kvm_proc.c revision 1.27 1 1.27 thorpej /* $NetBSD: kvm_proc.c,v 1.27 1998/09/09 00:31:25 thorpej Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft * 3. All advertising materials mentioning features or use of this software
19 1.26 mycroft * must display the following acknowledgement:
20 1.26 mycroft * This product includes software developed by the NetBSD
21 1.26 mycroft * Foundation, Inc. and its contributors.
22 1.26 mycroft * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.26 mycroft * contributors may be used to endorse or promote products derived
24 1.26 mycroft * from this software without specific prior written permission.
25 1.26 mycroft *
26 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
37 1.26 mycroft */
38 1.16 thorpej
39 1.1 cgd /*-
40 1.1 cgd * Copyright (c) 1989, 1992, 1993
41 1.1 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * This code is derived from software developed by the Computer Systems
44 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 1.1 cgd * BG 91-66 and contributed to Berkeley.
46 1.1 cgd *
47 1.1 cgd * Redistribution and use in source and binary forms, with or without
48 1.1 cgd * modification, are permitted provided that the following conditions
49 1.1 cgd * are met:
50 1.1 cgd * 1. Redistributions of source code must retain the above copyright
51 1.1 cgd * notice, this list of conditions and the following disclaimer.
52 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 cgd * notice, this list of conditions and the following disclaimer in the
54 1.1 cgd * documentation and/or other materials provided with the distribution.
55 1.1 cgd * 3. All advertising materials mentioning features or use of this software
56 1.1 cgd * must display the following acknowledgement:
57 1.1 cgd * This product includes software developed by the University of
58 1.1 cgd * California, Berkeley and its contributors.
59 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
60 1.1 cgd * may be used to endorse or promote products derived from this software
61 1.1 cgd * without specific prior written permission.
62 1.1 cgd *
63 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 cgd * SUCH DAMAGE.
74 1.1 cgd */
75 1.1 cgd
76 1.19 mikel #include <sys/cdefs.h>
77 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
78 1.16 thorpej #if 0
79 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 1.16 thorpej #else
81 1.27 thorpej __RCSID("$NetBSD: kvm_proc.c,v 1.27 1998/09/09 00:31:25 thorpej Exp $");
82 1.16 thorpej #endif
83 1.1 cgd #endif /* LIBC_SCCS and not lint */
84 1.1 cgd
85 1.1 cgd /*
86 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 1.1 cgd * users of this code, so we've factored it out into a separate module.
88 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 1.1 cgd * most other applications are interested only in open/close/read/nlist).
90 1.1 cgd */
91 1.1 cgd
92 1.1 cgd #include <sys/param.h>
93 1.1 cgd #include <sys/user.h>
94 1.1 cgd #include <sys/proc.h>
95 1.1 cgd #include <sys/exec.h>
96 1.1 cgd #include <sys/stat.h>
97 1.1 cgd #include <sys/ioctl.h>
98 1.1 cgd #include <sys/tty.h>
99 1.7 cgd #include <stdlib.h>
100 1.10 mycroft #include <string.h>
101 1.1 cgd #include <unistd.h>
102 1.1 cgd #include <nlist.h>
103 1.1 cgd #include <kvm.h>
104 1.1 cgd
105 1.1 cgd #include <vm/vm.h>
106 1.1 cgd #include <vm/vm_param.h>
107 1.1 cgd #include <vm/swap_pager.h>
108 1.1 cgd
109 1.23 chs #if defined(UVM)
110 1.23 chs #include <uvm/uvm_extern.h>
111 1.23 chs #endif
112 1.23 chs
113 1.1 cgd #include <sys/sysctl.h>
114 1.1 cgd
115 1.1 cgd #include <limits.h>
116 1.1 cgd #include <db.h>
117 1.1 cgd #include <paths.h>
118 1.1 cgd
119 1.1 cgd #include "kvm_private.h"
120 1.1 cgd
121 1.2 mycroft #define KREAD(kd, addr, obj) \
122 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
123 1.2 mycroft
124 1.20 drochner char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
125 1.23 chs #if !defined(UVM)
126 1.20 drochner int _kvm_coreinit __P((kvm_t *));
127 1.15 cgd int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
128 1.15 cgd int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
129 1.23 chs #endif
130 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
131 1.15 cgd size_t));
132 1.15 cgd
133 1.15 cgd static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
134 1.15 cgd int));
135 1.27 thorpej static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
136 1.27 thorpej int));
137 1.15 cgd static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
138 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
139 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
140 1.15 cgd struct kinfo_proc *, int));
141 1.15 cgd static int proc_verify __P((kvm_t *, u_long, const struct proc *));
142 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
143 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
144 1.2 mycroft
145 1.8 mycroft char *
146 1.8 mycroft _kvm_uread(kd, p, va, cnt)
147 1.1 cgd kvm_t *kd;
148 1.1 cgd const struct proc *p;
149 1.1 cgd u_long va;
150 1.1 cgd u_long *cnt;
151 1.1 cgd {
152 1.21 perry u_long addr, head;
153 1.21 perry u_long offset;
154 1.1 cgd struct vm_map_entry vme;
155 1.23 chs #if defined(UVM)
156 1.23 chs struct vm_amap amap;
157 1.23 chs struct vm_anon *anonp, anon;
158 1.23 chs struct vm_page pg;
159 1.23 chs int slot;
160 1.23 chs #else
161 1.1 cgd struct vm_object vmo;
162 1.8 mycroft int rv;
163 1.23 chs #endif
164 1.1 cgd
165 1.6 mycroft if (kd->swapspc == 0) {
166 1.6 mycroft kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
167 1.6 mycroft if (kd->swapspc == 0)
168 1.5 deraadt return (0);
169 1.5 deraadt }
170 1.8 mycroft
171 1.1 cgd /*
172 1.1 cgd * Look through the address map for the memory object
173 1.1 cgd * that corresponds to the given virtual address.
