Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.27
      1  1.27   thorpej /*	$NetBSD: kvm_proc.c,v 1.27 1998/09/09 00:31:25 thorpej Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  * 3. All advertising materials mentioning features or use of this software
     19  1.26   mycroft  *    must display the following acknowledgement:
     20  1.26   mycroft  *        This product includes software developed by the NetBSD
     21  1.26   mycroft  *        Foundation, Inc. and its contributors.
     22  1.26   mycroft  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.26   mycroft  *    contributors may be used to endorse or promote products derived
     24  1.26   mycroft  *    from this software without specific prior written permission.
     25  1.26   mycroft  *
     26  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     37  1.26   mycroft  */
     38  1.16   thorpej 
     39   1.1       cgd /*-
     40   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     41   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     42   1.1       cgd  *
     43   1.1       cgd  * This code is derived from software developed by the Computer Systems
     44   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     46   1.1       cgd  *
     47   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     48   1.1       cgd  * modification, are permitted provided that the following conditions
     49   1.1       cgd  * are met:
     50   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     51   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     52   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     53   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     54   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     55   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     56   1.1       cgd  *    must display the following acknowledgement:
     57   1.1       cgd  *	This product includes software developed by the University of
     58   1.1       cgd  *	California, Berkeley and its contributors.
     59   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     60   1.1       cgd  *    may be used to endorse or promote products derived from this software
     61   1.1       cgd  *    without specific prior written permission.
     62   1.1       cgd  *
     63   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.1       cgd  * SUCH DAMAGE.
     74   1.1       cgd  */
     75   1.1       cgd 
     76  1.19     mikel #include <sys/cdefs.h>
     77   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     78  1.16   thorpej #if 0
     79   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80  1.16   thorpej #else
     81  1.27   thorpej __RCSID("$NetBSD: kvm_proc.c,v 1.27 1998/09/09 00:31:25 thorpej Exp $");
     82  1.16   thorpej #endif
     83   1.1       cgd #endif /* LIBC_SCCS and not lint */
     84   1.1       cgd 
     85   1.1       cgd /*
     86   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     88   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     90   1.1       cgd  */
     91   1.1       cgd 
     92   1.1       cgd #include <sys/param.h>
     93   1.1       cgd #include <sys/user.h>
     94   1.1       cgd #include <sys/proc.h>
     95   1.1       cgd #include <sys/exec.h>
     96   1.1       cgd #include <sys/stat.h>
     97   1.1       cgd #include <sys/ioctl.h>
     98   1.1       cgd #include <sys/tty.h>
     99   1.7       cgd #include <stdlib.h>
    100  1.10   mycroft #include <string.h>
    101   1.1       cgd #include <unistd.h>
    102   1.1       cgd #include <nlist.h>
    103   1.1       cgd #include <kvm.h>
    104   1.1       cgd 
    105   1.1       cgd #include <vm/vm.h>
    106   1.1       cgd #include <vm/vm_param.h>
    107   1.1       cgd #include <vm/swap_pager.h>
    108   1.1       cgd 
    109  1.23       chs #if defined(UVM)
    110  1.23       chs #include <uvm/uvm_extern.h>
    111  1.23       chs #endif
    112  1.23       chs 
    113   1.1       cgd #include <sys/sysctl.h>
    114   1.1       cgd 
    115   1.1       cgd #include <limits.h>
    116   1.1       cgd #include <db.h>
    117   1.1       cgd #include <paths.h>
    118   1.1       cgd 
    119   1.1       cgd #include "kvm_private.h"
    120   1.1       cgd 
    121   1.2   mycroft #define KREAD(kd, addr, obj) \
    122   1.2   mycroft 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
    123   1.2   mycroft 
    124  1.20  drochner char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
    125  1.23       chs #if !defined(UVM)
    126  1.20  drochner int		_kvm_coreinit __P((kvm_t *));
    127  1.15       cgd int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
    128  1.15       cgd int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
    129  1.23       chs #endif
    130  1.15       cgd ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    131  1.15       cgd 		    size_t));
    132  1.15       cgd 
    133  1.15       cgd static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
    134  1.15       cgd 		    int));
    135  1.27   thorpej static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    136  1.27   thorpej 		    int));
    137  1.15       cgd static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    138  1.15       cgd 		    void (*)(struct ps_strings *, u_long *, int *)));
    139  1.15       cgd static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    140  1.15       cgd 		    struct kinfo_proc *, int));
    141  1.15       cgd static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    142  1.15       cgd static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    143  1.15       cgd static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    144   1.2   mycroft 
    145   1.8   mycroft char *
    146   1.8   mycroft _kvm_uread(kd, p, va, cnt)
    147   1.1       cgd 	kvm_t *kd;
    148   1.1       cgd 	const struct proc *p;
    149   1.1       cgd 	u_long va;
    150   1.1       cgd 	u_long *cnt;
    151   1.1       cgd {
    152  1.21     perry 	u_long addr, head;
    153  1.21     perry 	u_long offset;
    154   1.1       cgd 	struct vm_map_entry vme;
    155  1.23       chs #if defined(UVM)
    156  1.23       chs 	struct vm_amap amap;
    157  1.23       chs 	struct vm_anon *anonp, anon;
    158  1.23       chs 	struct vm_page pg;
    159  1.23       chs 	int slot;
    160  1.23       chs #else
    161   1.1       cgd 	struct vm_object vmo;
    162   1.8   mycroft 	int rv;
    163  1.23       chs #endif
    164   1.1       cgd 
    165   1.6   mycroft 	if (kd->swapspc == 0) {
    166   1.6   mycroft 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    167   1.6   mycroft 		if (kd->swapspc == 0)
    168   1.5   deraadt 			return (0);
    169   1.5   deraadt 	}
    170   1.8   mycroft 
    171   1.1       cgd 	/*
    172   1.1       cgd 	 * Look through the address map for the memory object
    173   1.1       cgd 	 * that corresponds to the given virtual address.
