Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.33
      1  1.33    simonb /*	$NetBSD: kvm_proc.c,v 1.33 2000/04/15 15:52:52 simonb Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  * 3. All advertising materials mentioning features or use of this software
     19  1.26   mycroft  *    must display the following acknowledgement:
     20  1.26   mycroft  *        This product includes software developed by the NetBSD
     21  1.26   mycroft  *        Foundation, Inc. and its contributors.
     22  1.26   mycroft  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.26   mycroft  *    contributors may be used to endorse or promote products derived
     24  1.26   mycroft  *    from this software without specific prior written permission.
     25  1.26   mycroft  *
     26  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     37  1.26   mycroft  */
     38  1.16   thorpej 
     39   1.1       cgd /*-
     40   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     41   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     42   1.1       cgd  *
     43   1.1       cgd  * This code is derived from software developed by the Computer Systems
     44   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     46   1.1       cgd  *
     47   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     48   1.1       cgd  * modification, are permitted provided that the following conditions
     49   1.1       cgd  * are met:
     50   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     51   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     52   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     53   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     54   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     55   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     56   1.1       cgd  *    must display the following acknowledgement:
     57   1.1       cgd  *	This product includes software developed by the University of
     58   1.1       cgd  *	California, Berkeley and its contributors.
     59   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     60   1.1       cgd  *    may be used to endorse or promote products derived from this software
     61   1.1       cgd  *    without specific prior written permission.
     62   1.1       cgd  *
     63   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.1       cgd  * SUCH DAMAGE.
     74   1.1       cgd  */
     75   1.1       cgd 
     76  1.19     mikel #include <sys/cdefs.h>
     77   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     78  1.16   thorpej #if 0
     79   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80  1.16   thorpej #else
     81  1.33    simonb __RCSID("$NetBSD: kvm_proc.c,v 1.33 2000/04/15 15:52:52 simonb Exp $");
     82  1.16   thorpej #endif
     83   1.1       cgd #endif /* LIBC_SCCS and not lint */
     84   1.1       cgd 
     85   1.1       cgd /*
     86   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     88   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     90   1.1       cgd  */
     91   1.1       cgd 
     92   1.1       cgd #include <sys/param.h>
     93   1.1       cgd #include <sys/user.h>
     94   1.1       cgd #include <sys/proc.h>
     95   1.1       cgd #include <sys/exec.h>
     96   1.1       cgd #include <sys/stat.h>
     97   1.1       cgd #include <sys/ioctl.h>
     98   1.1       cgd #include <sys/tty.h>
     99   1.7       cgd #include <stdlib.h>
    100  1.10   mycroft #include <string.h>
    101   1.1       cgd #include <unistd.h>
    102   1.1       cgd #include <nlist.h>
    103   1.1       cgd #include <kvm.h>
    104   1.1       cgd 
    105   1.1       cgd #include <vm/vm.h>
    106   1.1       cgd #include <vm/vm_param.h>
    107   1.1       cgd 
    108  1.23       chs #include <uvm/uvm_extern.h>
    109  1.29       mrg #include <uvm/uvm_amap.h>
    110  1.23       chs 
    111   1.1       cgd #include <sys/sysctl.h>
    112   1.1       cgd 
    113   1.1       cgd #include <limits.h>
    114   1.1       cgd #include <db.h>
    115   1.1       cgd #include <paths.h>
    116   1.1       cgd 
    117   1.1       cgd #include "kvm_private.h"
    118   1.1       cgd 
    119   1.2   mycroft #define KREAD(kd, addr, obj) \
    120  1.28  christos 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
    121   1.2   mycroft 
    122  1.20  drochner char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
    123  1.15       cgd ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    124  1.15       cgd 		    size_t));
    125  1.15       cgd 
    126  1.15       cgd static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
    127  1.15       cgd 		    int));