174 1.1 cgd * The header just has the entire valid range.
175 1.1 cgd */
176 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
177 1.1 cgd addr = head;
178 1.1 cgd while (1) {
179 1.2 mycroft if (KREAD(kd, addr, &vme))
180 1.1 cgd return (0);
181 1.1 cgd
182 1.23 chs #if defined(UVM)
183 1.23 chs if (va >= vme.start && va < vme.end &&
184 1.23 chs vme.aref.ar_amap != NULL)
185 1.23 chs break;
186 1.23 chs
187 1.23 chs #else
188 1.2 mycroft if (va >= vme.start && va < vme.end &&
189 1.1 cgd vme.object.vm_object != 0)
190 1.1 cgd break;
191 1.23 chs #endif
192 1.1 cgd
193 1.1 cgd addr = (u_long)vme.next;
194 1.2 mycroft if (addr == head)
195 1.1 cgd return (0);
196 1.23 chs
197 1.1 cgd }
198 1.23 chs #if defined(UVM)
199 1.2 mycroft
200 1.1 cgd /*
201 1.23 chs * we found the map entry, now to find the object...
202 1.23 chs */
203 1.23 chs if (vme.aref.ar_amap == NULL)
204 1.23 chs return NULL;
205 1.23 chs
206 1.23 chs addr = (u_long)vme.aref.ar_amap;
207 1.23 chs if (KREAD(kd, addr, &amap))
208 1.23 chs return NULL;
209 1.23 chs
210 1.23 chs offset = va - vme.start;
211 1.23 chs slot = offset / kd->nbpg + vme.aref.ar_slotoff;
212 1.23 chs /* sanity-check slot number */
213 1.23 chs if (slot > amap.am_nslot)
214 1.23 chs return NULL;
215 1.23 chs
216 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
217 1.23 chs if (KREAD(kd, addr, &anonp))
218 1.23 chs return NULL;
219 1.23 chs
220 1.23 chs addr = (u_long)anonp;
221 1.23 chs if (KREAD(kd, addr, &anon))
222 1.23 chs return NULL;
223 1.23 chs
224 1.23 chs addr = (u_long)anon.u.an_page;
225 1.23 chs if (addr) {
226 1.23 chs if (KREAD(kd, addr, &pg))
227 1.23 chs return NULL;
228 1.23 chs
229 1.24 thorpej if (pread(kd->pmfd, kd->swapspc, kd->nbpg,
230 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
231 1.23 chs return NULL;
232 1.23 chs }
233 1.23 chs else {
234 1.24 thorpej if (pread(kd->swfd, kd->swapspc, kd->nbpg,
235 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
236 1.23 chs return NULL;
237 1.23 chs }
238 1.23 chs #else
239 1.23 chs /*
240 1.1 cgd * We found the right object -- follow shadow links.
