kvm_proc.c revision 1.25 1 1.25 perry /* $NetBSD: kvm_proc.c,v 1.25 1998/08/10 02:46:07 perry Exp $ */
2 1.16 thorpej
3 1.1 cgd /*-
4 1.11 mycroft * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 1.1 cgd * Copyright (c) 1989, 1992, 1993
6 1.1 cgd * The Regents of the University of California. All rights reserved.
7 1.1 cgd *
8 1.1 cgd * This code is derived from software developed by the Computer Systems
9 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 1.1 cgd * BG 91-66 and contributed to Berkeley.
11 1.1 cgd *
12 1.1 cgd * Redistribution and use in source and binary forms, with or without
13 1.1 cgd * modification, are permitted provided that the following conditions
14 1.1 cgd * are met:
15 1.1 cgd * 1. Redistributions of source code must retain the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer.
17 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 cgd * notice, this list of conditions and the following disclaimer in the
19 1.1 cgd * documentation and/or other materials provided with the distribution.
20 1.1 cgd * 3. All advertising materials mentioning features or use of this software
21 1.1 cgd * must display the following acknowledgement:
22 1.1 cgd * This product includes software developed by the University of
23 1.1 cgd * California, Berkeley and its contributors.
24 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.1 cgd * may be used to endorse or promote products derived from this software
26 1.1 cgd * without specific prior written permission.
27 1.1 cgd *
28 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 cgd * SUCH DAMAGE.
39 1.1 cgd */
40 1.1 cgd
41 1.19 mikel #include <sys/cdefs.h>
42 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
43 1.16 thorpej #if 0
44 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
45 1.16 thorpej #else
46 1.25 perry __RCSID("$NetBSD: kvm_proc.c,v 1.25 1998/08/10 02:46:07 perry Exp $");
47 1.16 thorpej #endif
48 1.1 cgd #endif /* LIBC_SCCS and not lint */
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
52 1.1 cgd * users of this code, so we've factored it out into a separate module.
53 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
54 1.1 cgd * most other applications are interested only in open/close/read/nlist).
55 1.1 cgd */
56 1.1 cgd
57 1.1 cgd #include <sys/param.h>
58 1.1 cgd #include <sys/user.h>
59 1.1 cgd #include <sys/proc.h>
60 1.1 cgd #include <sys/exec.h>
61 1.1 cgd #include <sys/stat.h>
62 1.1 cgd #include <sys/ioctl.h>
63 1.1 cgd #include <sys/tty.h>
64 1.7 cgd #include <stdlib.h>
65 1.10 mycroft #include <string.h>
66 1.1 cgd #include <unistd.h>
67 1.1 cgd #include <nlist.h>
68 1.1 cgd #include <kvm.h>
69 1.1 cgd
70 1.1 cgd #include <vm/vm.h>
71 1.1 cgd #include <vm/vm_param.h>
72 1.1 cgd #include <vm/swap_pager.h>
73 1.1 cgd
74 1.23 chs #if defined(UVM)
75 1.23 chs #include <uvm/uvm_extern.h>
76 1.23 chs #endif
77 1.23 chs
78 1.1 cgd #include <sys/sysctl.h>
79 1.1 cgd
80 1.1 cgd #include <limits.h>
81 1.1 cgd #include <db.h>
82 1.1 cgd #include <paths.h>
83 1.1 cgd
84 1.1 cgd #include "kvm_private.h"
85 1.1 cgd
86 1.2 mycroft #define KREAD(kd, addr, obj) \
87 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88 1.2 mycroft
89 1.20 drochner char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
90 1.23 chs #if !defined(UVM)
91 1.20 drochner int _kvm_coreinit __P((kvm_t *));
92 1.15 cgd int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
93 1.15 cgd int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
94 1.23 chs #endif
95 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
96 1.15 cgd size_t));
97 1.15 cgd
98 1.15 cgd static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
99 1.15 cgd int));
100 1.15 cgd static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
101 1.15 cgd static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
102 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
103 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
104 1.15 cgd struct kinfo_proc *, int));
105 1.15 cgd static int proc_verify __P((kvm_t *, u_long, const struct proc *));
106 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
107 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
108 1.2 mycroft
109 1.8 mycroft char *
110 1.8 mycroft _kvm_uread(kd, p, va, cnt)
111 1.1 cgd kvm_t *kd;
112 1.1 cgd const struct proc *p;
113 1.1 cgd u_long va;
114 1.1 cgd u_long *cnt;
115 1.1 cgd {
116 1.21 perry u_long addr, head;
117 1.21 perry u_long offset;
118 1.1 cgd struct vm_map_entry vme;
119 1.23 chs #if defined(UVM)
120 1.23 chs struct vm_amap amap;
121 1.23 chs struct vm_anon *anonp, anon;
122 1.23 chs struct vm_page pg;
123 1.23 chs int slot;
124 1.23 chs #else
125 1.1 cgd struct vm_object vmo;
126 1.8 mycroft int rv;
127 1.23 chs #endif
128 1.1 cgd
129 1.6 mycroft if (kd->swapspc == 0) {
130 1.6 mycroft kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
131 1.6 mycroft if (kd->swapspc == 0)
132 1.5 deraadt return (0);
133 1.5 deraadt }
134 1.8 mycroft
135 1.1 cgd /*
136 1.1 cgd * Look through the address map for the memory object
137 1.1 cgd * that corresponds to the given virtual address.