    128  1.27   thorpej static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    129  1.27   thorpej 		    int));
    130  1.15       cgd static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    131  1.15       cgd 		    void (*)(struct ps_strings *, u_long *, int *)));
    132  1.15       cgd static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    133  1.15       cgd 		    struct kinfo_proc *, int));
    134  1.15       cgd static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    135  1.15       cgd static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    136  1.15       cgd static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    137   1.2   mycroft 
    138   1.8   mycroft char *
    139   1.8   mycroft _kvm_uread(kd, p, va, cnt)
    140   1.1       cgd 	kvm_t *kd;
    141   1.1       cgd 	const struct proc *p;
    142   1.1       cgd 	u_long va;
    143   1.1       cgd 	u_long *cnt;
    144   1.1       cgd {
    145  1.28  christos 	int true = 1;
    146  1.21     perry 	u_long addr, head;
    147  1.21     perry 	u_long offset;
    148   1.1       cgd 	struct vm_map_entry vme;
    149  1.23       chs 	struct vm_amap amap;
    150  1.23       chs 	struct vm_anon *anonp, anon;
    151  1.23       chs 	struct vm_page pg;
    152  1.28  christos 	u_long slot;
    153   1.1       cgd 
    154   1.6   mycroft 	if (kd->swapspc == 0) {
    155  1.28  christos 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    156   1.6   mycroft 		if (kd->swapspc == 0)
    157   1.5   deraadt 			return (0);
    158   1.5   deraadt 	}
    159   1.8   mycroft 
    160   1.1       cgd 	/*
    161   1.1       cgd 	 * Look through the address map for the memory object
    162   1.1       cgd 	 * that corresponds to the given virtual address.
    163   1.1       cgd 	 * The header just has the entire valid range.
    164   1.1       cgd 	 */
    165   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    166   1.1       cgd 	addr = head;
    167  1.28  christos 	while (true) {
    168   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    169   1.1       cgd 			return (0);
    170   1.1       cgd 
    171  1.23       chs 		if (va >= vme.start && va < vme.end &&
    172  1.23       chs 		    vme.aref.ar_amap != NULL)
    173  1.23       chs 			break;
    174  1.23       chs 
    175   1.1       cgd 		addr = (u_long)vme.next;
    176   1.2   mycroft 		if (addr == head)
    177   1.1       cgd 			return (0);
    178  1.23       chs 
    179   1.1       cgd 	}
    180   1.2   mycroft 
    181   1.1       cgd 	/*
    182  1.23       chs 	 * we found the map entry, now to find the object...
    183  1.23       chs 	 */
    184  1.23       chs 	if (vme.aref.ar_amap == NULL)
    185  1.23       chs 		return NULL;
    186  1.23       chs 
    187  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    188  1.23       chs 	if (KREAD(kd, addr, &amap))
    189  1.23       chs 		return NULL;
    190  1.23       chs 
    191  1.23       chs 	offset = va - vme.start;
    192  1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    193  1.23       chs 	/* sanity-check slot number */
    194  1.23       chs 	if (slot  > amap.am_nslot)
    195  1.23       chs 		return NULL;
    196  1.23       chs 
    197  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    198  1.23       chs 	if (KREAD(kd, addr, &anonp))
    199  1.23       chs 		return NULL;
    200  1.23       chs 
    201  1.23       chs 	addr = (u_long)anonp;
    202  1.23       chs 	if (KREAD(kd, addr, &anon))
    203  1.23       chs 		return NULL;
    204  1.23       chs 
    205  1.23       chs 	addr = (u_long)anon.u.an_page;
    206  1.23       chs 	if (addr) {
    207  1.23       chs 		if (KREAD(kd, addr, &pg))
    208  1.23       chs 			return NULL;
    209  1.23       chs 
    210  1.28  christos 		if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
    211  1.24   thorpej 		    (off_t)pg.phys_addr) != kd->nbpg)
    212  1.23       chs 			return NULL;
    213  1.23       chs 	}
    214  1.23       chs 	else {
    215  1.28  christos 		if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
    216  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    217  1.23       chs 			return NULL;
    218  1.23       chs 	}
    219   1.8   mycroft 
    220   1.2   mycroft 	/* Found the page. */
    221   1.6   mycroft 	offset %= kd->nbpg;
    222   1.6   mycroft 	*cnt = kd->nbpg - offset;
    223  1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    224   1.2   mycroft }
    225   1.1       cgd 
    226   1.1       cgd /*
    227   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    228   1.1       cgd  * at most maxcnt procs.