    174   1.1       cgd 	 * The header just has the entire valid range.
    175   1.1       cgd 	 */
    176   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    177   1.1       cgd 	addr = head;
    178   1.1       cgd 	while (1) {
    179   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    180   1.1       cgd 			return (0);
    181   1.1       cgd 
    182  1.23       chs #if defined(UVM)
    183  1.23       chs 		if (va >= vme.start && va < vme.end &&
    184  1.23       chs 		    vme.aref.ar_amap != NULL)
    185  1.23       chs 			break;
    186  1.23       chs 
    187  1.23       chs #else
    188   1.2   mycroft 		if (va >= vme.start && va < vme.end &&
    189   1.1       cgd 		    vme.object.vm_object != 0)
    190   1.1       cgd 			break;
    191  1.23       chs #endif
    192   1.1       cgd 
    193   1.1       cgd 		addr = (u_long)vme.next;
    194   1.2   mycroft 		if (addr == head)
    195   1.1       cgd 			return (0);
    196  1.23       chs 
    197   1.1       cgd 	}
    198  1.23       chs #if defined(UVM)
    199   1.2   mycroft 
    200   1.1       cgd 	/*
    201  1.23       chs 	 * we found the map entry, now to find the object...
    202  1.23       chs 	 */
    203  1.23       chs 	if (vme.aref.ar_amap == NULL)
    204  1.23       chs 		return NULL;
    205  1.23       chs 
    206  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    207  1.23       chs 	if (KREAD(kd, addr, &amap))
    208  1.23       chs 		return NULL;
    209  1.23       chs 
    210  1.23       chs 	offset = va - vme.start;
    211  1.23       chs 	slot = offset / kd->nbpg + vme.aref.ar_slotoff;
    212  1.23       chs 	/* sanity-check slot number */
    213  1.23       chs 	if (slot  > amap.am_nslot)
    214  1.23       chs 		return NULL;
    215  1.23       chs 
    216  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    217  1.23       chs 	if (KREAD(kd, addr, &anonp))
    218  1.23       chs 		return NULL;
    219  1.23       chs 
    220  1.23       chs 	addr = (u_long)anonp;
    221  1.23       chs 	if (KREAD(kd, addr, &anon))
    222  1.23       chs 		return NULL;
    223  1.23       chs 
    224  1.23       chs 	addr = (u_long)anon.u.an_page;
    225  1.23       chs 	if (addr) {
    226  1.23       chs 		if (KREAD(kd, addr, &pg))
    227  1.23       chs 			return NULL;
    228  1.23       chs 
    229  1.24   thorpej 		if (pread(kd->pmfd, kd->swapspc, kd->nbpg,
    230  1.24   thorpej 		    (off_t)pg.phys_addr) != kd->nbpg)
    231  1.23       chs 			return NULL;
    232  1.23       chs 	}
    233  1.23       chs 	else {
    234  1.24   thorpej 		if (pread(kd->swfd, kd->swapspc, kd->nbpg,
    235  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    236  1.23       chs 			return NULL;
    237  1.23       chs 	}
    238  1.23       chs #else
    239  1.23       chs 	/*
    240   1.1       cgd 	 * We found the right object -- follow shadow links.