241 1.1 cgd */
242 1.1 cgd offset = va - vme.start + vme.offset;
243 1.1 cgd addr = (u_long)vme.object.vm_object;
244 1.8 mycroft
245 1.1 cgd while (1) {
246 1.8 mycroft /* Try reading the page from core first. */
247 1.8 mycroft if ((rv = _kvm_readfromcore(kd, addr, offset)))
248 1.8 mycroft break;
249 1.8 mycroft
250 1.2 mycroft if (KREAD(kd, addr, &vmo))
251 1.1 cgd return (0);
252 1.2 mycroft
253 1.2 mycroft /* If there is a pager here, see if it has the page. */
254 1.2 mycroft if (vmo.pager != 0 &&
255 1.8 mycroft (rv = _kvm_readfrompager(kd, &vmo, offset)))
256 1.2 mycroft break;
257 1.2 mycroft
258 1.2 mycroft /* Move down the shadow chain. */
259 1.1 cgd addr = (u_long)vmo.shadow;
260 1.1 cgd if (addr == 0)
261 1.2 mycroft return (0);
262 1.1 cgd offset += vmo.shadow_offset;
263 1.1 cgd }
264 1.2 mycroft
265 1.8 mycroft if (rv == -1)
266 1.8 mycroft return (0);
267 1.23 chs #endif
268 1.8 mycroft
269 1.2 mycroft /* Found the page. */
270 1.6 mycroft offset %= kd->nbpg;
271 1.6 mycroft *cnt = kd->nbpg - offset;
272 1.6 mycroft return (&kd->swapspc[offset]);
273 1.2 mycroft }
274 1.2 mycroft
275 1.23 chs #if !defined(UVM)
276 1.23 chs
277 1.8 mycroft #define vm_page_hash(kd, object, offset) \
278 1.8 mycroft (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
279 1.8 mycroft
280 1.8 mycroft int
281 1.8 mycroft _kvm_coreinit(kd)
282 1.8 mycroft kvm_t *kd;
283 1.8 mycroft {
284 1.8 mycroft struct nlist nlist[3];
285 1.8 mycroft
286 1.8 mycroft nlist[0].n_name = "_vm_page_buckets";
287 1.8 mycroft nlist[1].n_name = "_vm_page_hash_mask";
288 1.8 mycroft nlist[2].n_name = 0;
289 1.8 mycroft if (kvm_nlist(kd, nlist) != 0)
290 1.8 mycroft return (-1);
291 1.8 mycroft
292 1.8 mycroft if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
293 1.8 mycroft KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
294 1.8 mycroft return (-1);
295 1.8 mycroft
296 1.8 mycroft return (0);
297 1.8 mycroft }
298 1.8 mycroft
299 1.8 mycroft int
300 1.8 mycroft _kvm_readfromcore(kd, object, offset)
301 1.8 mycroft kvm_t *kd;
302 1.8 mycroft u_long object, offset;
303 1.8 mycroft {
304 1.8 mycroft u_long addr;
305 1.8 mycroft struct pglist bucket;
306 1.8 mycroft struct vm_page mem;
307 1.8 mycroft off_t seekpoint;
308 1.8 mycroft
309 1.8 mycroft if (kd->vm_page_buckets == 0 &&
310 1.8 mycroft _kvm_coreinit(kd))
311 1.8 mycroft return (-1);
312 1.8 mycroft
313 1.8 mycroft addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
314 1.8 mycroft if (KREAD(kd, addr, &bucket))
315 1.8 mycroft return (-1);
316 1.8 mycroft
317 1.8 mycroft addr = (u_long)bucket.tqh_first;
318 1.8 mycroft offset &= ~(kd->nbpg -1);
319 1.8 mycroft while (1) {
320 1.8 mycroft if (addr == 0)
321 1.8 mycroft return (0);
322 1.8 mycroft
323 1.8 mycroft if (KREAD(kd, addr, &mem))
324 1.8 mycroft return (-1);
325 1.8 mycroft
326 1.8 mycroft if ((u_long)mem.object == object &&
327 1.8 mycroft (u_long)mem.offset == offset)
328 1.8 mycroft break;
329 1.8 mycroft
330 1.8 mycroft addr = (u_long)mem.hashq.tqe_next;
331 1.8 mycroft }
332 1.8 mycroft
333 1.8 mycroft seekpoint = mem.phys_addr;
334 1.8 mycroft
335 1.24 thorpej if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
336 1.8 mycroft return (-1);
337 1.8 mycroft
338 1.8 mycroft return (1);
339 1.8 mycroft }
340 1.8 mycroft
341 1.2 mycroft int
342 1.6 mycroft _kvm_readfrompager(kd, vmop, offset)
343 1.2 mycroft kvm_t *kd;
344 1.2 mycroft struct vm_object *vmop;
345 1.2 mycroft u_long offset;
346 1.8 mycroft {
347 1.2 mycroft u_long addr;
348 1.2 mycroft struct pager_struct pager;
349 1.2 mycroft struct swpager swap;
350 1.2 mycroft int ix;
351 1.2 mycroft struct swblock swb;
352 1.8 mycroft off_t seekpoint;
353 1.2 mycroft
354 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
355 1.2 mycroft addr = (u_long)vmop->pager;
356 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
357 1.8 mycroft return (-1);
358 1.1 cgd
359 1.2 mycroft /* Read in the swap_pager private data. */
360 1.2 mycroft addr = (u_long)pager.pg_data;
361 1.2 mycroft if (KREAD(kd, addr, &swap))
362 1.8 mycroft return (-1);
363 1.1 cgd
364 1.1 cgd /*
365 1.2 mycroft * Calculate the paging offset, and make sure it's within the
366 1.2 mycroft * bounds of the pager.