138 1.1 cgd * The header just has the entire valid range.
139 1.1 cgd */
140 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
141 1.1 cgd addr = head;
142 1.1 cgd while (1) {
143 1.2 mycroft if (KREAD(kd, addr, &vme))
144 1.1 cgd return (0);
145 1.1 cgd
146 1.23 chs #if defined(UVM)
147 1.23 chs if (va >= vme.start && va < vme.end &&
148 1.23 chs vme.aref.ar_amap != NULL)
149 1.23 chs break;
150 1.23 chs
151 1.23 chs #else
152 1.2 mycroft if (va >= vme.start && va < vme.end &&
153 1.1 cgd vme.object.vm_object != 0)
154 1.1 cgd break;
155 1.23 chs #endif
156 1.1 cgd
157 1.1 cgd addr = (u_long)vme.next;
158 1.2 mycroft if (addr == head)
159 1.1 cgd return (0);
160 1.23 chs
161 1.1 cgd }
162 1.23 chs #if defined(UVM)
163 1.2 mycroft
164 1.1 cgd /*
165 1.23 chs * we found the map entry, now to find the object...
166 1.23 chs */
167 1.23 chs if (vme.aref.ar_amap == NULL)
168 1.23 chs return NULL;
169 1.23 chs
170 1.23 chs addr = (u_long)vme.aref.ar_amap;
171 1.23 chs if (KREAD(kd, addr, &amap))
172 1.23 chs return NULL;
173 1.23 chs
174 1.23 chs offset = va - vme.start;
175 1.23 chs slot = offset / kd->nbpg + vme.aref.ar_slotoff;
176 1.23 chs /* sanity-check slot number */
177 1.23 chs if (slot > amap.am_nslot)
178 1.23 chs return NULL;
179 1.23 chs
180 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
181 1.23 chs if (KREAD(kd, addr, &anonp))
182 1.23 chs return NULL;
183 1.23 chs
184 1.23 chs addr = (u_long)anonp;
185 1.23 chs if (KREAD(kd, addr, &anon))
186 1.23 chs return NULL;
187 1.23 chs
188 1.23 chs addr = (u_long)anon.u.an_page;
189 1.23 chs if (addr) {
190 1.23 chs if (KREAD(kd, addr, &pg))
191 1.23 chs return NULL;
192 1.23 chs
193 1.24 thorpej if (pread(kd->pmfd, kd->swapspc, kd->nbpg,
194 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
195 1.23 chs return NULL;
196 1.23 chs }
197 1.23 chs else {
198 1.24 thorpej if (pread(kd->swfd, kd->swapspc, kd->nbpg,
199 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
200 1.23 chs return NULL;
201 1.23 chs }
202 1.23 chs #else
203 1.23 chs /*
204 1.1 cgd * We found the right object -- follow shadow links.