    241   1.1       cgd 	 */
    242   1.1       cgd 	offset = va - vme.start + vme.offset;
    243   1.1       cgd 	addr = (u_long)vme.object.vm_object;
    244   1.8   mycroft 
    245   1.1       cgd 	while (1) {
    246   1.8   mycroft 		/* Try reading the page from core first. */
    247   1.8   mycroft 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    248   1.8   mycroft 			break;
    249   1.8   mycroft 
    250   1.2   mycroft 		if (KREAD(kd, addr, &vmo))
    251   1.1       cgd 			return (0);
    252   1.2   mycroft 
    253   1.2   mycroft 		/* If there is a pager here, see if it has the page. */
    254   1.2   mycroft 		if (vmo.pager != 0 &&
    255   1.8   mycroft 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    256   1.2   mycroft 			break;
    257   1.2   mycroft 
    258   1.2   mycroft 		/* Move down the shadow chain. */
    259   1.1       cgd 		addr = (u_long)vmo.shadow;
    260   1.1       cgd 		if (addr == 0)
    261   1.2   mycroft 			return (0);
    262   1.1       cgd 		offset += vmo.shadow_offset;
    263   1.1       cgd 	}
    264   1.2   mycroft 
    265   1.8   mycroft 	if (rv == -1)
    266   1.8   mycroft 		return (0);
    267  1.23       chs #endif
    268   1.8   mycroft 
    269   1.2   mycroft 	/* Found the page. */
    270   1.6   mycroft 	offset %= kd->nbpg;
    271   1.6   mycroft 	*cnt = kd->nbpg - offset;
    272   1.6   mycroft 	return (&kd->swapspc[offset]);
    273   1.2   mycroft }
    274   1.2   mycroft 
    275  1.23       chs #if !defined(UVM)
    276  1.23       chs 
    277   1.8   mycroft #define	vm_page_hash(kd, object, offset) \
    278   1.8   mycroft 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    279   1.8   mycroft 
    280   1.8   mycroft int
    281   1.8   mycroft _kvm_coreinit(kd)
    282   1.8   mycroft 	kvm_t *kd;
    283   1.8   mycroft {
    284   1.8   mycroft 	struct nlist nlist[3];
    285   1.8   mycroft 
    286   1.8   mycroft 	nlist[0].n_name = "_vm_page_buckets";
    287   1.8   mycroft 	nlist[1].n_name = "_vm_page_hash_mask";
    288   1.8   mycroft 	nlist[2].n_name = 0;
    289   1.8   mycroft 	if (kvm_nlist(kd, nlist) != 0)
    290   1.8   mycroft 		return (-1);
    291   1.8   mycroft 
    292   1.8   mycroft 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    293   1.8   mycroft 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    294   1.8   mycroft 		return (-1);
    295   1.8   mycroft 
    296   1.8   mycroft 	return (0);
    297   1.8   mycroft }
    298   1.8   mycroft 
    299   1.8   mycroft int
    300   1.8   mycroft _kvm_readfromcore(kd, object, offset)
    301   1.8   mycroft 	kvm_t *kd;
    302   1.8   mycroft 	u_long object, offset;
    303   1.8   mycroft {
    304   1.8   mycroft 	u_long addr;
    305   1.8   mycroft 	struct pglist bucket;
    306   1.8   mycroft 	struct vm_page mem;
    307   1.8   mycroft 	off_t seekpoint;
    308   1.8   mycroft 
    309   1.8   mycroft 	if (kd->vm_page_buckets == 0 &&
    310   1.8   mycroft 	    _kvm_coreinit(kd))
    311   1.8   mycroft 		return (-1);
    312   1.8   mycroft 
    313   1.8   mycroft 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    314   1.8   mycroft 	if (KREAD(kd, addr, &bucket))
    315   1.8   mycroft 		return (-1);
    316   1.8   mycroft 
    317   1.8   mycroft 	addr = (u_long)bucket.tqh_first;
    318   1.8   mycroft 	offset &= ~(kd->nbpg -1);
    319   1.8   mycroft 	while (1) {
    320   1.8   mycroft 		if (addr == 0)
    321   1.8   mycroft 			return (0);
    322   1.8   mycroft 
    323   1.8   mycroft 		if (KREAD(kd, addr, &mem))
    324   1.8   mycroft 			return (-1);
    325   1.8   mycroft 
    326   1.8   mycroft 		if ((u_long)mem.object == object &&
    327   1.8   mycroft 		    (u_long)mem.offset == offset)
    328   1.8   mycroft 			break;
    329   1.8   mycroft 
    330   1.8   mycroft 		addr = (u_long)mem.hashq.tqe_next;
    331   1.8   mycroft 	}
    332   1.8   mycroft 
    333   1.8   mycroft 	seekpoint = mem.phys_addr;
    334   1.8   mycroft 
    335  1.24   thorpej 	if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    336   1.8   mycroft 		return (-1);
    337   1.8   mycroft 
    338   1.8   mycroft 	return (1);
    339   1.8   mycroft }
    340   1.8   mycroft 
    341   1.2   mycroft int
    342   1.6   mycroft _kvm_readfrompager(kd, vmop, offset)
    343   1.2   mycroft 	kvm_t *kd;
    344   1.2   mycroft 	struct vm_object *vmop;
    345   1.2   mycroft 	u_long offset;
    346   1.8   mycroft {
    347   1.2   mycroft 	u_long addr;
    348   1.2   mycroft 	struct pager_struct pager;
    349   1.2   mycroft 	struct swpager swap;
    350   1.2   mycroft 	int ix;
    351   1.2   mycroft 	struct swblock swb;
    352   1.8   mycroft 	off_t seekpoint;
    353   1.2   mycroft 
    354   1.2   mycroft 	/* Read in the pager info and make sure it's a swap device. */
    355   1.2   mycroft 	addr = (u_long)vmop->pager;
    356   1.2   mycroft 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    357   1.8   mycroft 		return (-1);
    358   1.1       cgd 
    359   1.2   mycroft 	/* Read in the swap_pager private data. */
    360   1.2   mycroft 	addr = (u_long)pager.pg_data;
    361   1.2   mycroft 	if (KREAD(kd, addr, &swap))
    362   1.8   mycroft 		return (-1);
    363   1.1       cgd 
    364   1.1       cgd 	/*
    365   1.2   mycroft 	 * Calculate the paging offset, and make sure it's within the
    366   1.2   mycroft 	 * bounds of the pager.