    229   1.1       cgd  */
    230   1.1       cgd static int
    231   1.1       cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    232   1.1       cgd 	kvm_t *kd;
    233   1.1       cgd 	int what, arg;
    234   1.1       cgd 	struct proc *p;
    235   1.1       cgd 	struct kinfo_proc *bp;
    236   1.1       cgd 	int maxcnt;
    237   1.1       cgd {
    238  1.21     perry 	int cnt = 0;
    239   1.1       cgd 	struct eproc eproc;
    240   1.1       cgd 	struct pgrp pgrp;
    241   1.1       cgd 	struct session sess;
    242   1.1       cgd 	struct tty tty;
    243   1.1       cgd 	struct proc proc;
    244   1.1       cgd 
    245   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    246   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    247   1.1       cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    248   1.1       cgd 			return (-1);
    249   1.1       cgd 		}
    250   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    251  1.28  christos 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    252  1.28  christos 			    &eproc.e_ucred)) {
    253  1.28  christos 				_kvm_err(kd, kd->program,
    254  1.28  christos 				    "can't read proc credentials at %x", p);
    255  1.28  christos 				return -1;
    256  1.28  christos 			}
    257   1.1       cgd 
    258   1.1       cgd 		switch(what) {
    259  1.31    simonb 
    260   1.1       cgd 		case KERN_PROC_PID:
    261   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    262   1.1       cgd 				continue;
    263   1.1       cgd 			break;
    264   1.1       cgd 
    265   1.1       cgd 		case KERN_PROC_UID:
    266   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    267   1.1       cgd 				continue;
    268   1.1       cgd 			break;
    269   1.1       cgd 
    270   1.1       cgd 		case KERN_PROC_RUID:
    271   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    272   1.1       cgd 				continue;
    273   1.1       cgd 			break;
    274   1.1       cgd 		}
    275   1.1       cgd 		/*
    276   1.1       cgd 		 * We're going to add another proc to the set.  If this
    277   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    278   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    279   1.1       cgd 		 */
    280   1.1       cgd 		if (cnt >= maxcnt) {
    281   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    282   1.1       cgd 			return (-1);
    283   1.1       cgd 		}
    284   1.1       cgd 		/*
    285   1.1       cgd 		 * gather eproc
    286   1.1       cgd 		 */
    287   1.1       cgd 		eproc.e_paddr = p;
    288   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    289   1.1       cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    290   1.1       cgd 				 proc.p_pgrp);
    291   1.1       cgd 			return (-1);
    292   1.1       cgd 		}
    293   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    294   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    295   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    296   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    297  1.31    simonb 			_kvm_err(kd, kd->program, "can't read session at %x",
    298   1.1       cgd 				pgrp.pg_session);
    299   1.1       cgd 			return (-1);
    300   1.1       cgd 		}
    301   1.1       cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    302   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    303   1.1       cgd 				_kvm_err(kd, kd->program,
    304   1.1       cgd 					 "can't read tty at %x", sess.s_ttyp);
    305   1.1       cgd 				return (-1);
    306   1.1       cgd 			}
    307   1.1       cgd 			eproc.e_tdev = tty.t_dev;
    308   1.1       cgd 			eproc.e_tsess = tty.t_session;
    309   1.1       cgd 			if (tty.t_pgrp != NULL) {
    310   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    311   1.1       cgd 					_kvm_err(kd, kd->program,
    312  1.31    simonb 						 "can't read tpgrp at &x",
    313   1.1       cgd 						tty.t_pgrp);
    314   1.1       cgd 					return (-1);
    315   1.1       cgd 				}
    316   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    317   1.1       cgd 			} else
    318   1.1       cgd 				eproc.e_tpgid = -1;
    319   1.1       cgd 		} else