205 1.1 cgd */
206 1.1 cgd offset = va - vme.start + vme.offset;
207 1.1 cgd addr = (u_long)vme.object.vm_object;
208 1.8 mycroft
209 1.1 cgd while (1) {
210 1.8 mycroft /* Try reading the page from core first. */
211 1.8 mycroft if ((rv = _kvm_readfromcore(kd, addr, offset)))
212 1.8 mycroft break;
213 1.8 mycroft
214 1.2 mycroft if (KREAD(kd, addr, &vmo))
215 1.1 cgd return (0);
216 1.2 mycroft
217 1.2 mycroft /* If there is a pager here, see if it has the page. */
218 1.2 mycroft if (vmo.pager != 0 &&
219 1.8 mycroft (rv = _kvm_readfrompager(kd, &vmo, offset)))
220 1.2 mycroft break;
221 1.2 mycroft
222 1.2 mycroft /* Move down the shadow chain. */
223 1.1 cgd addr = (u_long)vmo.shadow;
224 1.1 cgd if (addr == 0)
225 1.2 mycroft return (0);
226 1.1 cgd offset += vmo.shadow_offset;
227 1.1 cgd }
228 1.2 mycroft
229 1.8 mycroft if (rv == -1)
230 1.8 mycroft return (0);
231 1.23 chs #endif
232 1.8 mycroft
233 1.2 mycroft /* Found the page. */
234 1.6 mycroft offset %= kd->nbpg;
235 1.6 mycroft *cnt = kd->nbpg - offset;
236 1.6 mycroft return (&kd->swapspc[offset]);
237 1.2 mycroft }
238 1.2 mycroft
239 1.23 chs #if !defined(UVM)
240 1.23 chs
241 1.8 mycroft #define vm_page_hash(kd, object, offset) \
242 1.8 mycroft (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
243 1.8 mycroft
244 1.8 mycroft int
245 1.8 mycroft _kvm_coreinit(kd)
246 1.8 mycroft kvm_t *kd;
247 1.8 mycroft {
248 1.8 mycroft struct nlist nlist[3];
249 1.8 mycroft
250 1.8 mycroft nlist[0].n_name = "_vm_page_buckets";
251 1.8 mycroft nlist[1].n_name = "_vm_page_hash_mask";
252 1.8 mycroft nlist[2].n_name = 0;
253 1.8 mycroft if (kvm_nlist(kd, nlist) != 0)
254 1.8 mycroft return (-1);
255 1.8 mycroft
256 1.8 mycroft if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
257 1.8 mycroft KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
258 1.8 mycroft return (-1);
259 1.8 mycroft
260 1.8 mycroft return (0);
261 1.8 mycroft }
262 1.8 mycroft
263 1.8 mycroft int
264 1.8 mycroft _kvm_readfromcore(kd, object, offset)
265 1.8 mycroft kvm_t *kd;
266 1.8 mycroft u_long object, offset;
267 1.8 mycroft {
268 1.8 mycroft u_long addr;
269 1.8 mycroft struct pglist bucket;
270 1.8 mycroft struct vm_page mem;
271 1.8 mycroft off_t seekpoint;
272 1.8 mycroft
273 1.8 mycroft if (kd->vm_page_buckets == 0 &&
274 1.8 mycroft _kvm_coreinit(kd))
275 1.8 mycroft return (-1);
276 1.8 mycroft
277 1.8 mycroft addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
278 1.8 mycroft if (KREAD(kd, addr, &bucket))
279 1.8 mycroft return (-1);
280 1.8 mycroft
281 1.8 mycroft addr = (u_long)bucket.tqh_first;
282 1.8 mycroft offset &= ~(kd->nbpg -1);
283 1.8 mycroft while (1) {
284 1.8 mycroft if (addr == 0)
285 1.8 mycroft return (0);
286 1.8 mycroft
287 1.8 mycroft if (KREAD(kd, addr, &mem))
288 1.8 mycroft return (-1);
289 1.8 mycroft
290 1.8 mycroft if ((u_long)mem.object == object &&
291 1.8 mycroft (u_long)mem.offset == offset)
292 1.8 mycroft break;
293 1.8 mycroft
294 1.8 mycroft addr = (u_long)mem.hashq.tqe_next;
295 1.8 mycroft }
296 1.8 mycroft
297 1.8 mycroft seekpoint = mem.phys_addr;
298 1.8 mycroft
299 1.24 thorpej if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
300 1.8 mycroft return (-1);
301 1.8 mycroft
302 1.8 mycroft return (1);
303 1.8 mycroft }
304 1.8 mycroft
305 1.2 mycroft int
306 1.6 mycroft _kvm_readfrompager(kd, vmop, offset)
307 1.2 mycroft kvm_t *kd;
308 1.2 mycroft struct vm_object *vmop;
309 1.2 mycroft u_long offset;
310 1.8 mycroft {
311 1.2 mycroft u_long addr;
312 1.2 mycroft struct pager_struct pager;
313 1.2 mycroft struct swpager swap;
314 1.2 mycroft int ix;
315 1.2 mycroft struct swblock swb;
316 1.8 mycroft off_t seekpoint;
317 1.2 mycroft
318 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
319 1.2 mycroft addr = (u_long)vmop->pager;
320 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
321 1.8 mycroft return (-1);
322 1.1 cgd
323 1.2 mycroft /* Read in the swap_pager private data. */
324 1.2 mycroft addr = (u_long)pager.pg_data;
325 1.2 mycroft if (KREAD(kd, addr, &swap))
326 1.8 mycroft return (-1);
327 1.1 cgd
328 1.1 cgd /*
329 1.2 mycroft * Calculate the paging offset, and make sure it's within the
330 1.2 mycroft * bounds of the pager.
