1       cgd kvm_getprocs(kd, op, arg, cnt)
    554   1.1       cgd 	kvm_t *kd;
    555   1.1       cgd 	int op, arg;
    556   1.1       cgd 	int *cnt;
    557   1.1       cgd {
    558   1.7       cgd 	size_t size;
    559   1.7       cgd 	int mib[4], st, nprocs;
    560   1.1       cgd 
    561   1.1       cgd 	if (kd->procbase != 0) {
    562   1.1       cgd 		free((void *)kd->procbase);
    563   1.1       cgd 		/*
    564   1.1       cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    565   1.1       cgd 		 * kvm_close() will free it again.
    566   1.1       cgd 		 */
    567   1.1       cgd 		kd->procbase = 0;
    568   1.1       cgd 	}
    569   1.1       cgd 	if (ISALIVE(kd)) {
    570   1.1       cgd 		size = 0;
    571   1.1       cgd 		mib[0] = CTL_KERN;
    572   1.1       cgd 		mib[1] = KERN_PROC;
    573   1.1       cgd 		mib[2] = op;
    574   1.1       cgd 		mib[3] = arg;
    575   1.1       cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    576   1.1       cgd 		if (st == -1) {
    577   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    578   1.1       cgd 			return (0);
    579   1.1       cgd 		}
    580   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    581   1.1       cgd 		if (kd->procbase == 0)
    582   1.1       cgd 			return (0);
    583   1.1       cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    584   1.1       cgd 		if (st == -1) {
    585   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    586   1.1       cgd 			return (0);
    587   1.1       cgd 		}
    588   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    589   1.1       cgd 			_kvm_err(kd, kd->program,
    590   1.1       cgd 				"proc size mismatch (%d total, %d chunks)",
    591   1.1       cgd 				size, sizeof(struct kinfo_proc));
    592   1.1       cgd 			return (0);
    593   1.1       cgd 		}
    594   1.1       cgd 		nprocs = size / sizeof(struct kinfo_proc);
    595   1.1       cgd 	} else {
    596   1.1       cgd 		struct nlist nl[4], *p;
    597   1.1       cgd 
    598   1.1       cgd 		nl[0].n_name = "_nprocs";
    599   1.1       cgd 		nl[1].n_name = "_allproc";
    600   1.1       cgd 		nl[2].n_name = "_zombproc";
    601   1.1       cgd 		nl[3].n_name = 0;
    602   1.1       cgd 
    603   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    604   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    605   1.1       cgd 				;
    606   1.1       cgd 			_kvm_err(kd, kd->program,
    607   1.1       cgd 				 "%s: no such symbol", p->n_name);
    608   1.1       cgd 			return (0);
    609   1.1       cgd 		}
    610   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    611   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    612   1.1       cgd 			return (0);
    613   1.1       cgd 		}
    614   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    615   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    616   1.1       cgd 		if (kd->procbase == 0)
    617   1.1       cgd 			return (0);
    618   1.1       cgd 
    619   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    620   1.1       cgd 				      nl[2].n_value, nprocs);
    621   1.1       cgd #ifdef notdef
    622   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    623   1.1       cgd 		(void)realloc(kd->procbase, size);
    624   1.1       cgd #endif
    625   1.1       cgd 	}
    626   1.1       cgd 	*cnt = nprocs;
    627   1.1       cgd 	return (kd->procbase);
    628   1.1       cgd }
    629   1.1       cgd 
    630   1.1       cgd void
    631   1.1       cgd _kvm_freeprocs(kd)
    632   1.1       cgd 	kvm_t *kd;
    633   1.1       cgd {
    634   1.1       cgd 	if (kd->procbase) {
    635   1.1       cgd 		free(kd->procbase);
    636   1.1       cgd 		kd->procbase = 0;
    637   1.1       cgd 	}
    638   1.1       cgd }
    639   1.1       cgd 
    640   1.1       cgd void *
    641   1.1       cgd _kvm_realloc(kd, p, n)
    642   1.1       cgd 	kvm_t *kd;
    643   1.1       cgd 	void *p;
    644   1.1       cgd 	size_t n;
    645   1.1       cgd {
    646   1.1       cgd 	void *np = (void *)realloc(p, n);
    647   1.1       cgd 
    648   1.1       cgd 	if (np == 0)
    649   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    650   1.1       cgd 	return (np);
    651   1.1       cgd }
    652   1.1       cgd 
    653   1.1       cgd #ifndef MAX
    654   1.1       cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
    655   1.1       cgd #endif
    656   1.1       cgd 
    657   1.1       cgd /*
    658   1.1       cgd  * Read in an argument vector from the user address space of process p.