    320   1.1       cgd 			eproc.e_tdev = NODEV;
    321   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    322  1.33    simonb 		eproc.e_sid = sess.s_sid;
    323   1.1       cgd 		if (sess.s_leader == p)
    324   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    325   1.1       cgd 		if (proc.p_wmesg)
    326  1.31    simonb 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    327   1.1       cgd 			    eproc.e_wmesg, WMESGLEN);
    328   1.1       cgd 
    329   1.1       cgd 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    330  1.28  christos 		    (void *)&eproc.e_vm, sizeof(eproc.e_vm));
    331   1.9        pk 
    332   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    333   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    334   1.1       cgd 
    335   1.1       cgd 		switch (what) {
    336   1.1       cgd 
    337   1.1       cgd 		case KERN_PROC_PGRP:
    338   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    339   1.1       cgd 				continue;
    340   1.1       cgd 			break;
    341   1.1       cgd 
    342   1.1       cgd 		case KERN_PROC_TTY:
    343  1.31    simonb 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    344   1.1       cgd 			     eproc.e_tdev != (dev_t)arg)
    345   1.1       cgd 				continue;
    346   1.1       cgd 			break;
    347   1.1       cgd 		}
    348  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    349  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    350   1.1       cgd 		++bp;
    351   1.1       cgd 		++cnt;
    352   1.1       cgd 	}
    353   1.1       cgd 	return (cnt);
    354   1.1       cgd }
    355   1.1       cgd 
    356   1.1       cgd /*
    357   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    358   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    359   1.1       cgd  */
    360   1.1       cgd static int
    361  1.27   thorpej kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    362   1.1       cgd 	kvm_t *kd;
    363   1.1       cgd 	int what, arg;
    364   1.1       cgd 	u_long a_allproc;
    365  1.27   thorpej 	u_long a_deadproc;
    366   1.1       cgd 	u_long a_zombproc;
    367   1.1       cgd 	int maxcnt;
    368   1.1       cgd {
    369  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    370  1.27   thorpej 	int acnt, dcnt, zcnt;
    371   1.1       cgd 	struct proc *p;
    372   1.1       cgd 
    373   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    374   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    375   1.1       cgd 		return (-1);
    376   1.1       cgd 	}
    377   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    378   1.1       cgd 	if (acnt < 0)
    379   1.1       cgd 		return (acnt);
    380   1.1       cgd 
    381  1.27   thorpej 	if (KREAD(kd, a_deadproc, &p)) {
    382  1.27   thorpej 		_kvm_err(kd, kd->program, "cannot read deadproc");
    383  1.27   thorpej 		return (-1);
    384  1.27   thorpej 	}
    385  1.27   thorpej 
    386  1.27   thorpej 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    387  1.27   thorpej 	if (dcnt < 0)
    388  1.27   thorpej 		dcnt = 0;
    389  1.27   thorpej 
    390   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    391   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    392   1.1       cgd 		return (-1);
    393   1.1       cgd 	}
    394  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    395  1.27   thorpej 	    maxcnt - (acnt + dcnt));
    396   1.1       cgd 	if (zcnt < 0)
    397   1.1       cgd 		zcnt = 0;
    398   1.1       cgd 
    399   1.1       cgd 	return (acnt + zcnt);
    400   1.1       cgd }
    401   1.1       cgd 
    402   1.1       cgd struct kinfo_proc *
    403   1.1       cgd kvm_getprocs(kd, op, arg, cnt)
    404   1.1       cgd 	kvm_t *kd;
    405   1.1       cgd 	int op, arg;
    406   1.1       cgd 	int *cnt;
    407   1.1       cgd {
    408   1.7       cgd 	size_t size;
    409   1.7       cgd 	int mib[4], st, nprocs;
    410   1.1       cgd 
    411   1.1       cgd 	if (kd->procbase != 0) {
    412   1.1       cgd 		free((void *)kd->procbase);
    413  1.31    simonb 		/*
    414   1.1       cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    415   1.1       cgd 		 * kvm_close() will free it again.