331 1.1 cgd */
332 1.2 mycroft offset += vmop->paging_offset;
333 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
334 1.2 mycroft #if 0
335 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
336 1.8 mycroft return (-1);
337 1.2 mycroft #else
338 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
339 1.2 mycroft int i;
340 1.2 mycroft printf("BUG BUG BUG BUG:\n");
341 1.17 mikel printf("object %p offset %lx pgoffset %lx ",
342 1.17 mikel vmop, offset - vmop->paging_offset,
343 1.17 mikel (u_long)vmop->paging_offset);
344 1.17 mikel printf("pager %p swpager %p\n",
345 1.2 mycroft vmop->pager, pager.pg_data);
346 1.17 mikel printf("osize %lx bsize %x blocks %p nblocks %x\n",
347 1.17 mikel (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
348 1.2 mycroft swap.sw_nblocks);
349 1.20 drochner for (i = 0; i < swap.sw_nblocks; i++) {
350 1.20 drochner addr = (u_long)&swap.sw_blocks[i];
351 1.2 mycroft if (KREAD(kd, addr, &swb))
352 1.2 mycroft return (0);
353 1.20 drochner printf("sw_blocks[%d]: block %x mask %x\n", i,
354 1.2 mycroft swb.swb_block, swb.swb_mask);
355 1.2 mycroft }
356 1.8 mycroft return (-1);
357 1.2 mycroft }
358 1.2 mycroft #endif
359 1.1 cgd
360 1.2 mycroft /* Read in the swap records. */
361 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
362 1.2 mycroft if (KREAD(kd, addr, &swb))
363 1.8 mycroft return (-1);
364 1.1 cgd
365 1.2 mycroft /* Calculate offset within pager. */
366 1.2 mycroft offset %= dbtob(swap.sw_bsize);
367 1.1 cgd
368 1.2 mycroft /* Check that the page is actually present. */
369 1.6 mycroft if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
370 1.1 cgd return (0);
371 1.1 cgd
372 1.8 mycroft if (!ISALIVE(kd))
373 1.8 mycroft return (-1);
374 1.8 mycroft
375 1.2 mycroft /* Calculate the physical address and read the page. */
376 1.6 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
377 1.8 mycroft
378 1.24 thorpej if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
379 1.8 mycroft return (-1);
380 1.1 cgd
381 1.2 mycroft return (1);
382 1.1 cgd }
383 1.23 chs #endif /* !defined(UVM) */
384 1.1 cgd
385 1.1 cgd /*
386 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
387 1.1 cgd * at most maxcnt procs.
388 1.1 cgd */
389 1.1 cgd static int
390 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
391 1.1 cgd kvm_t *kd;
392 1.1 cgd int what, arg;
393 1.1 cgd struct proc *p;
394 1.1 cgd struct kinfo_proc *bp;
395 1.1 cgd int maxcnt;
396 1.1 cgd {
397 1.21 perry int cnt = 0;
398 1.1 cgd struct eproc eproc;
399 1.1 cgd struct pgrp pgrp;
400 1.1 cgd struct session sess;
401 1.1 cgd struct tty tty;
402 1.1 cgd struct proc proc;
403 1.1 cgd
404 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
405 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
406 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
407 1.1 cgd return (-1);
408 1.1 cgd }
409 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
410 1.20 drochner (void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
411 1.1 cgd &eproc.e_ucred);
412 1.1 cgd
413 1.1 cgd switch(what) {
414 1.1 cgd
415 1.1 cgd case KERN_PROC_PID:
416 1.1 cgd if (proc.p_pid != (pid_t)arg)
417 1.1 cgd continue;
418 1.1 cgd break;
419 1.1 cgd
420 1.1 cgd case KERN_PROC_UID:
421 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
422 1.1 cgd continue;
423 1.1 cgd break;
424 1.1 cgd
425 1.1 cgd case KERN_PROC_RUID:
426 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
427 1.1 cgd continue;
428 1.1 cgd break;
429 1.1 cgd }
430 1.1 cgd /*
431 1.1 cgd * We're going to add another proc to the set. If this
432 1.1 cgd * will overflow the buffer, assume the reason is because
433 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
434 1.1 cgd */
435 1.1 cgd if (cnt >= maxcnt) {
436 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
437 1.1 cgd return (-1);
438 1.1 cgd }
439 1.1 cgd /*
440 1.1 cgd * gather eproc
441 1.1 cgd */
442 1.1 cgd eproc.e_paddr = p;