367 1.1 cgd */
368 1.2 mycroft offset += vmop->paging_offset;
369 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
370 1.2 mycroft #if 0
371 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
372 1.8 mycroft return (-1);
373 1.2 mycroft #else
374 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
375 1.2 mycroft int i;
376 1.2 mycroft printf("BUG BUG BUG BUG:\n");
377 1.17 mikel printf("object %p offset %lx pgoffset %lx ",
378 1.17 mikel vmop, offset - vmop->paging_offset,
379 1.17 mikel (u_long)vmop->paging_offset);
380 1.17 mikel printf("pager %p swpager %p\n",
381 1.2 mycroft vmop->pager, pager.pg_data);
382 1.17 mikel printf("osize %lx bsize %x blocks %p nblocks %x\n",
383 1.17 mikel (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
384 1.2 mycroft swap.sw_nblocks);
385 1.20 drochner for (i = 0; i < swap.sw_nblocks; i++) {
386 1.20 drochner addr = (u_long)&swap.sw_blocks[i];
387 1.2 mycroft if (KREAD(kd, addr, &swb))
388 1.2 mycroft return (0);
389 1.20 drochner printf("sw_blocks[%d]: block %x mask %x\n", i,
390 1.2 mycroft swb.swb_block, swb.swb_mask);
391 1.2 mycroft }
392 1.8 mycroft return (-1);
393 1.2 mycroft }
394 1.2 mycroft #endif
395 1.1 cgd
396 1.2 mycroft /* Read in the swap records. */
397 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
398 1.2 mycroft if (KREAD(kd, addr, &swb))
399 1.8 mycroft return (-1);
400 1.1 cgd
401 1.2 mycroft /* Calculate offset within pager. */
402 1.2 mycroft offset %= dbtob(swap.sw_bsize);
403 1.1 cgd
404 1.2 mycroft /* Check that the page is actually present. */
405 1.6 mycroft if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
406 1.1 cgd return (0);
407 1.1 cgd
408 1.8 mycroft if (!ISALIVE(kd))
409 1.8 mycroft return (-1);
410 1.8 mycroft
411 1.2 mycroft /* Calculate the physical address and read the page. */
412 1.6 mycroft seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
413 1.8 mycroft
414 1.24 thorpej if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
415 1.8 mycroft return (-1);
416 1.1 cgd
417 1.2 mycroft return (1);
418 1.1 cgd }
419 1.23 chs #endif /* !defined(UVM) */
420 1.1 cgd
421 1.1 cgd /*
422 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
423 1.1 cgd * at most maxcnt procs.
424 1.1 cgd */
425 1.1 cgd static int
426 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
427 1.1 cgd kvm_t *kd;
428 1.1 cgd int what, arg;
429 1.1 cgd struct proc *p;
430 1.1 cgd struct kinfo_proc *bp;
431 1.1 cgd int maxcnt;
432 1.1 cgd {
433 1.21 perry int cnt = 0;
434 1.1 cgd struct eproc eproc;
435 1.1 cgd struct pgrp pgrp;
436 1.1 cgd struct session sess;
437 1.1 cgd struct tty tty;
438 1.1 cgd struct proc proc;
439 1.1 cgd
440 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
441 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
442 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
443 1.1 cgd return (-1);
444 1.1 cgd }
445 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
446 1.20 drochner (void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
447 1.1 cgd &eproc.e_ucred);
448 1.1 cgd
449 1.1 cgd switch(what) {
450 1.1 cgd
451 1.1 cgd case KERN_PROC_PID:
452 1.1 cgd if (proc.p_pid != (pid_t)arg)
453 1.1 cgd continue;
454 1.1 cgd break;
455 1.1 cgd
456 1.1 cgd case KERN_PROC_UID:
457 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
458 1.1 cgd continue;
459 1.1 cgd break;
460 1.1 cgd
461 1.1 cgd case KERN_PROC_RUID:
462 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
463 1.1 cgd continue;
464 1.1 cgd break;
465 1.1 cgd }
466 1.1 cgd /*
467 1.1 cgd * We're going to add another proc to the set. If this
468 1.1 cgd * will overflow the buffer, assume the reason is because
469 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
470 1.1 cgd */
471 1.1 cgd if (cnt >= maxcnt) {
472 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
473 1.1 cgd return (-1);
474 1.1 cgd }
475 1.1 cgd /*
476 1.1 cgd * gather eproc
477 1.1 cgd */
478 1.1 cgd eproc.e_paddr = p;
479 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
480 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
481 1.1 cgd proc.p_pgrp);
482 1.1 cgd return (-1);
483 1.1 cgd }