    659   1.1       cgd  * addr if the user-space base address of narg null-terminated contiguous
    660   1.1       cgd  * strings.  This is used to read in both the command arguments and
    661   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    662   1.1       cgd  */
    663   1.1       cgd static char **
    664   1.1       cgd kvm_argv(kd, p, addr, narg, maxcnt)
    665   1.1       cgd 	kvm_t *kd;
    666  1.15       cgd 	const struct proc *p;
    667  1.21     perry 	u_long addr;
    668  1.21     perry 	int narg;
    669  1.21     perry 	int maxcnt;
    670  1.21     perry {
    671  1.21     perry 	char *np, *cp, *ep, *ap;
    672  1.21     perry 	u_long oaddr = -1;
    673  1.21     perry 	int len, cc;
    674  1.21     perry 	char **argv;
    675   1.1       cgd 
    676   1.1       cgd 	/*
    677   1.1       cgd 	 * Check that there aren't an unreasonable number of agruments,
    678   1.1       cgd 	 * and that the address is in user space.
    679   1.1       cgd 	 */
    680  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    681   1.1       cgd 		return (0);
    682   1.1       cgd 
    683   1.1       cgd 	if (kd->argv == 0) {
    684   1.1       cgd 		/*
    685   1.1       cgd 		 * Try to avoid reallocs.
    686   1.1       cgd 		 */
    687   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    688   1.1       cgd 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    689   1.1       cgd 						sizeof(*kd->argv));
    690   1.1       cgd 		if (kd->argv == 0)
    691   1.1       cgd 			return (0);
    692   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    693   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    694   1.1       cgd 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    695   1.1       cgd 						sizeof(*kd->argv));
    696   1.1       cgd 		if (kd->argv == 0)
    697   1.1       cgd 			return (0);
    698   1.1       cgd 	}
    699   1.1       cgd 	if (kd->argspc == 0) {
    700   1.6   mycroft 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    701   1.1       cgd 		if (kd->argspc == 0)
    702   1.1       cgd 			return (0);
    703   1.6   mycroft 		kd->arglen = kd->nbpg;
    704   1.1       cgd 	}
    705  1.10   mycroft 	if (kd->argbuf == 0) {
    706  1.10   mycroft 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    707  1.10   mycroft 		if (kd->argbuf == 0)
    708  1.10   mycroft 			return (0);
    709  1.10   mycroft 	}
    710  1.10   mycroft 	cc = sizeof(char *) * narg;
    711  1.10   mycroft 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    712  1.10   mycroft 		return (0);
    713  1.10   mycroft 	ap = np = kd->argspc;
    714   1.1       cgd 	argv = kd->argv;
    715   1.1       cgd 	len = 0;
    716   1.1       cgd 	/*
    717   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    718   1.1       cgd 	 */
    719  1.10   mycroft 	while (argv < kd->argv + narg && *argv != 0) {
    720  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    721  1.10   mycroft 		if (addr != oaddr) {
    722  1.10   mycroft 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    723  1.10   mycroft 			    kd->nbpg)
    724  1.10   mycroft 				return (0);
    725  1.10   mycroft 			oaddr = addr;
    726  1.10   mycroft 		}
    727  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    728  1.10   mycroft 		cp = kd->argbuf + addr;
    729  1.10   mycroft 		cc = kd->nbpg - addr;
    730   1.1       cgd 		if (maxcnt > 0 && cc > maxcnt - len)
    731   1.1       cgd 			cc = maxcnt - len;;
    732  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    733  1.10   mycroft 		if (ep != 0)
    734  1.10   mycroft 			cc = ep - cp + 1;
    735   1.1       cgd 		if (len + cc > kd->arglen) {
    736  1.21     perry 			int off;
    737  1.21     perry 			char **pp;
    738  1.21     perry 			char *op = kd->argspc;
    739   1.1       cgd 
    740   1.1       cgd 			kd->arglen *= 2;
    741   1.1       cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    742   1.1       cgd 							  kd->arglen);
    743   1.1       cgd 			if (kd->argspc == 0)
    744   1.1       cgd 				return (0);
    745   1.1       cgd 			/*
    746   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    747   1.1       cgd 			 * the string space.