443 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
444 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
445 1.1 cgd proc.p_pgrp);
446 1.1 cgd return (-1);
447 1.1 cgd }
448 1.1 cgd eproc.e_sess = pgrp.pg_session;
449 1.1 cgd eproc.e_pgid = pgrp.pg_id;
450 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
451 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
452 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
453 1.1 cgd pgrp.pg_session);
454 1.1 cgd return (-1);
455 1.1 cgd }
456 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
457 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
458 1.1 cgd _kvm_err(kd, kd->program,
459 1.1 cgd "can't read tty at %x", sess.s_ttyp);
460 1.1 cgd return (-1);
461 1.1 cgd }
462 1.1 cgd eproc.e_tdev = tty.t_dev;
463 1.1 cgd eproc.e_tsess = tty.t_session;
464 1.1 cgd if (tty.t_pgrp != NULL) {
465 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
466 1.1 cgd _kvm_err(kd, kd->program,
467 1.1 cgd "can't read tpgrp at &x",
468 1.1 cgd tty.t_pgrp);
469 1.1 cgd return (-1);
470 1.1 cgd }
471 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
472 1.1 cgd } else
473 1.1 cgd eproc.e_tpgid = -1;
474 1.1 cgd } else
475 1.1 cgd eproc.e_tdev = NODEV;
476 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
477 1.1 cgd if (sess.s_leader == p)
478 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
479 1.1 cgd if (proc.p_wmesg)
480 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
481 1.1 cgd eproc.e_wmesg, WMESGLEN);
482 1.1 cgd
483 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
484 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
485 1.9 pk
486 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
487 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
488 1.1 cgd
489 1.1 cgd switch (what) {
490 1.1 cgd
491 1.1 cgd case KERN_PROC_PGRP:
492 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
493 1.1 cgd continue;
494 1.1 cgd break;
495 1.1 cgd
496 1.1 cgd case KERN_PROC_TTY:
497 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
498 1.1 cgd eproc.e_tdev != (dev_t)arg)
499 1.1 cgd continue;
500 1.1 cgd break;
501 1.1 cgd }
502 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
503 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
504 1.1 cgd ++bp;
505 1.1 cgd ++cnt;
506 1.1 cgd }
507 1.1 cgd return (cnt);
508 1.1 cgd }
509 1.1 cgd
510 1.1 cgd /*
511 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
512 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
513 1.1 cgd */
514 1.1 cgd static int
515 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
516 1.1 cgd kvm_t *kd;
517 1.1 cgd int what, arg;
518 1.1 cgd u_long a_allproc;
519 1.1 cgd u_long a_zombproc;
520 1.1 cgd int maxcnt;
521 1.1 cgd {
522 1.21 perry struct kinfo_proc *bp = kd->procbase;
523 1.21 perry int acnt, zcnt;
524 1.1 cgd struct proc *p;
525 1.1 cgd
526 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
527 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
528 1.1 cgd return (-1);
529 1.1 cgd }
530 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
531 1.1 cgd if (acnt < 0)
532 1.1 cgd return (acnt);
533 1.1 cgd
534 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
535 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
536 1.1 cgd return (-1);
537 1.1 cgd }
538 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
539 1.1 cgd if (zcnt < 0)
540 1.1 cgd zcnt = 0;
541 1.1 cgd
542 1.1 cgd return (acnt + zcnt);
543 1.1 cgd }
544 1.1 cgd
545 1.1 cgd struct kinfo_proc *
546 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
547 1.1 cgd kvm_t *kd;
548 1.1 cgd int op, arg;
549 1.1 cgd int *cnt;
550 1.1 cgd {
551 1.7 cgd size_t size;
552 1.7 cgd int mib[4], st, nprocs;
553 1.1 cgd
554 1.1 cgd if (kd->procbase != 0) {
555 1.1 cgd free((void *)kd->procbase);
556 1.1 cgd /*
557 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
558 1.1 cgd * kvm_close() will free it again.