    367   1.1       cgd 	 */
    368   1.2   mycroft 	offset += vmop->paging_offset;
    369   1.1       cgd 	ix = offset / dbtob(swap.sw_bsize);
    370   1.2   mycroft #if 0
    371   1.1       cgd 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    372   1.8   mycroft 		return (-1);
    373   1.2   mycroft #else
    374   1.2   mycroft 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    375   1.2   mycroft 		int i;
    376   1.2   mycroft 		printf("BUG BUG BUG BUG:\n");
    377  1.17     mikel 		printf("object %p offset %lx pgoffset %lx ",
    378  1.17     mikel 		    vmop, offset - vmop->paging_offset,
    379  1.17     mikel 		    (u_long)vmop->paging_offset);
    380  1.17     mikel 		printf("pager %p swpager %p\n",
    381   1.2   mycroft 		    vmop->pager, pager.pg_data);
    382  1.17     mikel 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    383  1.17     mikel 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    384   1.2   mycroft 		    swap.sw_nblocks);
    385  1.20  drochner 		for (i = 0; i < swap.sw_nblocks; i++) {
    386  1.20  drochner 			addr = (u_long)&swap.sw_blocks[i];
    387   1.2   mycroft 			if (KREAD(kd, addr, &swb))
    388   1.2   mycroft 				return (0);
    389  1.20  drochner 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    390   1.2   mycroft 			    swb.swb_block, swb.swb_mask);
    391   1.2   mycroft 		}
    392   1.8   mycroft 		return (-1);
    393   1.2   mycroft 	}
    394   1.2   mycroft #endif
    395   1.1       cgd 
    396   1.2   mycroft 	/* Read in the swap records. */
    397   1.1       cgd 	addr = (u_long)&swap.sw_blocks[ix];
    398   1.2   mycroft 	if (KREAD(kd, addr, &swb))
    399   1.8   mycroft 		return (-1);
    400   1.1       cgd 
    401   1.2   mycroft 	/* Calculate offset within pager. */
    402   1.2   mycroft 	offset %= dbtob(swap.sw_bsize);
    403   1.1       cgd 
    404   1.2   mycroft 	/* Check that the page is actually present. */
    405   1.6   mycroft 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    406   1.1       cgd 		return (0);
    407   1.1       cgd 
    408   1.8   mycroft 	if (!ISALIVE(kd))
    409   1.8   mycroft 		return (-1);
    410   1.8   mycroft 
    411   1.2   mycroft 	/* Calculate the physical address and read the page. */
    412   1.6   mycroft 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    413   1.8   mycroft 
    414  1.24   thorpej 	if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    415   1.8   mycroft 		return (-1);
    416   1.1       cgd 
    417   1.2   mycroft 	return (1);
    418   1.1       cgd }
    419  1.23       chs #endif /* !defined(UVM) */
    420   1.1       cgd 
    421   1.1       cgd /*
    422   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    423   1.1       cgd  * at most maxcnt procs.
    424   1.1       cgd  */
    425   1.1       cgd static int
    426   1.1       cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    427   1.1       cgd 	kvm_t *kd;
    428   1.1       cgd 	int what, arg;
    429   1.1       cgd 	struct proc *p;
    430   1.1       cgd 	struct kinfo_proc *bp;
    431   1.1       cgd 	int maxcnt;
    432   1.1       cgd {
    433  1.21     perry 	int cnt = 0;
    434   1.1       cgd 	struct eproc eproc;
    435   1.1       cgd 	struct pgrp pgrp;
    436   1.1       cgd 	struct session sess;
    437   1.1       cgd 	struct tty tty;
    438   1.1       cgd 	struct proc proc;
    439   1.1       cgd 
    440   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    441   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    442   1.1       cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    443   1.1       cgd 			return (-1);
    444   1.1       cgd 		}
    445   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    446  1.20  drochner 			(void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    447   1.1       cgd 			      &eproc.e_ucred);
    448   1.1       cgd 
    449   1.1       cgd 		switch(what) {
    450   1.1       cgd 
    451   1.1       cgd 		case KERN_PROC_PID:
    452   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    453   1.1       cgd 				continue;
    454   1.1       cgd 			break;
    455   1.1       cgd 
    456   1.1       cgd 		case KERN_PROC_UID:
    457   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    458   1.1       cgd 				continue;
    459   1.1       cgd 			break;
    460   1.1       cgd 
    461   1.1       cgd 		case KERN_PROC_RUID:
    462   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    463   1.1       cgd 				continue;
    464   1.1       cgd 			break;
    465   1.1       cgd 		}
    466   1.1       cgd 		/*
    467   1.1       cgd 		 * We're going to add another proc to the set.  If this
    468   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    469   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    470   1.1       cgd 		 */
    471   1.1       cgd 		if (cnt >= maxcnt) {
    472   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    473   1.1       cgd 			return (-1);
    474   1.1       cgd 		}
    475   1.1       cgd 		/*
    476   1.1       cgd 		 * gather eproc
    477   1.1       cgd 		 */
    478   1.1       cgd 		eproc.e_paddr = p;
    479   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    480   1.1       cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    481   1.1       cgd 				 proc.p_pgrp);
    482   1.1       cgd 			return (-1);
    483   1.1       cgd 		}
