Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.34
      1  1.34    simonb /*	$NetBSD: kvm_proc.c,v 1.34 2000/05/26 02:42:22 simonb Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  * 3. All advertising materials mentioning features or use of this software
     19  1.26   mycroft  *    must display the following acknowledgement:
     20  1.26   mycroft  *        This product includes software developed by the NetBSD
     21  1.26   mycroft  *        Foundation, Inc. and its contributors.
     22  1.26   mycroft  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.26   mycroft  *    contributors may be used to endorse or promote products derived
     24  1.26   mycroft  *    from this software without specific prior written permission.
     25  1.26   mycroft  *
     26  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     37  1.26   mycroft  */
     38  1.16   thorpej 
     39   1.1       cgd /*-
     40   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     41   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     42   1.1       cgd  *
     43   1.1       cgd  * This code is derived from software developed by the Computer Systems
     44   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     46   1.1       cgd  *
     47   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     48   1.1       cgd  * modification, are permitted provided that the following conditions
     49   1.1       cgd  * are met:
     50   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     51   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     52   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     53   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     54   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     55   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     56   1.1       cgd  *    must display the following acknowledgement:
     57   1.1       cgd  *	This product includes software developed by the University of
     58   1.1       cgd  *	California, Berkeley and its contributors.
     59   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     60   1.1       cgd  *    may be used to endorse or promote products derived from this software
     61   1.1       cgd  *    without specific prior written permission.
     62   1.1       cgd  *
     63   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.1       cgd  * SUCH DAMAGE.
     74   1.1       cgd  */
     75   1.1       cgd 
     76  1.19     mikel #include <sys/cdefs.h>
     77   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     78  1.16   thorpej #if 0
     79   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80  1.16   thorpej #else
     81  1.34    simonb __RCSID("$NetBSD: kvm_proc.c,v 1.34 2000/05/26 02:42:22 simonb Exp $");
     82  1.16   thorpej #endif
     83   1.1       cgd #endif /* LIBC_SCCS and not lint */
     84   1.1       cgd 
     85   1.1       cgd /*
     86   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     88   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     90   1.1       cgd  */
     91   1.1       cgd 
     92   1.1       cgd #include <sys/param.h>
     93   1.1       cgd #include <sys/user.h>
     94   1.1       cgd #include <sys/proc.h>
     95   1.1       cgd #include <sys/exec.h>
     96   1.1       cgd #include <sys/stat.h>
     97   1.1       cgd #include <sys/ioctl.h>
     98   1.1       cgd #include <sys/tty.h>
     99   1.7       cgd #include <stdlib.h>
    100  1.10   mycroft #include <string.h>
    101   1.1       cgd #include <unistd.h>
    102   1.1       cgd #include <nlist.h>
    103   1.1       cgd #include <kvm.h>
    104   1.1       cgd 
    105   1.1       cgd #include <vm/vm.h>
    106   1.1       cgd #include <vm/vm_param.h>
    107   1.1       cgd 
    108  1.23       chs #include <uvm/uvm_extern.h>
    109  1.29       mrg #include <uvm/uvm_amap.h>
    110  1.23       chs 
    111   1.1       cgd #include <sys/sysctl.h>
    112   1.1       cgd 
    113   1.1       cgd #include <limits.h>
    114   1.1       cgd #include <db.h>
    115   1.1       cgd #include <paths.h>
    116   1.1       cgd 
    117   1.1       cgd #include "kvm_private.h"
    118   1.1       cgd 
    119  1.34    simonb /*
    120  1.34    simonb  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    121  1.34    simonb  */
    122  1.34    simonb struct miniproc {
    123  1.34    simonb 	struct	vmspace *p_vmspace;
    124  1.34    simonb 	char	p_stat;
    125  1.34    simonb 	struct	proc *p_paddr;
    126  1.34    simonb 	pid_t	p_pid;
    127  1.34    simonb };
    128  1.34    simonb 
    129  1.34    simonb /*
    130  1.34    simonb  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    131  1.34    simonb  */
    132  1.34    simonb #define PTOMINI(kp, p) \
    133  1.34    simonb 		do { \