559 1.1 cgd */
560 1.1 cgd kd->procbase = 0;
561 1.1 cgd }
562 1.1 cgd if (ISALIVE(kd)) {
563 1.1 cgd size = 0;
564 1.1 cgd mib[0] = CTL_KERN;
565 1.1 cgd mib[1] = KERN_PROC;
566 1.1 cgd mib[2] = op;
567 1.1 cgd mib[3] = arg;
568 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
569 1.1 cgd if (st == -1) {
570 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
571 1.1 cgd return (0);
572 1.1 cgd }
573 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
574 1.1 cgd if (kd->procbase == 0)
575 1.1 cgd return (0);
576 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
577 1.1 cgd if (st == -1) {
578 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
579 1.1 cgd return (0);
580 1.1 cgd }
581 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
582 1.1 cgd _kvm_err(kd, kd->program,
583 1.1 cgd "proc size mismatch (%d total, %d chunks)",
584 1.1 cgd size, sizeof(struct kinfo_proc));
585 1.1 cgd return (0);
586 1.1 cgd }
587 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
588 1.1 cgd } else {
589 1.1 cgd struct nlist nl[4], *p;
590 1.1 cgd
591 1.1 cgd nl[0].n_name = "_nprocs";
592 1.1 cgd nl[1].n_name = "_allproc";
593 1.1 cgd nl[2].n_name = "_zombproc";
594 1.1 cgd nl[3].n_name = 0;
595 1.1 cgd
596 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
597 1.1 cgd for (p = nl; p->n_type != 0; ++p)
598 1.1 cgd ;
599 1.1 cgd _kvm_err(kd, kd->program,
600 1.1 cgd "%s: no such symbol", p->n_name);
601 1.1 cgd return (0);
602 1.1 cgd }
603 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
604 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
605 1.1 cgd return (0);
606 1.1 cgd }
607 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
608 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
609 1.1 cgd if (kd->procbase == 0)
610 1.1 cgd return (0);
611 1.1 cgd
612 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
613 1.1 cgd nl[2].n_value, nprocs);
614 1.1 cgd #ifdef notdef
615 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
616 1.1 cgd (void)realloc(kd->procbase, size);
617 1.1 cgd #endif
618 1.1 cgd }
619 1.1 cgd *cnt = nprocs;
620 1.1 cgd return (kd->procbase);
621 1.1 cgd }
622 1.1 cgd
623 1.1 cgd void
624 1.1 cgd _kvm_freeprocs(kd)
625 1.1 cgd kvm_t *kd;
626 1.1 cgd {
627 1.1 cgd if (kd->procbase) {
628 1.1 cgd free(kd->procbase);
629 1.1 cgd kd->procbase = 0;
630 1.1 cgd }
631 1.1 cgd }
632 1.1 cgd
633 1.1 cgd void *
634 1.1 cgd _kvm_realloc(kd, p, n)
635 1.1 cgd kvm_t *kd;
636 1.1 cgd void *p;
637 1.1 cgd size_t n;
638 1.1 cgd {
639 1.1 cgd void *np = (void *)realloc(p, n);
640 1.1 cgd
641 1.1 cgd if (np == 0)
642 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
643 1.1 cgd return (np);
644 1.1 cgd }
645 1.1 cgd
646 1.1 cgd #ifndef MAX
647 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
648 1.1 cgd #endif
649 1.1 cgd
650 1.1 cgd /*
651 1.1 cgd * Read in an argument vector from the user address space of process p.
652 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
653 1.1 cgd * strings. This is used to read in both the command arguments and
654 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
655 1.1 cgd */
656 1.1 cgd static char **
657 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
658 1.1 cgd kvm_t *kd;
659 1.15 cgd const struct proc *p;
660 1.21 perry u_long addr;
661 1.21 perry int narg;
662 1.21 perry int maxcnt;
663 1.21 perry {
664 1.21 perry char *np, *cp, *ep, *ap;
665 1.21 perry u_long oaddr = -1;
666 1.21 perry int len, cc;
667 1.21 perry char **argv;
668 1.1 cgd
669 1.1 cgd /*
670 1.1 cgd * Check that there aren't an unreasonable number of agruments,
671 1.1 cgd * and that the address is in user space.
672 1.1 cgd */
673 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
674 1.1 cgd return (0);
675 1.1 cgd
676 1.1 cgd if (kd->argv == 0) {
677 1.1 cgd /*
678 1.1 cgd * Try to avoid reallocs.