    484   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    485   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    486   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    487   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    488   1.1       cgd 			_kvm_err(kd, kd->program, "can't read session at %x",
    489   1.1       cgd 				pgrp.pg_session);
    490   1.1       cgd 			return (-1);
    491   1.1       cgd 		}
    492   1.1       cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    493   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    494   1.1       cgd 				_kvm_err(kd, kd->program,
    495   1.1       cgd 					 "can't read tty at %x", sess.s_ttyp);
    496   1.1       cgd 				return (-1);
    497   1.1       cgd 			}
    498   1.1       cgd 			eproc.e_tdev = tty.t_dev;
    499   1.1       cgd 			eproc.e_tsess = tty.t_session;
    500   1.1       cgd 			if (tty.t_pgrp != NULL) {
    501   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    502   1.1       cgd 					_kvm_err(kd, kd->program,
    503   1.1       cgd 						 "can't read tpgrp at &x",
    504   1.1       cgd 						tty.t_pgrp);
    505   1.1       cgd 					return (-1);
    506   1.1       cgd 				}
    507   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    508   1.1       cgd 			} else
    509   1.1       cgd 				eproc.e_tpgid = -1;
    510   1.1       cgd 		} else
    511   1.1       cgd 			eproc.e_tdev = NODEV;
    512   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    513   1.1       cgd 		if (sess.s_leader == p)
    514   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    515   1.1       cgd 		if (proc.p_wmesg)
    516   1.1       cgd 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    517   1.1       cgd 			    eproc.e_wmesg, WMESGLEN);
    518   1.1       cgd 
    519   1.1       cgd 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    520   1.1       cgd 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    521   1.9        pk 
    522   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    523   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    524   1.1       cgd 
    525   1.1       cgd 		switch (what) {
    526   1.1       cgd 
    527   1.1       cgd 		case KERN_PROC_PGRP:
    528   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    529   1.1       cgd 				continue;
    530   1.1       cgd 			break;
    531   1.1       cgd 
    532   1.1       cgd 		case KERN_PROC_TTY:
    533   1.1       cgd 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    534   1.1       cgd 			     eproc.e_tdev != (dev_t)arg)
    535   1.1       cgd 				continue;
    536   1.1       cgd 			break;
    537   1.1       cgd 		}
    538  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    539  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    540   1.1       cgd 		++bp;
    541   1.1       cgd 		++cnt;
    542   1.1       cgd 	}
    543   1.1       cgd 	return (cnt);
    544   1.1       cgd }
    545   1.1       cgd 
    546   1.1       cgd /*
    547   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    548   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    549   1.1       cgd  */
    550   1.1       cgd static int
    551  1.27   thorpej kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    552   1.1       cgd 	kvm_t *kd;
    553   1.1       cgd 	int what, arg;
    554   1.1       cgd 	u_long a_allproc;
    555  1.27   thorpej 	u_long a_deadproc;
    556   1.1       cgd 	u_long a_zombproc;
    557   1.1       cgd 	int maxcnt;
    558   1.1       cgd {
    559  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    560  1.27   thorpej 	int acnt, dcnt, zcnt;
    561   1.1       cgd 	struct proc *p;
    562   1.1       cgd 
    563   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    564   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    565   1.1       cgd 		return (-1);
    566   1.1       cgd 	}
    567   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    568   1.1       cgd 	if (acnt < 0)
    569   1.1       cgd 		return (acnt);
    570   1.1       cgd 
    571  1.27   thorpej 	if (KREAD(kd, a_deadproc, &p)) {
    572  1.27   thorpej 		_kvm_err(kd, kd->program, "cannot read deadproc");
    573  1.27   thorpej 		return (-1);
    574  1.27   thorpej 	}
    575  1.27   thorpej 
    576  1.27   thorpej 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    577  1.27   thorpej 	if (dcnt < 0)
    578  1.27   thorpej 		dcnt = 0;
    579  1.27   thorpej 
    580   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    581   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    582   1.1       cgd 		return (-1);
    583   1.1       cgd 	}
    584  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    585  1.27   thorpej 	    maxcnt - (acnt + dcnt));
    586   1.1       cgd 	if (zcnt < 0)
    587   1.1       cgd 		zcnt = 0;
    588   1.1       cgd 
    589   1.1       cgd 	return (acnt + zcnt);
    590   1.1       cgd }
    591   1.1       cgd 
    592   1.1       cgd struct kinfo_proc *
    593   1.1       cgd kvm_getprocs(kd, op, arg, cnt)
    594   1.1       cgd 	kvm_t *kd;
    595   1.1       cgd 	int op, arg;
    596   1.1       cgd 	int *cnt;
    597   1.1       cgd {
    598   1.7       cgd 	size_t size;
    599   1.7       cgd 	int mib[4], st, nprocs;
    600   1.1       cgd 
    601   1.1       cgd 	if (kd->procbase != 0) {
    602   1.1       cgd 		free((void *)kd->procbase);
    603   1.1       cgd 		/*
    604   1.1       cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    605   1.1       cgd 		 * kvm_close() will free it again.