484 1.1 cgd eproc.e_sess = pgrp.pg_session;
485 1.1 cgd eproc.e_pgid = pgrp.pg_id;
486 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
487 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
488 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
489 1.1 cgd pgrp.pg_session);
490 1.1 cgd return (-1);
491 1.1 cgd }
492 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
493 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
494 1.1 cgd _kvm_err(kd, kd->program,
495 1.1 cgd "can't read tty at %x", sess.s_ttyp);
496 1.1 cgd return (-1);
497 1.1 cgd }
498 1.1 cgd eproc.e_tdev = tty.t_dev;
499 1.1 cgd eproc.e_tsess = tty.t_session;
500 1.1 cgd if (tty.t_pgrp != NULL) {
501 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
502 1.1 cgd _kvm_err(kd, kd->program,
503 1.1 cgd "can't read tpgrp at &x",
504 1.1 cgd tty.t_pgrp);
505 1.1 cgd return (-1);
506 1.1 cgd }
507 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
508 1.1 cgd } else
509 1.1 cgd eproc.e_tpgid = -1;
510 1.1 cgd } else
511 1.1 cgd eproc.e_tdev = NODEV;
512 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
513 1.1 cgd if (sess.s_leader == p)
514 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
515 1.1 cgd if (proc.p_wmesg)
516 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
517 1.1 cgd eproc.e_wmesg, WMESGLEN);
518 1.1 cgd
519 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
520 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
521 1.9 pk
522 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
523 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
524 1.1 cgd
525 1.1 cgd switch (what) {
526 1.1 cgd
527 1.1 cgd case KERN_PROC_PGRP:
528 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
529 1.1 cgd continue;
530 1.1 cgd break;
531 1.1 cgd
532 1.1 cgd case KERN_PROC_TTY:
533 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
534 1.1 cgd eproc.e_tdev != (dev_t)arg)
535 1.1 cgd continue;
536 1.1 cgd break;
537 1.1 cgd }
538 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
539 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
540 1.1 cgd ++bp;
541 1.1 cgd ++cnt;
542 1.1 cgd }
543 1.1 cgd return (cnt);
544 1.1 cgd }
545 1.1 cgd
546 1.1 cgd /*
547 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
548 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
549 1.1 cgd */
550 1.1 cgd static int
551 1.27 thorpej kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
552 1.1 cgd kvm_t *kd;
553 1.1 cgd int what, arg;
554 1.1 cgd u_long a_allproc;
555 1.27 thorpej u_long a_deadproc;
556 1.1 cgd u_long a_zombproc;
557 1.1 cgd int maxcnt;
558 1.1 cgd {
559 1.21 perry struct kinfo_proc *bp = kd->procbase;
560 1.27 thorpej int acnt, dcnt, zcnt;
561 1.1 cgd struct proc *p;
562 1.1 cgd
563 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
564 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
565 1.1 cgd return (-1);
566 1.1 cgd }
567 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
568 1.1 cgd if (acnt < 0)
569 1.1 cgd return (acnt);
570 1.1 cgd
571 1.27 thorpej if (KREAD(kd, a_deadproc, &p)) {
572 1.27 thorpej _kvm_err(kd, kd->program, "cannot read deadproc");
573 1.27 thorpej return (-1);
574 1.27 thorpej }
575 1.27 thorpej
576 1.27 thorpej dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
577 1.27 thorpej if (dcnt < 0)
578 1.27 thorpej dcnt = 0;
579 1.27 thorpej
580 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
581 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
582 1.1 cgd return (-1);
583 1.1 cgd }
584 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
585 1.27 thorpej maxcnt - (acnt + dcnt));
586 1.1 cgd if (zcnt < 0)
587 1.1 cgd zcnt = 0;
588 1.1 cgd
589 1.1 cgd return (acnt + zcnt);
590 1.1 cgd }
591 1.1 cgd
592 1.1 cgd struct kinfo_proc *
593 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
594 1.1 cgd kvm_t *kd;
595 1.1 cgd int op, arg;
596 1.1 cgd int *cnt;
597 1.1 cgd {
598 1.7 cgd size_t size;
599 1.7 cgd int mib[4], st, nprocs;
600 1.1 cgd
601 1.1 cgd if (kd->procbase != 0) {
602 1.1 cgd free((void *)kd->procbase);
603 1.1 cgd /*
604 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
605 1.1 cgd * kvm_close() will free it again.