    748   1.1       cgd 			 */
    749   1.1       cgd 			off = kd->argspc - op;
    750  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    751   1.1       cgd 				*pp += off;
    752  1.12   mycroft 			ap += off;
    753  1.12   mycroft 			np += off;
    754   1.1       cgd 		}
    755  1.10   mycroft 		memcpy(np, cp, cc);
    756  1.10   mycroft 		np += cc;
    757   1.1       cgd 		len += cc;
    758  1.10   mycroft 		if (ep != 0) {
    759  1.10   mycroft 			*argv++ = ap;
    760  1.10   mycroft 			ap = np;
    761  1.10   mycroft 		} else
    762  1.10   mycroft 			*argv += cc;
    763   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
    764   1.1       cgd 			/*
    765   1.1       cgd 			 * We're stopping prematurely.  Terminate the
    766  1.10   mycroft 			 * current string.
    767   1.1       cgd 			 */
    768  1.10   mycroft 			if (ep == 0) {
    769  1.10   mycroft 				*np = '\0';
    770  1.14   mycroft 				*argv++ = ap;
    771  1.10   mycroft 			}
    772  1.10   mycroft 			break;
    773   1.1       cgd 		}
    774   1.1       cgd 	}
    775  1.10   mycroft 	/* Make sure argv is terminated. */
    776  1.10   mycroft 	*argv = 0;
    777  1.10   mycroft 	return (kd->argv);
    778   1.1       cgd }
    779   1.1       cgd 
    780   1.1       cgd static void
    781   1.1       cgd ps_str_a(p, addr, n)
    782   1.1       cgd 	struct ps_strings *p;
    783   1.1       cgd 	u_long *addr;
    784   1.1       cgd 	int *n;
    785   1.1       cgd {
    786   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
    787   1.1       cgd 	*n = p->ps_nargvstr;
    788   1.1       cgd }
    789   1.1       cgd 
    790   1.1       cgd static void
    791   1.1       cgd ps_str_e(p, addr, n)
    792   1.1       cgd 	struct ps_strings *p;
    793   1.1       cgd 	u_long *addr;
    794   1.1       cgd 	int *n;
    795   1.1       cgd {
    796   1.1       cgd 	*addr = (u_long)p->ps_envstr;
    797   1.1       cgd 	*n = p->ps_nenvstr;
    798   1.1       cgd }
    799   1.1       cgd 
    800   1.1       cgd /*
    801   1.1       cgd  * Determine if the proc indicated by p is still active.
    802   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
    803   1.1       cgd  * being wrong are very low.
    804   1.1       cgd  */
    805   1.1       cgd static int
    806   1.1       cgd proc_verify(kd, kernp, p)
    807   1.1       cgd 	kvm_t *kd;
    808   1.1       cgd 	u_long kernp;
    809   1.1       cgd 	const struct proc *p;
    810   1.1       cgd {
    811   1.1       cgd 	struct proc kernproc;
    812   1.1       cgd 
    813   1.1       cgd 	/*
    814   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
    815   1.1       cgd 	 * to the cost of the read system call.