    606   1.1       cgd 		 */
    607   1.1       cgd 		kd->procbase = 0;
    608   1.1       cgd 	}
    609   1.1       cgd 	if (ISALIVE(kd)) {
    610   1.1       cgd 		size = 0;
    611   1.1       cgd 		mib[0] = CTL_KERN;
    612   1.1       cgd 		mib[1] = KERN_PROC;
    613   1.1       cgd 		mib[2] = op;
    614   1.1       cgd 		mib[3] = arg;
    615   1.1       cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    616   1.1       cgd 		if (st == -1) {
    617   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    618   1.1       cgd 			return (0);
    619   1.1       cgd 		}
    620   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    621   1.1       cgd 		if (kd->procbase == 0)
    622   1.1       cgd 			return (0);
    623   1.1       cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    624   1.1       cgd 		if (st == -1) {
    625   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    626   1.1       cgd 			return (0);
    627   1.1       cgd 		}
    628   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    629   1.1       cgd 			_kvm_err(kd, kd->program,
    630   1.1       cgd 				"proc size mismatch (%d total, %d chunks)",
    631   1.1       cgd 				size, sizeof(struct kinfo_proc));
    632   1.1       cgd 			return (0);
    633   1.1       cgd 		}
    634   1.1       cgd 		nprocs = size / sizeof(struct kinfo_proc);
    635   1.1       cgd 	} else {
    636  1.27   thorpej 		struct nlist nl[5], *p;
    637   1.1       cgd 
    638   1.1       cgd 		nl[0].n_name = "_nprocs";
    639   1.1       cgd 		nl[1].n_name = "_allproc";
    640  1.27   thorpej 		nl[2].n_name = "_deadproc";
    641  1.27   thorpej 		nl[3].n_name = "_zombproc";
    642  1.27   thorpej 		nl[4].n_name = 0;
    643   1.1       cgd 
    644   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    645   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    646   1.1       cgd 				;
    647   1.1       cgd 			_kvm_err(kd, kd->program,
    648   1.1       cgd 				 "%s: no such symbol", p->n_name);
    649   1.1       cgd 			return (0);
    650   1.1       cgd 		}
    651   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    652   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    653   1.1       cgd 			return (0);
    654   1.1       cgd 		}
    655   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    656   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    657   1.1       cgd 		if (kd->procbase == 0)
    658   1.1       cgd 			return (0);
    659   1.1       cgd 
    660   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    661  1.27   thorpej 		    nl[2].n_value, nl[3].n_value, nprocs);
    662   1.1       cgd #ifdef notdef
    663   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    664   1.1       cgd 		(void)realloc(kd->procbase, size);
    665   1.1       cgd #endif
    666   1.1       cgd 	}
    667   1.1       cgd 	*cnt = nprocs;
    668   1.1       cgd 	return (kd->procbase);
    669   1.1       cgd }
    670   1.1       cgd 
    671   1.1       cgd void
    672   1.1       cgd _kvm_freeprocs(kd)
    673   1.1       cgd 	kvm_t *kd;
    674   1.1       cgd {
    675   1.1       cgd 	if (kd->procbase) {
    676   1.1       cgd 		free(kd->procbase);
    677   1.1       cgd 		kd->procbase = 0;
    678   1.1       cgd 	}
    679   1.1       cgd }
    680   1.1       cgd 
    681   1.1       cgd void *
    682   1.1       cgd _kvm_realloc(kd, p, n)
    683   1.1       cgd 	kvm_t *kd;
    684   1.1       cgd 	void *p;
    685   1.1       cgd 	size_t n;
    686   1.1       cgd {
    687   1.1       cgd 	void *np = (void *)realloc(p, n);
    688   1.1       cgd 
    689   1.1       cgd 	if (np == 0)
    690   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    691   1.1       cgd 	return (np);
    692   1.1       cgd }
    693   1.1       cgd 
    694   1.1       cgd #ifndef MAX
    695   1.1       cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
    696   1.1       cgd #endif
    697   1.1       cgd 
    698   1.1       cgd /*
    699   1.1       cgd  * Read in an argument vector from the user address space of process p.
    700   1.1       cgd  * addr if the user-space base address of narg null-terminated contiguous
    701   1.1       cgd  * strings.  This is used to read in both the command arguments and
    702   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    703   1.1       cgd  */
    704   1.1       cgd static char **
    705   1.1       cgd kvm_argv(kd, p, addr, narg, maxcnt)
    706   1.1       cgd 	kvm_t *kd;
    707  1.15       cgd 	const struct proc *p;
    708  1.21     perry 	u_long addr;
    709  1.21     perry 	int narg;
    710  1.21     perry 	int maxcnt;
    711  1.21     perry {
    712  1.21     perry 	char *np, *cp, *ep, *ap;
    713  1.21     perry 	u_long oaddr = -1;
    714  1.21     perry 	int len, cc;
    715  1.21     perry 	char **argv;
    716   1.1       cgd 
    717   1.1       cgd 	/*
    718   1.1       cgd 	 * Check that there aren't an unreasonable number of agruments,
    719   1.1       cgd 	 * and that the address is in user space.
    720   1.1       cgd 	 */
    721  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    722   1.1       cgd 		return (0);
    723   1.1       cgd 
    724   1.1       cgd 	if (kd->argv == 0) {
    725   1.1       cgd 		/*
    726   1.1       cgd 		 * Try to avoid reallocs.