    416   1.1       cgd 		 */
    417   1.1       cgd 		kd->procbase = 0;
    418   1.1       cgd 	}
    419   1.1       cgd 	if (ISALIVE(kd)) {
    420   1.1       cgd 		size = 0;
    421   1.1       cgd 		mib[0] = CTL_KERN;
    422   1.1       cgd 		mib[1] = KERN_PROC;
    423   1.1       cgd 		mib[2] = op;
    424   1.1       cgd 		mib[3] = arg;
    425   1.1       cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    426   1.1       cgd 		if (st == -1) {
    427   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    428   1.1       cgd 			return (0);
    429   1.1       cgd 		}
    430   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    431   1.1       cgd 		if (kd->procbase == 0)
    432   1.1       cgd 			return (0);
    433   1.1       cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    434   1.1       cgd 		if (st == -1) {
    435   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    436   1.1       cgd 			return (0);
    437   1.1       cgd 		}
    438   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    439   1.1       cgd 			_kvm_err(kd, kd->program,
    440   1.1       cgd 				"proc size mismatch (%d total, %d chunks)",
    441   1.1       cgd 				size, sizeof(struct kinfo_proc));
    442   1.1       cgd 			return (0);
    443   1.1       cgd 		}
    444   1.1       cgd 		nprocs = size / sizeof(struct kinfo_proc);
    445   1.1       cgd 	} else {
    446  1.27   thorpej 		struct nlist nl[5], *p;
    447   1.1       cgd 
    448   1.1       cgd 		nl[0].n_name = "_nprocs";
    449   1.1       cgd 		nl[1].n_name = "_allproc";
    450  1.27   thorpej 		nl[2].n_name = "_deadproc";
    451  1.27   thorpej 		nl[3].n_name = "_zombproc";
    452  1.27   thorpej 		nl[4].n_name = 0;
    453   1.1       cgd 
    454   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    455   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    456   1.1       cgd 				;
    457   1.1       cgd 			_kvm_err(kd, kd->program,
    458   1.1       cgd 				 "%s: no such symbol", p->n_name);
    459   1.1       cgd 			return (0);
    460   1.1       cgd 		}
    461   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    462   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    463   1.1       cgd 			return (0);
    464   1.1       cgd 		}
    465   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    466   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    467   1.1       cgd 		if (kd->procbase == 0)
    468   1.1       cgd 			return (0);
    469   1.1       cgd 
    470   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    471  1.27   thorpej 		    nl[2].n_value, nl[3].n_value, nprocs);
    472  1.32       chs 		if (nprocs < 0)
    473  1.32       chs 			return (0);
    474   1.1       cgd #ifdef notdef
    475   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    476   1.1       cgd 		(void)realloc(kd->procbase, size);
    477   1.1       cgd #endif
    478   1.1       cgd 	}
    479   1.1       cgd 	*cnt = nprocs;
    480   1.1       cgd 	return (kd->procbase);
    481   1.1       cgd }
    482   1.1       cgd 
    483   1.1       cgd void
    484   1.1       cgd _kvm_freeprocs(kd)
    485   1.1       cgd 	kvm_t *kd;
    486   1.1       cgd {
    487   1.1       cgd 	if (kd->procbase) {
    488   1.1       cgd 		free(kd->procbase);
    489   1.1       cgd 		kd->procbase = 0;
    490   1.1       cgd 	}
    491   1.1       cgd }
    492   1.1       cgd 
    493   1.1       cgd void *
    494   1.1       cgd _kvm_realloc(kd, p, n)
    495   1.1       cgd 	kvm_t *kd;
    496   1.1       cgd 	void *p;
    497   1.1       cgd 	size_t n;
    498   1.1       cgd {
    499   1.1       cgd 	void *np = (void *)realloc(p, n);
    500   1.1       cgd 
    501   1.1       cgd 	if (np == 0)
    502   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    503   1.1       cgd 	return (np);
    504   1.1       cgd }
    505   1.1       cgd 
    506   1.1       cgd #ifndef MAX
    507   1.1       cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
    508   1.1       cgd #endif
    509   1.1       cgd 
    510   1.1       cgd /*
    511   1.1       cgd  * Read in an argument vector from the user address space of process p.