606 1.1 cgd */
607 1.1 cgd kd->procbase = 0;
608 1.1 cgd }
609 1.1 cgd if (ISALIVE(kd)) {
610 1.1 cgd size = 0;
611 1.1 cgd mib[0] = CTL_KERN;
612 1.1 cgd mib[1] = KERN_PROC;
613 1.1 cgd mib[2] = op;
614 1.1 cgd mib[3] = arg;
615 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
616 1.1 cgd if (st == -1) {
617 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
618 1.1 cgd return (0);
619 1.1 cgd }
620 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
621 1.1 cgd if (kd->procbase == 0)
622 1.1 cgd return (0);
623 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
624 1.1 cgd if (st == -1) {
625 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
626 1.1 cgd return (0);
627 1.1 cgd }
628 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
629 1.1 cgd _kvm_err(kd, kd->program,
630 1.1 cgd "proc size mismatch (%d total, %d chunks)",
631 1.1 cgd size, sizeof(struct kinfo_proc));
632 1.1 cgd return (0);
633 1.1 cgd }
634 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
635 1.1 cgd } else {
636 1.27 thorpej struct nlist nl[5], *p;
637 1.1 cgd
638 1.1 cgd nl[0].n_name = "_nprocs";
639 1.1 cgd nl[1].n_name = "_allproc";
640 1.27 thorpej nl[2].n_name = "_deadproc";
641 1.27 thorpej nl[3].n_name = "_zombproc";
642 1.27 thorpej nl[4].n_name = 0;
643 1.1 cgd
644 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
645 1.1 cgd for (p = nl; p->n_type != 0; ++p)
646 1.1 cgd ;
647 1.1 cgd _kvm_err(kd, kd->program,
648 1.1 cgd "%s: no such symbol", p->n_name);
649 1.1 cgd return (0);
650 1.1 cgd }
651 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
652 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
653 1.1 cgd return (0);
654 1.1 cgd }
655 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
656 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
657 1.1 cgd if (kd->procbase == 0)
658 1.1 cgd return (0);
659 1.1 cgd
660 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
661 1.27 thorpej nl[2].n_value, nl[3].n_value, nprocs);
662 1.1 cgd #ifdef notdef
663 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
664 1.1 cgd (void)realloc(kd->procbase, size);
665 1.1 cgd #endif
666 1.1 cgd }
667 1.1 cgd *cnt = nprocs;
668 1.1 cgd return (kd->procbase);
669 1.1 cgd }
670 1.1 cgd
671 1.1 cgd void
672 1.1 cgd _kvm_freeprocs(kd)
673 1.1 cgd kvm_t *kd;
674 1.1 cgd {
675 1.1 cgd if (kd->procbase) {
676 1.1 cgd free(kd->procbase);
677 1.1 cgd kd->procbase = 0;
678 1.1 cgd }
679 1.1 cgd }
680 1.1 cgd
681 1.1 cgd void *
682 1.1 cgd _kvm_realloc(kd, p, n)
683 1.1 cgd kvm_t *kd;
684 1.1 cgd void *p;
685 1.1 cgd size_t n;
686 1.1 cgd {
687 1.1 cgd void *np = (void *)realloc(p, n);
688 1.1 cgd
689 1.1 cgd if (np == 0)
690 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
691 1.1 cgd return (np);
692 1.1 cgd }
693 1.1 cgd
694 1.1 cgd #ifndef MAX
695 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
696 1.1 cgd #endif
697 1.1 cgd
698 1.1 cgd /*
699 1.1 cgd * Read in an argument vector from the user address space of process p.
700 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
701 1.1 cgd * strings. This is used to read in both the command arguments and
702 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
703 1.1 cgd */
704 1.1 cgd static char **
705 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
706 1.1 cgd kvm_t *kd;
707 1.15 cgd const struct proc *p;
708 1.21 perry u_long addr;
709 1.21 perry int narg;
710 1.21 perry int maxcnt;
711 1.21 perry {
712 1.21 perry char *np, *cp, *ep, *ap;
713 1.21 perry u_long oaddr = -1;
714 1.21 perry int len, cc;
715 1.21 perry char **argv;
716 1.1 cgd
717 1.1 cgd /*
718 1.1 cgd * Check that there aren't an unreasonable number of agruments,
719 1.1 cgd * and that the address is in user space.
720 1.1 cgd */
721 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
722 1.1 cgd return (0);
723 1.1 cgd
724 1.1 cgd if (kd->argv == 0) {
725 1.1 cgd /*
726 1.1 cgd * Try to avoid reallocs.