    727   1.1       cgd 		 */
    728   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    729   1.1       cgd 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    730   1.1       cgd 						sizeof(*kd->argv));
    731   1.1       cgd 		if (kd->argv == 0)
    732   1.1       cgd 			return (0);
    733   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    734   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    735   1.1       cgd 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    736   1.1       cgd 						sizeof(*kd->argv));
    737   1.1       cgd 		if (kd->argv == 0)
    738   1.1       cgd 			return (0);
    739   1.1       cgd 	}
    740   1.1       cgd 	if (kd->argspc == 0) {
    741   1.6   mycroft 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    742   1.1       cgd 		if (kd->argspc == 0)
    743   1.1       cgd 			return (0);
    744   1.6   mycroft 		kd->arglen = kd->nbpg;
    745   1.1       cgd 	}
    746  1.10   mycroft 	if (kd->argbuf == 0) {
    747  1.10   mycroft 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    748  1.10   mycroft 		if (kd->argbuf == 0)
    749  1.10   mycroft 			return (0);
    750  1.10   mycroft 	}
    751  1.10   mycroft 	cc = sizeof(char *) * narg;
    752  1.10   mycroft 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    753  1.10   mycroft 		return (0);
    754  1.10   mycroft 	ap = np = kd->argspc;
    755   1.1       cgd 	argv = kd->argv;
    756   1.1       cgd 	len = 0;
    757   1.1       cgd 	/*
    758   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    759   1.1       cgd 	 */
    760  1.10   mycroft 	while (argv < kd->argv + narg && *argv != 0) {
    761  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    762  1.10   mycroft 		if (addr != oaddr) {
    763  1.10   mycroft 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    764  1.10   mycroft 			    kd->nbpg)
    765  1.10   mycroft 				return (0);
    766  1.10   mycroft 			oaddr = addr;
    767  1.10   mycroft 		}
    768  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    769  1.10   mycroft 		cp = kd->argbuf + addr;
    770  1.10   mycroft 		cc = kd->nbpg - addr;
    771   1.1       cgd 		if (maxcnt > 0 && cc > maxcnt - len)
    772   1.1       cgd 			cc = maxcnt - len;;
    773  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    774  1.10   mycroft 		if (ep != 0)
    775  1.10   mycroft 			cc = ep - cp + 1;
    776   1.1       cgd 		if (len + cc > kd->arglen) {
    777  1.21     perry 			int off;
    778  1.21     perry 			char **pp;
    779  1.21     perry 			char *op = kd->argspc;
    780   1.1       cgd 
    781   1.1       cgd 			kd->arglen *= 2;
    782   1.1       cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    783   1.1       cgd 							  kd->arglen);
    784   1.1       cgd 			if (kd->argspc == 0)
    785   1.1       cgd 				return (0);
    786   1.1       cgd 			/*
    787   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    788   1.1       cgd 			 * the string space.
    789   1.1       cgd 			 */
    790   1.1       cgd 			off = kd->argspc - op;
    791  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    792   1.1       cgd 				*pp += off;
    793  1.12   mycroft 			ap += off;
    794  1.12   mycroft 			np += off;
    795   1.1       cgd 		}
    796  1.10   mycroft 		memcpy(np, cp, cc);
    797  1.10   mycroft 		np += cc;
    798   1.1       cgd 		len += cc;
    799  1.10   mycroft 		if (ep != 0) {
    800  1.10   mycroft 			*argv++ = ap;
    801  1.10   mycroft 			ap = np;
    802  1.10   mycroft 		} else
    803  1.10   mycroft 			*argv += cc;
    804   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
    805   1.1       cgd 			/*
    806   1.1       cgd 			 * We're stopping prematurely.  Terminate the
    807  1.10   mycroft 			 * current string.
    808   1.1       cgd 			 */
    809  1.10   mycroft 			if (ep == 0) {
    810  1.10   mycroft 				*np = '\0';
    811  1.14   mycroft 				*argv++ = ap;
    812  1.10   mycroft 			}
    813  1.10   mycroft 			break;
    814   1.1       cgd 		}
    815   1.1       cgd 	}
    816  1.10   mycroft 	/* Make sure argv is terminated. */
    817  1.10   mycroft 	*argv = 0;
    818  1.10   mycroft 	return (kd->argv);
    819   1.1       cgd }
    820   1.1       cgd 
    821   1.1       cgd static void
    822   1.1       cgd ps_str_a(p, addr, n)
    823   1.1       cgd 	struct ps_strings *p;
    824   1.1       cgd 	u_long *addr;
    825   1.1       cgd 	int *n;
    826   1.1       cgd {
    827   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
    828   1.1       cgd 	*n = p->ps_nargvstr;
    829   1.1       cgd }
    830   1.1       cgd 
    831   1.1       cgd static void
    832   1.1       cgd ps_str_e(p, addr, n)
    833   1.1       cgd 	struct ps_strings *p;
    834   1.1       cgd 	u_long *addr;
    835   1.1       cgd 	int *n;
    836   1.1       cgd {
    837   1.1       cgd 	*addr = (u_long)p->ps_envstr;
    838   1.1       cgd 	*n = p->ps_nenvstr;
    839   1.1       cgd }
    840   1.1       cgd 
    841   1.1       cgd /*
    842   1.1       cgd  * Determine if the proc indicated by p is still active.