    816   1.1       cgd 	 */
    817   1.1       cgd 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    818   1.1       cgd 	    sizeof(kernproc))
    819   1.1       cgd 		return (0);
    820   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
    821   1.1       cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    822   1.1       cgd }
    823   1.1       cgd 
    824   1.1       cgd static char **
    825   1.1       cgd kvm_doargv(kd, kp, nchr, info)
    826   1.1       cgd 	kvm_t *kd;
    827   1.1       cgd 	const struct kinfo_proc *kp;
    828   1.1       cgd 	int nchr;
    829  1.10   mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
    830   1.1       cgd {
    831  1.21     perry 	const struct proc *p = &kp->kp_proc;
    832  1.21     perry 	char **ap;
    833   1.1       cgd 	u_long addr;
    834   1.1       cgd 	int cnt;
    835   1.1       cgd 	struct ps_strings arginfo;
    836   1.1       cgd 
    837   1.1       cgd 	/*
    838   1.1       cgd 	 * Pointers are stored at the top of the user stack.
    839   1.1       cgd 	 */
    840  1.18       gwr 	if (p->p_stat == SZOMB)
    841  1.18       gwr 		return (0);
    842  1.18       gwr 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    843  1.18       gwr 	    (char *)&arginfo, sizeof(arginfo));
    844  1.18       gwr 	if (cnt != sizeof(arginfo))
    845   1.1       cgd 		return (0);
    846   1.1       cgd 
    847   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
    848   1.3   mycroft 	if (cnt == 0)
    849   1.3   mycroft 		return (0);
    850   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    851   1.1       cgd 	/*
    852   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
    853   1.1       cgd 	 */
    854   1.1       cgd 	if (ap != 0 && ISALIVE(kd) &&
    855   1.1       cgd 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    856   1.1       cgd 		ap = 0;
    857   1.1       cgd 	return (ap);
    858   1.1       cgd }
    859   1.1       cgd 
    860   1.1       cgd /*
    861   1.1       cgd  * Get the command args.  This code is now machine independent.
    862   1.1       cgd  */
    863   1.1       cgd char **
    864   1.1       cgd kvm_getargv(kd, kp, nchr)
    865   1.1       cgd 	kvm_t *kd;
    866   1.1       cgd 	const struct kinfo_proc *kp;
    867   1.1       cgd 	int nchr;
    868   1.1       cgd {
    869   1.1       cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    870   1.1       cgd }
    871   1.1       cgd 
    872   1.1       cgd char **
    873   1.1       cgd kvm_getenvv(kd, kp, nchr)
    874   1.1       cgd 	kvm_t *kd;
    875   1.1       cgd 	const struct kinfo_proc *kp;
    876   1.1       cgd 	int nchr;
    877   1.1       cgd {
    878   1.1       cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    879   1.1       cgd }
    880   1.1       cgd 
    881   1.1       cgd /*
    882   1.1       cgd  * Read from user space.  The user context is given by p.
    883   1.1       cgd  */
    884   1.1       cgd ssize_t
    885   1.1       cgd kvm_uread(kd, p, uva, buf, len)
    886   1.1       cgd 	kvm_t *kd;
    887  1.21     perry 	const struct proc *p;
    888  1.21     perry 	u_long uva;
    889  1.21     perry 	char *buf;
    890  1.21     perry 	size_t len;
    891   1.1       cgd {
    892  1.21     perry 	char *cp;
    893   1.1       cgd 
    894   1.1       cgd 	cp = buf;
    895   1.1       cgd 	while (len > 0) {
    896  1.21     perry 		int cc;
    897  1.21     perry 		char *dp;
    898  1.15       cgd 		u_long cnt;
    899   1.8   mycroft 
    900   1.8   mycroft 		dp = _kvm_uread(kd, p, uva, &cnt);
    901   1.8   mycroft 		if (dp == 0) {
    902   1.8   mycroft 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    903   1.8   mycroft 			return (0);
    904   1.8   mycroft 		}
    905   1.8   mycroft 		cc = MIN(cnt, len);
    906   1.8   mycroft 		bcopy(dp, cp, cc);
    907   1.8   mycroft 
    908   1.1       cgd 		cp += cc;
    909   1.1       cgd 		uva += cc;
    910   1.1       cgd 		len -= cc;
    911   1.1       cgd 	}
    912   1.1       cgd 	return (ssize_t)(cp - buf);
    913   1.1       cgd }
    914