727 1.1 cgd */
728 1.1 cgd kd->argc = MAX(narg + 1, 32);
729 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
730 1.1 cgd sizeof(*kd->argv));
731 1.1 cgd if (kd->argv == 0)
732 1.1 cgd return (0);
733 1.1 cgd } else if (narg + 1 > kd->argc) {
734 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
735 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
736 1.1 cgd sizeof(*kd->argv));
737 1.1 cgd if (kd->argv == 0)
738 1.1 cgd return (0);
739 1.1 cgd }
740 1.1 cgd if (kd->argspc == 0) {
741 1.6 mycroft kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
742 1.1 cgd if (kd->argspc == 0)
743 1.1 cgd return (0);
744 1.6 mycroft kd->arglen = kd->nbpg;
745 1.1 cgd }
746 1.10 mycroft if (kd->argbuf == 0) {
747 1.10 mycroft kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
748 1.10 mycroft if (kd->argbuf == 0)
749 1.10 mycroft return (0);
750 1.10 mycroft }
751 1.10 mycroft cc = sizeof(char *) * narg;
752 1.10 mycroft if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
753 1.10 mycroft return (0);
754 1.10 mycroft ap = np = kd->argspc;
755 1.1 cgd argv = kd->argv;
756 1.1 cgd len = 0;
757 1.1 cgd /*
758 1.1 cgd * Loop over pages, filling in the argument vector.
759 1.1 cgd */
760 1.10 mycroft while (argv < kd->argv + narg && *argv != 0) {
761 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
762 1.10 mycroft if (addr != oaddr) {
763 1.10 mycroft if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
764 1.10 mycroft kd->nbpg)
765 1.10 mycroft return (0);
766 1.10 mycroft oaddr = addr;
767 1.10 mycroft }
768 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
769 1.10 mycroft cp = kd->argbuf + addr;
770 1.10 mycroft cc = kd->nbpg - addr;
771 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
772 1.1 cgd cc = maxcnt - len;;
773 1.10 mycroft ep = memchr(cp, '\0', cc);
774 1.10 mycroft if (ep != 0)
775 1.10 mycroft cc = ep - cp + 1;
776 1.1 cgd if (len + cc > kd->arglen) {
777 1.21 perry int off;
778 1.21 perry char **pp;
779 1.21 perry char *op = kd->argspc;
780 1.1 cgd
781 1.1 cgd kd->arglen *= 2;
782 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
783 1.1 cgd kd->arglen);
784 1.1 cgd if (kd->argspc == 0)
785 1.1 cgd return (0);
786 1.1 cgd /*
787 1.1 cgd * Adjust argv pointers in case realloc moved
788 1.1 cgd * the string space.
789 1.1 cgd */
790 1.1 cgd off = kd->argspc - op;
791 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
792 1.1 cgd *pp += off;
793 1.12 mycroft ap += off;
794 1.12 mycroft np += off;
795 1.1 cgd }
796 1.10 mycroft memcpy(np, cp, cc);
797 1.10 mycroft np += cc;
798 1.1 cgd len += cc;
799 1.10 mycroft if (ep != 0) {
800 1.10 mycroft *argv++ = ap;
801 1.10 mycroft ap = np;
802 1.10 mycroft } else
803 1.10 mycroft *argv += cc;
804 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
805 1.1 cgd /*
806 1.1 cgd * We're stopping prematurely. Terminate the
807 1.10 mycroft * current string.
808 1.1 cgd */
809 1.10 mycroft if (ep == 0) {
810 1.10 mycroft *np = '\0';
811 1.14 mycroft *argv++ = ap;
812 1.10 mycroft }
813 1.10 mycroft break;
814 1.1 cgd }
815 1.1 cgd }
816 1.10 mycroft /* Make sure argv is terminated. */
817 1.10 mycroft *argv = 0;
818 1.10 mycroft return (kd->argv);
819 1.1 cgd }
820 1.1 cgd
821 1.1 cgd static void
822 1.1 cgd ps_str_a(p, addr, n)
823 1.1 cgd struct ps_strings *p;
824 1.1 cgd u_long *addr;
825 1.1 cgd int *n;
826 1.1 cgd {
827 1.1 cgd *addr = (u_long)p->ps_argvstr;
828 1.1 cgd *n = p->ps_nargvstr;
829 1.1 cgd }
830 1.1 cgd
831 1.1 cgd static void
832 1.1 cgd ps_str_e(p, addr, n)
833 1.1 cgd struct ps_strings *p;
834 1.1 cgd u_long *addr;
835 1.1 cgd int *n;
836 1.1 cgd {
837 1.1 cgd *addr = (u_long)p->ps_envstr;
838 1.1 cgd *n = p->ps_nenvstr;
839 1.1 cgd }
840 1.1 cgd
841 1.1 cgd /*
842 1.1 cgd * Determine if the proc indicated by p is still active.