    843   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
    844   1.1       cgd  * being wrong are very low.
    845   1.1       cgd  */
    846   1.1       cgd static int
    847   1.1       cgd proc_verify(kd, kernp, p)
    848   1.1       cgd 	kvm_t *kd;
    849   1.1       cgd 	u_long kernp;
    850   1.1       cgd 	const struct proc *p;
    851   1.1       cgd {
    852   1.1       cgd 	struct proc kernproc;
    853   1.1       cgd 
    854   1.1       cgd 	/*
    855   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
    856   1.1       cgd 	 * to the cost of the read system call.
    857   1.1       cgd 	 */
    858   1.1       cgd 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    859   1.1       cgd 	    sizeof(kernproc))
    860   1.1       cgd 		return (0);
    861   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
    862   1.1       cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    863   1.1       cgd }
    864   1.1       cgd 
    865   1.1       cgd static char **
    866   1.1       cgd kvm_doargv(kd, kp, nchr, info)
    867   1.1       cgd 	kvm_t *kd;
    868   1.1       cgd 	const struct kinfo_proc *kp;
    869   1.1       cgd 	int nchr;
    870  1.10   mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
    871   1.1       cgd {
    872  1.21     perry 	const struct proc *p = &kp->kp_proc;
    873  1.21     perry 	char **ap;
    874   1.1       cgd 	u_long addr;
    875   1.1       cgd 	int cnt;
    876   1.1       cgd 	struct ps_strings arginfo;
    877   1.1       cgd 
    878   1.1       cgd 	/*
    879   1.1       cgd 	 * Pointers are stored at the top of the user stack.
    880   1.1       cgd 	 */
    881  1.18       gwr 	if (p->p_stat == SZOMB)
    882  1.18       gwr 		return (0);
    883  1.18       gwr 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    884  1.18       gwr 	    (char *)&arginfo, sizeof(arginfo));
    885  1.18       gwr 	if (cnt != sizeof(arginfo))
    886   1.1       cgd 		return (0);
    887   1.1       cgd 
    888   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
    889   1.3   mycroft 	if (cnt == 0)
    890   1.3   mycroft 		return (0);
    891   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    892   1.1       cgd 	/*
    893   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
    894   1.1       cgd 	 */
    895   1.1       cgd 	if (ap != 0 && ISALIVE(kd) &&
    896   1.1       cgd 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    897   1.1       cgd 		ap = 0;
    898   1.1       cgd 	return (ap);
    899   1.1       cgd }
    900   1.1       cgd 
    901   1.1       cgd /*
    902   1.1       cgd  * Get the command args.  This code is now machine independent.
    903   1.1       cgd  */
    904   1.1       cgd char **
    905   1.1       cgd kvm_getargv(kd, kp, nchr)
    906   1.1       cgd 	kvm_t *kd;
    907   1.1       cgd 	const struct kinfo_proc *kp;
    908   1.1       cgd 	int nchr;
    909   1.1       cgd {
    910   1.1       cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    911   1.1       cgd }
    912   1.1       cgd 
    913   1.1       cgd char **
    914   1.1       cgd kvm_getenvv(kd, kp, nchr)
    915   1.1       cgd 	kvm_t *kd;
    916   1.1       cgd 	const struct kinfo_proc *kp;
    917   1.1       cgd 	int nchr;
    918   1.1       cgd {
    919   1.1       cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    920   1.1       cgd }
    921   1.1       cgd 
    922   1.1       cgd /*
    923   1.1       cgd  * Read from user space.  The user context is given by p.
    924   1.1       cgd  */
    925   1.1       cgd ssize_t
    926   1.1       cgd kvm_uread(kd, p, uva, buf, len)
    927   1.1       cgd 	kvm_t *kd;
    928  1.21     perry 	const struct proc *p;
    929  1.21     perry 	u_long uva;
    930  1.21     perry 	char *buf;
    931  1.21     perry 	size_t len;
    932   1.1       cgd {
    933  1.21     perry 	char *cp;
    934   1.1       cgd 
    935   1.1       cgd 	cp = buf;
    936   1.1       cgd 	while (len > 0) {
    937  1.21     perry 		int cc;
    938  1.21     perry 		char *dp;
    939  1.15       cgd 		u_long cnt;
    940   1.8   mycroft 
    941   1.8   mycroft 		dp = _kvm_uread(kd, p, uva, &cnt);
    942   1.8   mycroft 		if (dp == 0) {
    943   1.8   mycroft 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    944   1.8   mycroft 			return (0);
    945   1.8   mycroft 		}
    946   1.8   mycroft 		cc = MIN(cnt, len);
    947  1.25     perry 		memcpy(cp, dp, cc);
    948   1.8   mycroft 
    949   1.1       cgd 		cp += cc;
    950   1.1       cgd 		uva += cc;
    951   1.1       cgd 		len -= cc;
    952   1.1       cgd 	}
    953   1.1       cgd 	return (ssize_t)(cp - buf);
    954   1.1       cgd }
    955