    134  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    135  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    136  1.34    simonb 		(p)->p_paddr = NULL; \
    137  1.34    simonb 		(p)->p_vmspace = (kp)->p_vmspace; \
    138  1.34    simonb 	} while (/*CONSTCOND*/0);
    139  1.34    simonb 
    140  1.34    simonb #define KPTOMINI(kp, p) \
    141  1.34    simonb 		do { \
    142  1.34    simonb 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    143  1.34    simonb 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    144  1.34    simonb 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    145  1.34    simonb 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    146  1.34    simonb 	} while (/*CONSTCOND*/0);
    147  1.34    simonb 
    148  1.34    simonb #define KP2TOMINI(kp, p) \
    149  1.34    simonb 		do { \
    150  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    151  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    152  1.34    simonb 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    153  1.34    simonb 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    154  1.34    simonb 	} while (/*CONSTCOND*/0);
    155  1.34    simonb 
    156  1.34    simonb 
    157  1.34    simonb #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
    158  1.34    simonb 
    159   1.2   mycroft #define KREAD(kd, addr, obj) \
    160  1.34    simonb 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    161   1.2   mycroft 
    162  1.34    simonb /* XXX: What uses these two functions? */
    163  1.34    simonb char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    164  1.34    simonb 		    u_long *));
    165  1.15       cgd ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    166  1.15       cgd 		    size_t));
    167  1.15       cgd 
    168  1.34    simonb static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    169  1.34    simonb 		    u_long *));
    170  1.34    simonb static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    171  1.34    simonb 		    char *, size_t));
    172  1.34    simonb 
    173  1.34    simonb static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    174  1.15       cgd 		    int));
    175  1.27   thorpej static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    176  1.27   thorpej 		    int));
    177  1.34    simonb static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    178  1.15       cgd 		    void (*)(struct ps_strings *, u_long *, int *)));
    179  1.34    simonb static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    180  1.15       cgd static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    181  1.15       cgd 		    struct kinfo_proc *, int));
    182  1.34    simonb static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    183  1.15       cgd static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    184  1.15       cgd static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    185   1.2   mycroft 
    186  1.34    simonb 
    187  1.34    simonb static char *
    188  1.34    simonb _kvm_ureadm(kd, p, va, cnt)
    189   1.1       cgd 	kvm_t *kd;
    190  1.34    simonb 	const struct miniproc *p;
    191   1.1       cgd 	u_long va;
    192   1.1       cgd 	u_long *cnt;
    193   1.1       cgd {
    194  1.28  christos 	int true = 1;
    195  1.21     perry 	u_long addr, head;
    196  1.21     perry 	u_long offset;
    197   1.1       cgd 	struct vm_map_entry vme;
    198  1.23       chs 	struct vm_amap amap;
    199  1.23       chs 	struct vm_anon *anonp, anon;
    200  1.23       chs 	struct vm_page pg;
    201  1.28  christos 	u_long slot;
    202   1.1       cgd 
    203   1.6   mycroft 	if (kd->swapspc == 0) {
    204  1.28  christos 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    205   1.6   mycroft 		if (kd->swapspc == 0)
    206  1.34    simonb 			return NULL;
    207   1.5   deraadt 	}
    208   1.8   mycroft 
    209   1.1       cgd 	/*
    210   1.1       cgd 	 * Look through the address map for the memory object
    211   1.1       cgd 	 * that corresponds to the given virtual address.
    212   1.1       cgd 	 * The header just has the entire valid range.
    213   1.1       cgd 	 */
    214   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    215   1.1       cgd 	addr = head;
    216  1.28  christos 	while (true) {
    217   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    218  1.34    simonb 			return NULL;
    219   1.1       cgd 
    220  1.23       chs 		if (va >= vme.start && va < vme.end &&
    221  1.23       chs 		    vme.aref.ar_amap != NULL)
    222  1.23       chs 			break;
    223  1.23       chs 
    224   1.1       cgd 		addr = (u_long)vme.next;
    225   1.2   mycroft 		if (addr == head)
    226  1.34    simonb 			return NULL;
    227  1.23       chs 
    228   1.1       cgd 	}
    229   1.2   mycroft 
    230   1.1       cgd 	/*
    231  1.23       chs 	 * we found the map entry, now to find the object...