679 1.1 cgd */
680 1.1 cgd kd->argc = MAX(narg + 1, 32);
681 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
682 1.1 cgd sizeof(*kd->argv));
683 1.1 cgd if (kd->argv == 0)
684 1.1 cgd return (0);
685 1.1 cgd } else if (narg + 1 > kd->argc) {
686 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
687 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
688 1.1 cgd sizeof(*kd->argv));
689 1.1 cgd if (kd->argv == 0)
690 1.1 cgd return (0);
691 1.1 cgd }
692 1.1 cgd if (kd->argspc == 0) {
693 1.6 mycroft kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
694 1.1 cgd if (kd->argspc == 0)
695 1.1 cgd return (0);
696 1.6 mycroft kd->arglen = kd->nbpg;
697 1.1 cgd }
698 1.10 mycroft if (kd->argbuf == 0) {
699 1.10 mycroft kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
700 1.10 mycroft if (kd->argbuf == 0)
701 1.10 mycroft return (0);
702 1.10 mycroft }
703 1.10 mycroft cc = sizeof(char *) * narg;
704 1.10 mycroft if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
705 1.10 mycroft return (0);
706 1.10 mycroft ap = np = kd->argspc;
707 1.1 cgd argv = kd->argv;
708 1.1 cgd len = 0;
709 1.1 cgd /*
710 1.1 cgd * Loop over pages, filling in the argument vector.
711 1.1 cgd */
712 1.10 mycroft while (argv < kd->argv + narg && *argv != 0) {
713 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
714 1.10 mycroft if (addr != oaddr) {
715 1.10 mycroft if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
716 1.10 mycroft kd->nbpg)
717 1.10 mycroft return (0);
718 1.10 mycroft oaddr = addr;
719 1.10 mycroft }
720 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
721 1.10 mycroft cp = kd->argbuf + addr;
722 1.10 mycroft cc = kd->nbpg - addr;
723 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
724 1.1 cgd cc = maxcnt - len;;
725 1.10 mycroft ep = memchr(cp, '\0', cc);
726 1.10 mycroft if (ep != 0)
727 1.10 mycroft cc = ep - cp + 1;
728 1.1 cgd if (len + cc > kd->arglen) {
729 1.21 perry int off;
730 1.21 perry char **pp;
731 1.21 perry char *op = kd->argspc;
732 1.1 cgd
733 1.1 cgd kd->arglen *= 2;
734 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
735 1.1 cgd kd->arglen);
736 1.1 cgd if (kd->argspc == 0)
737 1.1 cgd return (0);
738 1.1 cgd /*
739 1.1 cgd * Adjust argv pointers in case realloc moved
740 1.1 cgd * the string space.
741 1.1 cgd */
742 1.1 cgd off = kd->argspc - op;
743 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
744 1.1 cgd *pp += off;
745 1.12 mycroft ap += off;
746 1.12 mycroft np += off;
747 1.1 cgd }
748 1.10 mycroft memcpy(np, cp, cc);
749 1.10 mycroft np += cc;
750 1.1 cgd len += cc;
751 1.10 mycroft if (ep != 0) {
752 1.10 mycroft *argv++ = ap;
753 1.10 mycroft ap = np;
754 1.10 mycroft } else
755 1.10 mycroft *argv += cc;
756 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
757 1.1 cgd /*
758 1.1 cgd * We're stopping prematurely. Terminate the
759 1.10 mycroft * current string.
760 1.1 cgd */
761 1.10 mycroft if (ep == 0) {
762 1.10 mycroft *np = '\0';
763 1.14 mycroft *argv++ = ap;
764 1.10 mycroft }
765 1.10 mycroft break;
766 1.1 cgd }
767 1.1 cgd }
768 1.10 mycroft /* Make sure argv is terminated. */
769 1.10 mycroft *argv = 0;
770 1.10 mycroft return (kd->argv);
771 1.1 cgd }
772 1.1 cgd
773 1.1 cgd static void
774 1.1 cgd ps_str_a(p, addr, n)
775 1.1 cgd struct ps_strings *p;
776 1.1 cgd u_long *addr;
777 1.1 cgd int *n;
778 1.1 cgd {
779 1.1 cgd *addr = (u_long)p->ps_argvstr;
780 1.1 cgd *n = p->ps_nargvstr;
781 1.1 cgd }
782 1.1 cgd
783 1.1 cgd static void
784 1.1 cgd ps_str_e(p, addr, n)
785 1.1 cgd struct ps_strings *p;
786 1.1 cgd u_long *addr;
787 1.1 cgd int *n;
788 1.1 cgd {
789 1.1 cgd *addr = (u_long)p->ps_envstr;
790 1.1 cgd *n = p->ps_nenvstr;
791 1.1 cgd }
792 1.1 cgd
793 1.1 cgd /*
794 1.1 cgd * Determine if the proc indicated by p is still active.