    512  1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    513   1.1       cgd  * strings.  This is used to read in both the command arguments and
    514   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    515   1.1       cgd  */
    516   1.1       cgd static char **
    517   1.1       cgd kvm_argv(kd, p, addr, narg, maxcnt)
    518   1.1       cgd 	kvm_t *kd;
    519  1.15       cgd 	const struct proc *p;
    520  1.21     perry 	u_long addr;
    521  1.21     perry 	int narg;
    522  1.21     perry 	int maxcnt;
    523  1.21     perry {
    524  1.21     perry 	char *np, *cp, *ep, *ap;
    525  1.28  christos 	u_long oaddr = (u_long)~0L;
    526  1.28  christos 	u_long len;
    527  1.28  christos 	size_t cc;
    528  1.21     perry 	char **argv;
    529   1.1       cgd 
    530   1.1       cgd 	/*
    531   1.1       cgd 	 * Check that there aren't an unreasonable number of agruments,
    532   1.1       cgd 	 * and that the address is in user space.
    533   1.1       cgd 	 */
    534  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    535   1.1       cgd 		return (0);
    536   1.1       cgd 
    537   1.1       cgd 	if (kd->argv == 0) {
    538   1.1       cgd 		/*
    539   1.1       cgd 		 * Try to avoid reallocs.
    540   1.1       cgd 		 */
    541   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    542  1.31    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    543   1.1       cgd 						sizeof(*kd->argv));
    544   1.1       cgd 		if (kd->argv == 0)
    545   1.1       cgd 			return (0);
    546   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    547   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    548  1.31    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    549   1.1       cgd 						sizeof(*kd->argv));
    550   1.1       cgd 		if (kd->argv == 0)
    551   1.1       cgd 			return (0);
    552   1.1       cgd 	}
    553   1.1       cgd 	if (kd->argspc == 0) {
    554  1.28  christos 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    555   1.1       cgd 		if (kd->argspc == 0)
    556   1.1       cgd 			return (0);
    557   1.6   mycroft 		kd->arglen = kd->nbpg;
    558   1.1       cgd 	}
    559  1.10   mycroft 	if (kd->argbuf == 0) {
    560  1.28  christos 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    561  1.10   mycroft 		if (kd->argbuf == 0)
    562  1.10   mycroft 			return (0);
    563  1.10   mycroft 	}
    564  1.10   mycroft 	cc = sizeof(char *) * narg;
    565  1.28  christos 	if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
    566  1.10   mycroft 		return (0);
    567  1.10   mycroft 	ap = np = kd->argspc;
    568   1.1       cgd 	argv = kd->argv;
    569   1.1       cgd 	len = 0;
    570   1.1       cgd 	/*
    571   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    572   1.1       cgd 	 */
    573  1.10   mycroft 	while (argv < kd->argv + narg && *argv != 0) {
    574  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    575  1.10   mycroft 		if (addr != oaddr) {
    576  1.28  christos 			if (kvm_uread(kd, p, addr, kd->argbuf,
    577  1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    578  1.10   mycroft 				return (0);
    579  1.10   mycroft 			oaddr = addr;
    580  1.10   mycroft 		}
    581  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    582  1.28  christos 		cp = kd->argbuf + (size_t)addr;
    583  1.28  christos 		cc = kd->nbpg - (size_t)addr;
    584  1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    585  1.28  christos 			cc = (size_t)(maxcnt - len);
    586  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    587  1.10   mycroft 		if (ep != 0)
    588  1.10   mycroft 			cc = ep - cp + 1;
    589   1.1       cgd 		if (len + cc > kd->arglen) {
    590  1.21     perry 			int off;
    591  1.21     perry 			char **pp;
    592  1.21     perry 			char *op = kd->argspc;
    593   1.1       cgd 
    594   1.1       cgd 			kd->arglen *= 2;
    595   1.1       cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    596  1.28  christos 			    (size_t)kd->arglen);
    597   1.1       cgd 			if (kd->argspc == 0)
    598   1.1       cgd 				return (0);
    599   1.1       cgd 			/*
    600   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    601   1.1       cgd 			 * the string space.