    232  1.23       chs 	 */
    233  1.23       chs 	if (vme.aref.ar_amap == NULL)
    234  1.23       chs 		return NULL;
    235  1.23       chs 
    236  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    237  1.23       chs 	if (KREAD(kd, addr, &amap))
    238  1.23       chs 		return NULL;
    239  1.23       chs 
    240  1.23       chs 	offset = va - vme.start;
    241  1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    242  1.23       chs 	/* sanity-check slot number */
    243  1.23       chs 	if (slot  > amap.am_nslot)
    244  1.23       chs 		return NULL;
    245  1.23       chs 
    246  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    247  1.23       chs 	if (KREAD(kd, addr, &anonp))
    248  1.23       chs 		return NULL;
    249  1.23       chs 
    250  1.23       chs 	addr = (u_long)anonp;
    251  1.23       chs 	if (KREAD(kd, addr, &anon))
    252  1.23       chs 		return NULL;
    253  1.23       chs 
    254  1.23       chs 	addr = (u_long)anon.u.an_page;
    255  1.23       chs 	if (addr) {
    256  1.23       chs 		if (KREAD(kd, addr, &pg))
    257  1.23       chs 			return NULL;
    258  1.23       chs 
    259  1.34    simonb 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    260  1.24   thorpej 		    (off_t)pg.phys_addr) != kd->nbpg)
    261  1.23       chs 			return NULL;
    262  1.23       chs 	}
    263  1.23       chs 	else {
    264  1.34    simonb 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    265  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    266  1.23       chs 			return NULL;
    267  1.23       chs 	}
    268   1.8   mycroft 
    269   1.2   mycroft 	/* Found the page. */
    270   1.6   mycroft 	offset %= kd->nbpg;
    271   1.6   mycroft 	*cnt = kd->nbpg - offset;
    272  1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    273   1.2   mycroft }
    274   1.1       cgd 
    275  1.34    simonb char *
    276  1.34    simonb _kvm_uread(kd, p, va, cnt)
    277  1.34    simonb 	kvm_t *kd;
    278  1.34    simonb 	const struct proc *p;
    279  1.34    simonb 	u_long va;
    280  1.34    simonb 	u_long *cnt;
    281  1.34    simonb {
    282  1.34    simonb 	struct miniproc mp;
    283  1.34    simonb 
    284  1.34    simonb 	PTOMINI(p, &mp);
    285  1.34    simonb 	return (_kvm_ureadm(kd, &mp, va, cnt));
    286  1.34    simonb }
    287  1.34    simonb 
    288   1.1       cgd /*
    289   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    290   1.1       cgd  * at most maxcnt procs.
    291   1.1       cgd  */
    292   1.1       cgd static int
    293   1.1       cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    294   1.1       cgd 	kvm_t *kd;
    295   1.1       cgd 	int what, arg;
    296   1.1       cgd 	struct proc *p;
    297   1.1       cgd 	struct kinfo_proc *bp;
    298   1.1       cgd 	int maxcnt;
    299   1.1       cgd {
    300  1.21     perry 	int cnt = 0;
    301   1.1       cgd 	struct eproc eproc;
    302   1.1       cgd 	struct pgrp pgrp;
    303   1.1       cgd 	struct session sess;
    304   1.1       cgd 	struct tty tty;
    305   1.1       cgd 	struct proc proc;
    306   1.1       cgd 
    307   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    308   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    309   1.1       cgd 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    310   1.1       cgd 			return (-1);
    311   1.1       cgd 		}
    312   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    313  1.28  christos 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    314  1.28  christos 			    &eproc.e_ucred)) {
    315  1.28  christos 				_kvm_err(kd, kd->program,
    316  1.28  christos 				    "can't read proc credentials at %x", p);
    317  1.28  christos 				return -1;
    318  1.28  christos 			}
    319   1.1       cgd 
    320   1.1       cgd 		switch(what) {
    321  1.31    simonb 
    322   1.1       cgd 		case KERN_PROC_PID:
    323   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    324   1.1       cgd 				continue;
    325   1.1       cgd 			break;
    326   1.1       cgd 
    327   1.1       cgd 		case KERN_PROC_UID:
    328   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    329   1.1       cgd 				continue;
    330   1.1       cgd 			break;
    331   1.1       cgd 
    332   1.1       cgd 		case KERN_PROC_RUID:
    333   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    334   1.1       cgd 				continue;
    335   1.1       cgd 			break;
    336   1.1       cgd 		}
    337   1.1       cgd 		/*
    338   1.1       cgd 		 * We're going to add another proc to the set.  If this
    339   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    340   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    341   1.1       cgd 		 */
    342   1.1       cgd 		if (cnt >= maxcnt) {
    343   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    344   1.1       cgd 			return (-1);
    345   1.1       cgd 		}
    346   1.1       cgd 		/*
    347   1.1       cgd 		 * gather eproc
    348   1.1       cgd 		 */
    349   1.1       cgd 		eproc.e_paddr = p;
    350   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    351   1.1       cgd 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    352   1.1       cgd 				 proc.p_pgrp);
    353   1.1       cgd 			return (-1);
    354   1.1       cgd 		}
    355   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    356   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    357   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    358   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    359  1.31    simonb 			_kvm_err(kd, kd->program, "can't read session at %x",