795 1.1 cgd * This test is not 100% foolproof in theory, but chances of
796 1.1 cgd * being wrong are very low.
797 1.1 cgd */
798 1.1 cgd static int
799 1.1 cgd proc_verify(kd, kernp, p)
800 1.1 cgd kvm_t *kd;
801 1.1 cgd u_long kernp;
802 1.1 cgd const struct proc *p;
803 1.1 cgd {
804 1.1 cgd struct proc kernproc;
805 1.1 cgd
806 1.1 cgd /*
807 1.1 cgd * Just read in the whole proc. It's not that big relative
808 1.1 cgd * to the cost of the read system call.
809 1.1 cgd */
810 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
811 1.1 cgd sizeof(kernproc))
812 1.1 cgd return (0);
813 1.1 cgd return (p->p_pid == kernproc.p_pid &&
814 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
815 1.1 cgd }
816 1.1 cgd
817 1.1 cgd static char **
818 1.1 cgd kvm_doargv(kd, kp, nchr, info)
819 1.1 cgd kvm_t *kd;
820 1.1 cgd const struct kinfo_proc *kp;
821 1.1 cgd int nchr;
822 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
823 1.1 cgd {
824 1.21 perry const struct proc *p = &kp->kp_proc;
825 1.21 perry char **ap;
826 1.1 cgd u_long addr;
827 1.1 cgd int cnt;
828 1.1 cgd struct ps_strings arginfo;
829 1.1 cgd
830 1.1 cgd /*
831 1.1 cgd * Pointers are stored at the top of the user stack.
832 1.1 cgd */
833 1.18 gwr if (p->p_stat == SZOMB)
834 1.18 gwr return (0);
835 1.18 gwr cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
836 1.18 gwr (char *)&arginfo, sizeof(arginfo));
837 1.18 gwr if (cnt != sizeof(arginfo))
838 1.1 cgd return (0);
839 1.1 cgd
840 1.1 cgd (*info)(&arginfo, &addr, &cnt);
841 1.3 mycroft if (cnt == 0)
842 1.3 mycroft return (0);
843 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
844 1.1 cgd /*
845 1.1 cgd * For live kernels, make sure this process didn't go away.
846 1.1 cgd */
847 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
848 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
849 1.1 cgd ap = 0;
850 1.1 cgd return (ap);
851 1.1 cgd }
852 1.1 cgd
853 1.1 cgd /*
854 1.1 cgd * Get the command args. This code is now machine independent.
855 1.1 cgd */
856 1.1 cgd char **
857 1.1 cgd kvm_getargv(kd, kp, nchr)
858 1.1 cgd kvm_t *kd;
859 1.1 cgd const struct kinfo_proc *kp;
860 1.1 cgd int nchr;
861 1.1 cgd {
862 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
863 1.1 cgd }
864 1.1 cgd
865 1.1 cgd char **
866 1.1 cgd kvm_getenvv(kd, kp, nchr)
867 1.1 cgd kvm_t *kd;
868 1.1 cgd const struct kinfo_proc *kp;
869 1.1 cgd int nchr;
870 1.1 cgd {
871 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
872 1.1 cgd }
873 1.1 cgd
874 1.1 cgd /*
875 1.1 cgd * Read from user space. The user context is given by p.
876 1.1 cgd */
877 1.1 cgd ssize_t
878 1.1 cgd kvm_uread(kd, p, uva, buf, len)
879 1.1 cgd kvm_t *kd;
880 1.21 perry const struct proc *p;
881 1.21 perry u_long uva;
882 1.21 perry char *buf;
883 1.21 perry size_t len;
884 1.1 cgd {
885 1.21 perry char *cp;
886 1.1 cgd
887 1.1 cgd cp = buf;
888 1.1 cgd while (len > 0) {
889 1.21 perry int cc;
890 1.21 perry char *dp;
891 1.15 cgd u_long cnt;
892 1.8 mycroft
893 1.8 mycroft dp = _kvm_uread(kd, p, uva, &cnt);
894 1.8 mycroft if (dp == 0) {
895 1.8 mycroft _kvm_err(kd, 0, "invalid address (%x)", uva);
896 1.8 mycroft return (0);
897 1.8 mycroft }
898 1.8 mycroft cc = MIN(cnt, len);
899 1.25 perry memcpy(cp, dp, cc);
900 1.8 mycroft
901 1.1 cgd cp += cc;
902 1.1 cgd uva += cc;
903 1.1 cgd len -= cc;
904 1.1 cgd }
905 1.1 cgd return (ssize_t)(cp - buf);
906 1.1 cgd }
907