    602   1.1       cgd 			 */
    603   1.1       cgd 			off = kd->argspc - op;
    604  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    605   1.1       cgd 				*pp += off;
    606  1.12   mycroft 			ap += off;
    607  1.12   mycroft 			np += off;
    608   1.1       cgd 		}
    609  1.10   mycroft 		memcpy(np, cp, cc);
    610  1.10   mycroft 		np += cc;
    611   1.1       cgd 		len += cc;
    612  1.10   mycroft 		if (ep != 0) {
    613  1.10   mycroft 			*argv++ = ap;
    614  1.10   mycroft 			ap = np;
    615  1.10   mycroft 		} else
    616  1.10   mycroft 			*argv += cc;
    617   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
    618   1.1       cgd 			/*
    619   1.1       cgd 			 * We're stopping prematurely.  Terminate the
    620  1.10   mycroft 			 * current string.
    621   1.1       cgd 			 */
    622  1.10   mycroft 			if (ep == 0) {
    623  1.10   mycroft 				*np = '\0';
    624  1.14   mycroft 				*argv++ = ap;
    625  1.10   mycroft 			}
    626  1.10   mycroft 			break;
    627   1.1       cgd 		}
    628   1.1       cgd 	}
    629  1.10   mycroft 	/* Make sure argv is terminated. */
    630  1.10   mycroft 	*argv = 0;
    631  1.10   mycroft 	return (kd->argv);
    632   1.1       cgd }
    633   1.1       cgd 
    634   1.1       cgd static void
    635   1.1       cgd ps_str_a(p, addr, n)
    636   1.1       cgd 	struct ps_strings *p;
    637   1.1       cgd 	u_long *addr;
    638   1.1       cgd 	int *n;
    639   1.1       cgd {
    640   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
    641   1.1       cgd 	*n = p->ps_nargvstr;
    642   1.1       cgd }
    643   1.1       cgd 
    644   1.1       cgd static void
    645   1.1       cgd ps_str_e(p, addr, n)
    646   1.1       cgd 	struct ps_strings *p;
    647   1.1       cgd 	u_long *addr;
    648   1.1       cgd 	int *n;
    649   1.1       cgd {
    650   1.1       cgd 	*addr = (u_long)p->ps_envstr;
    651   1.1       cgd 	*n = p->ps_nenvstr;
    652   1.1       cgd }
    653   1.1       cgd 
    654   1.1       cgd /*
    655   1.1       cgd  * Determine if the proc indicated by p is still active.
    656   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
    657   1.1       cgd  * being wrong are very low.
    658   1.1       cgd  */
    659   1.1       cgd static int
    660   1.1       cgd proc_verify(kd, kernp, p)
    661   1.1       cgd 	kvm_t *kd;
    662   1.1       cgd 	u_long kernp;
    663   1.1       cgd 	const struct proc *p;
    664   1.1       cgd {
    665   1.1       cgd 	struct proc kernproc;
    666   1.1       cgd 
    667   1.1       cgd 	/*
    668   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
    669   1.1       cgd 	 * to the cost of the read system call.