    360   1.1       cgd 				pgrp.pg_session);
    361   1.1       cgd 			return (-1);
    362   1.1       cgd 		}
    363   1.1       cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    364   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    365   1.1       cgd 				_kvm_err(kd, kd->program,
    366   1.1       cgd 					 "can't read tty at %x", sess.s_ttyp);
    367   1.1       cgd 				return (-1);
    368   1.1       cgd 			}
    369   1.1       cgd 			eproc.e_tdev = tty.t_dev;
    370   1.1       cgd 			eproc.e_tsess = tty.t_session;
    371   1.1       cgd 			if (tty.t_pgrp != NULL) {
    372   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    373   1.1       cgd 					_kvm_err(kd, kd->program,
    374  1.31    simonb 						 "can't read tpgrp at &x",
    375   1.1       cgd 						tty.t_pgrp);
    376   1.1       cgd 					return (-1);
    377   1.1       cgd 				}
    378   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    379   1.1       cgd 			} else
    380   1.1       cgd 				eproc.e_tpgid = -1;
    381   1.1       cgd 		} else
    382   1.1       cgd 			eproc.e_tdev = NODEV;
    383   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    384  1.33    simonb 		eproc.e_sid = sess.s_sid;
    385   1.1       cgd 		if (sess.s_leader == p)
    386   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    387   1.1       cgd 		if (proc.p_wmesg)
    388  1.31    simonb 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    389   1.1       cgd 			    eproc.e_wmesg, WMESGLEN);
    390   1.1       cgd 
    391  1.34    simonb 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    392  1.34    simonb 		    sizeof(eproc.e_vm));
    393   1.9        pk 
    394   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    395   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    396   1.1       cgd 
    397   1.1       cgd 		switch (what) {
    398   1.1       cgd 
    399   1.1       cgd 		case KERN_PROC_PGRP:
    400   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    401   1.1       cgd 				continue;
    402   1.1       cgd 			break;
    403   1.1       cgd 
    404   1.1       cgd 		case KERN_PROC_TTY:
    405  1.31    simonb 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    406   1.1       cgd 			     eproc.e_tdev != (dev_t)arg)
    407   1.1       cgd 				continue;
    408   1.1       cgd 			break;
    409   1.1       cgd 		}
    410  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    411  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    412   1.1       cgd 		++bp;
    413   1.1       cgd 		++cnt;
    414   1.1       cgd 	}
    415   1.1       cgd 	return (cnt);
    416   1.1       cgd }
    417   1.1       cgd 
    418   1.1       cgd /*
    419   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    420   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    421   1.1       cgd  */
    422   1.1       cgd static int
    423  1.27   thorpej kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    424   1.1       cgd 	kvm_t *kd;
    425   1.1       cgd 	int what, arg;
    426   1.1       cgd 	u_long a_allproc;
    427  1.27   thorpej 	u_long a_deadproc;
    428   1.1       cgd 	u_long a_zombproc;
    429   1.1       cgd 	int maxcnt;
    430   1.1       cgd {
    431  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    432  1.27   thorpej 	int acnt, dcnt, zcnt;
    433   1.1       cgd 	struct proc *p;
    434   1.1       cgd 
    435   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    436   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    437   1.1       cgd 		return (-1);
    438   1.1       cgd 	}
    439   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    440   1.1       cgd 	if (acnt < 0)
    441   1.1       cgd 		return (acnt);
    442   1.1       cgd 
    443  1.27   thorpej 	if (KREAD(kd, a_deadproc, &p)) {
    444  1.27   thorpej 		_kvm_err(kd, kd->program, "cannot read deadproc");
    445  1.27   thorpej 		return (-1);
    446  1.27   thorpej 	}
    447  1.27   thorpej 
    448  1.27   thorpej 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    449  1.27   thorpej 	if (dcnt < 0)
    450  1.27   thorpej 		dcnt = 0;
    451  1.27   thorpej 
    452   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    453   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    454   1.1       cgd 		return (-1);
    455   1.1       cgd 	}
    456  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    457  1.27   thorpej 	    maxcnt - (acnt + dcnt));
    458   1.1       cgd 	if (zcnt < 0)
    459   1.1       cgd 		zcnt = 0;
    460   1.1       cgd 
    461   1.1       cgd 	return (acnt + zcnt);
    462   1.1       cgd }
    463   1.1       cgd 
    464  1.34    simonb struct kinfo_proc2 *
    465  1.34    simonb kvm_getproc2(kd, op, arg, esize, cnt)
    466  1.34    simonb 	kvm_t *kd;
    467  1.34    simonb 	int op, arg;
    468  1.34    simonb 	size_t esize;
    469  1.34    simonb 	int *cnt;
    470  1.34    simonb {
    471  1.34    simonb 	size_t size;
    472  1.34    simonb 	int mib[6], st, nprocs;
    473  1.34    simonb 	struct user user;
    474  1.34    simonb 
    475  1.34    simonb 	if (esize < 0)
    476  1.34    simonb 		return NULL;
    477  1.34    simonb 
    478  1.34    simonb 	if (kd->procbase2 != NULL) {
    479  1.34    simonb 		free(kd->procbase2);
    480  1.34    simonb 		/*
    481  1.34    simonb 		 * Clear this pointer in case this call fails.  Otherwise,
    482  1.34    simonb 		 * kvm_close() will free it again.