843 1.1 cgd * This test is not 100% foolproof in theory, but chances of
844 1.1 cgd * being wrong are very low.
845 1.1 cgd */
846 1.1 cgd static int
847 1.1 cgd proc_verify(kd, kernp, p)
848 1.1 cgd kvm_t *kd;
849 1.1 cgd u_long kernp;
850 1.1 cgd const struct proc *p;
851 1.1 cgd {
852 1.1 cgd struct proc kernproc;
853 1.1 cgd
854 1.1 cgd /*
855 1.1 cgd * Just read in the whole proc. It's not that big relative
856 1.1 cgd * to the cost of the read system call.
857 1.1 cgd */
858 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
859 1.1 cgd sizeof(kernproc))
860 1.1 cgd return (0);
861 1.1 cgd return (p->p_pid == kernproc.p_pid &&
862 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
863 1.1 cgd }
864 1.1 cgd
865 1.1 cgd static char **
866 1.1 cgd kvm_doargv(kd, kp, nchr, info)
867 1.1 cgd kvm_t *kd;
868 1.1 cgd const struct kinfo_proc *kp;
869 1.1 cgd int nchr;
870 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
871 1.1 cgd {
872 1.21 perry const struct proc *p = &kp->kp_proc;
873 1.21 perry char **ap;
874 1.1 cgd u_long addr;
875 1.1 cgd int cnt;
876 1.1 cgd struct ps_strings arginfo;
877 1.1 cgd
878 1.1 cgd /*
879 1.1 cgd * Pointers are stored at the top of the user stack.
880 1.1 cgd */
881 1.18 gwr if (p->p_stat == SZOMB)
882 1.18 gwr return (0);
883 1.18 gwr cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
884 1.18 gwr (char *)&arginfo, sizeof(arginfo));
885 1.18 gwr if (cnt != sizeof(arginfo))
886 1.1 cgd return (0);
887 1.1 cgd
888 1.1 cgd (*info)(&arginfo, &addr, &cnt);
889 1.3 mycroft if (cnt == 0)
890 1.3 mycroft return (0);
891 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
892 1.1 cgd /*
893 1.1 cgd * For live kernels, make sure this process didn't go away.
894 1.1 cgd */
895 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
896 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
897 1.1 cgd ap = 0;
898 1.1 cgd return (ap);
899 1.1 cgd }
900 1.1 cgd
901 1.1 cgd /*
902 1.1 cgd * Get the command args. This code is now machine independent.
903 1.1 cgd */
904 1.1 cgd char **
905 1.1 cgd kvm_getargv(kd, kp, nchr)
906 1.1 cgd kvm_t *kd;
907 1.1 cgd const struct kinfo_proc *kp;
908 1.1 cgd int nchr;
909 1.1 cgd {
910 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
911 1.1 cgd }
912 1.1 cgd
913 1.1 cgd char **
914 1.1 cgd kvm_getenvv(kd, kp, nchr)
915 1.1 cgd kvm_t *kd;
916 1.1 cgd const struct kinfo_proc *kp;
917 1.1 cgd int nchr;
918 1.1 cgd {
919 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
920 1.1 cgd }
921 1.1 cgd
922 1.1 cgd /*
923 1.1 cgd * Read from user space. The user context is given by p.
924 1.1 cgd */
925 1.1 cgd ssize_t
926 1.1 cgd kvm_uread(kd, p, uva, buf, len)
927 1.1 cgd kvm_t *kd;
928 1.21 perry const struct proc *p;
929 1.21 perry u_long uva;
930 1.21 perry char *buf;
931 1.21 perry size_t len;
932 1.1 cgd {
933 1.21 perry char *cp;
934 1.1 cgd
935 1.1 cgd cp = buf;
936 1.1 cgd while (len > 0) {
937 1.21 perry int cc;
938 1.21 perry char *dp;
939 1.15 cgd u_long cnt;
940 1.8 mycroft
941 1.8 mycroft dp = _kvm_uread(kd, p, uva, &cnt);
942 1.8 mycroft if (dp == 0) {
943 1.8 mycroft _kvm_err(kd, 0, "invalid address (%x)", uva);
944 1.8 mycroft return (0);
945 1.8 mycroft }
946 1.8 mycroft cc = MIN(cnt, len);
947 1.25 perry memcpy(cp, dp, cc);
948 1.8 mycroft
949 1.1 cgd cp += cc;
950 1.1 cgd uva += cc;
951 1.1 cgd len -= cc;
952 1.1 cgd }
953 1.1 cgd return (ssize_t)(cp - buf);
954 1.1 cgd }
955