    670   1.1       cgd 	 */
    671  1.31    simonb 	if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
    672   1.1       cgd 	    sizeof(kernproc))
    673   1.1       cgd 		return (0);
    674   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
    675   1.1       cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    676   1.1       cgd }
    677   1.1       cgd 
    678   1.1       cgd static char **
    679   1.1       cgd kvm_doargv(kd, kp, nchr, info)
    680   1.1       cgd 	kvm_t *kd;
    681   1.1       cgd 	const struct kinfo_proc *kp;
    682   1.1       cgd 	int nchr;
    683  1.10   mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
    684   1.1       cgd {
    685  1.21     perry 	const struct proc *p = &kp->kp_proc;
    686  1.21     perry 	char **ap;
    687   1.1       cgd 	u_long addr;
    688   1.1       cgd 	int cnt;
    689   1.1       cgd 	struct ps_strings arginfo;
    690   1.1       cgd 
    691   1.1       cgd 	/*
    692   1.1       cgd 	 * Pointers are stored at the top of the user stack.
    693   1.1       cgd 	 */
    694  1.18       gwr 	if (p->p_stat == SZOMB)
    695  1.18       gwr 		return (0);
    696  1.18       gwr 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    697  1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
    698  1.18       gwr 	if (cnt != sizeof(arginfo))
    699   1.1       cgd 		return (0);
    700   1.1       cgd 
    701   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
    702   1.3   mycroft 	if (cnt == 0)
    703   1.3   mycroft 		return (0);
    704   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    705   1.1       cgd 	/*
    706   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
    707   1.1       cgd 	 */
    708   1.1       cgd 	if (ap != 0 && ISALIVE(kd) &&
    709   1.1       cgd 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    710   1.1       cgd 		ap = 0;
    711   1.1       cgd 	return (ap);
    712   1.1       cgd }
    713   1.1       cgd 
    714   1.1       cgd /*
    715   1.1       cgd  * Get the command args.  This code is now machine independent.
    716   1.1       cgd  */
    717   1.1       cgd char **
    718   1.1       cgd kvm_getargv(kd, kp, nchr)
    719   1.1       cgd 	kvm_t *kd;
    720   1.1       cgd 	const struct kinfo_proc *kp;
    721   1.1       cgd 	int nchr;
    722   1.1       cgd {
    723   1.1       cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    724   1.1       cgd }
    725   1.1       cgd 
    726   1.1       cgd char **
    727   1.1       cgd kvm_getenvv(kd, kp, nchr)
    728   1.1       cgd 	kvm_t *kd;
    729   1.1       cgd 	const struct kinfo_proc *kp;
    730   1.1       cgd 	int nchr;
    731   1.1       cgd {
    732   1.1       cgd 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    733   1.1       cgd }
    734   1.1       cgd 
    735   1.1       cgd /*
    736   1.1       cgd  * Read from user space.  The user context is given by p.
    737   1.1       cgd  */
    738   1.1       cgd ssize_t
    739   1.1       cgd kvm_uread(kd, p, uva, buf, len)
    740   1.1       cgd 	kvm_t *kd;
    741  1.21     perry 	const struct proc *p;
    742  1.21     perry 	u_long uva;
    743  1.21     perry 	char *buf;
    744  1.21     perry 	size_t len;
    745   1.1       cgd {
    746  1.21     perry 	char *cp;
    747   1.1       cgd 
    748   1.1       cgd 	cp = buf;
    749   1.1       cgd 	while (len > 0) {
    750  1.28  christos 		size_t cc;
    751  1.21     perry 		char *dp;
    752  1.15       cgd 		u_long cnt;
    753   1.8   mycroft 
    754   1.8   mycroft 		dp = _kvm_uread(kd, p, uva, &cnt);
    755   1.8   mycroft 		if (dp == 0) {
    756   1.8   mycroft 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    757   1.8   mycroft 			return (0);
    758   1.8   mycroft 		}
    759  1.28  christos 		cc = (size_t)MIN(cnt, len);
    760  1.25     perry 		memcpy(cp, dp, cc);
    761   1.1       cgd 		cp += cc;
    762   1.1       cgd 		uva += cc;
    763   1.1       cgd 		len -= cc;
    764   1.1       cgd 	}
    765   1.1       cgd 	return (ssize_t)(cp - buf);
    766   1.1       cgd }
    767