    483  1.34    simonb 		 */
    484  1.34    simonb 		kd->procbase2 = 0;
    485  1.34    simonb 	}
    486  1.34    simonb 
    487  1.34    simonb 	if (ISSYSCTL(kd)) {
    488  1.34    simonb 		size = 0;
    489  1.34    simonb 		mib[0] = CTL_KERN;
    490  1.34    simonb 		mib[1] = KERN_PROC2;
    491  1.34    simonb 		mib[2] = op;
    492  1.34    simonb 		mib[3] = arg;
    493  1.34    simonb 		mib[4] = esize;
    494  1.34    simonb 		mib[5] = 0;
    495  1.34    simonb 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
    496  1.34    simonb 		if (st == -1) {
    497  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    498  1.34    simonb 			return NULL;
    499  1.34    simonb 		}
    500  1.34    simonb 
    501  1.34    simonb 		mib[5] = size / esize;
    502  1.34    simonb 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    503  1.34    simonb 		if (kd->procbase2 == 0)
    504  1.34    simonb 			return NULL;
    505  1.34    simonb 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
    506  1.34    simonb 		if (st == -1) {
    507  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    508  1.34    simonb 			return NULL;
    509  1.34    simonb 		}
    510  1.34    simonb 		nprocs = size / esize;
    511  1.34    simonb 	} else {
    512  1.34    simonb 		char *kp2c;
    513  1.34    simonb 		struct kinfo_proc *kp;
    514  1.34    simonb 		struct kinfo_proc2 kp2, *kp2p;
    515  1.34    simonb 		int i;
    516  1.34    simonb 
    517  1.34    simonb 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    518  1.34    simonb 		if (kp == NULL)
    519  1.34    simonb 			return NULL;
    520  1.34    simonb 
    521  1.34    simonb 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    522  1.34    simonb 		kp2c = (char *)kd->procbase2;
    523  1.34    simonb 		kp2p = &kp2;
    524  1.34    simonb 		for (i = 0; i < nprocs; i++, kp++) {
    525  1.34    simonb 			memset(kp2p, 0, sizeof(kp2));
    526  1.34    simonb 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
    527  1.34    simonb 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
    528  1.34    simonb 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    529  1.34    simonb 
    530  1.34    simonb 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
    531  1.34    simonb 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    532  1.34    simonb 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    533  1.34    simonb 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    534  1.34    simonb 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    535  1.34    simonb 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    536  1.34    simonb 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    537  1.34    simonb 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    538  1.34    simonb 			kp2p->p_tsess = 0;
    539  1.34    simonb 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    540  1.34    simonb 
    541  1.34    simonb 			kp2p->p_eflag = 0;
    542  1.34    simonb 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    543  1.34    simonb 			kp2p->p_flag = kp->kp_proc.p_flag;
    544  1.34    simonb 
    545  1.34    simonb 			kp2p->p_pid = kp->kp_proc.p_pid;
    546  1.34    simonb 
    547  1.34    simonb 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    548  1.34    simonb 			kp2p->p_sid = kp->kp_eproc.e_sid;
    549  1.34    simonb 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    550  1.34    simonb 
    551  1.34    simonb 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
    552  1.34    simonb 
    553  1.34    simonb 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    554  1.34    simonb 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    555  1.34    simonb 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    556  1.34    simonb 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    557  1.34    simonb 
    558  1.34    simonb 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    559  1.34    simonb 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    560  1.34    simonb 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    561  1.34    simonb 
    562  1.34    simonb 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    563  1.34    simonb 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    564  1.34    simonb 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    565  1.34    simonb 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    566  1.34    simonb 
    567  1.34    simonb 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    568  1.34    simonb 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    569  1.34    simonb 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    570  1.34    simonb 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    571  1.34    simonb 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    572  1.34    simonb 			kp2p->p_swtime = kp->kp_proc.p_swtime;
    573  1.34    simonb 			kp2p->p_slptime = kp->kp_proc.p_slptime;
    574  1.34    simonb 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    575  1.34    simonb 
    576  1.34    simonb 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    577  1.34    simonb 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    578  1.34    simonb 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    579  1.34    simonb 
    580  1.34    simonb 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    581  1.34    simonb 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    582  1.34    simonb 
    583  1.34    simonb 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
    584  1.34    simonb 
    585  1.34    simonb 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t));
    586  1.34    simonb 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t));
    587  1.34    simonb 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t));
    588  1.34    simonb 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t));
    589  1.34    simonb 
    590  1.34    simonb 			kp2p->p_stat = kp->kp_proc.p_stat;
    591  1.34    simonb 			kp2p->p_priority = kp->kp_proc.p_priority;
    592  1.34    simonb 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
    593  1.34    simonb 			kp2p->p_nice = kp->kp_proc.p_nice;
    594  1.34    simonb 
    595  1.34    simonb 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    596  1.34    simonb 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    597  1.34    simonb 
    598  1.34    simonb 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    599  1.34    simonb 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
    600  1.34    simonb 
    601  1.34    simonb 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
    602  1.34    simonb 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
    603  1.34    simonb 
    604  1.34    simonb 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
    605  1.34    simonb 
    606  1.34    simonb 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    607  1.34    simonb 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    608  1.34    simonb 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    609  1.34    simonb 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    610  1.34    simonb 
    611  1.34    simonb 			kp2p->p_eflag = kp->kp_eproc.e_flag;
    612  1.34    simonb 
    613  1.34    simonb 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
    614  1.34    simonb 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
    615  1.34    simonb 				kp2p->p_uvalid = 0;
    616  1.34    simonb 			} else {
    617  1.34    simonb 				kp2p->p_uvalid = 1;
    618  1.34    simonb 
    619  1.34    simonb 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
    620  1.34    simonb 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
    621  1.34    simonb 
    622  1.34    simonb 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
    623  1.34    simonb 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
    624  1.34    simonb 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
    625  1.34    simonb 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
    626  1.34    simonb 
    627  1.34    simonb 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
    628  1.34    simonb 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
    629  1.34    simonb 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
    630  1.34    simonb 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
    631  1.34    simonb 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
    632  1.34    simonb 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
    633  1.34    simonb 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
    634  1.34    simonb 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
    635  1.34    simonb 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
    636  1.34    simonb 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
    637  1.34    simonb 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
    638  1.34    simonb 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
    639  1.34    simonb 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
    640  1.34    simonb 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
    641  1.34    simonb 
    642  1.34    simonb 				kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec +
    643  1.34    simonb 				    user.u_stats.p_cru.ru_stime.tv_sec;
    644  1.34    simonb 				kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec +
    645  1.34    simonb 				    user.u_stats.p_cru.ru_stime.tv_usec;
    646  1.34    simonb 			}
    647  1.34    simonb 
    648  1.34    simonb 			memcpy(kp2c, &kp2, esize);
    649  1.34    simonb 			kp2c += esize;
    650  1.34    simonb 		}
    651  1.34    simonb 
    652  1.34    simonb 		free(kd->procbase);
    653  1.34    simonb 	}
    654  1.34    simonb 	*cnt = nprocs;
    655  1.34    simonb 	return (kd->procbase2);
    656  1.34    simonb }
    657  1.34    simonb 
    658   1.1       cgd struct kinfo_proc *
    659   1.1       cgd kvm_getprocs(kd, op, arg, cnt)
    660   1.1       cgd 	kvm_t *kd;
    661   1.1       cgd 	int op, arg;
    662   1.1       cgd 	int *cnt;
    663   1.1       cgd {
    664   1.7       cgd 	size_t size;
    665   1.7       cgd 	int mib[4], st, nprocs;
    666   1.1       cgd 
    667   1.1       cgd 	if (kd->procbase != 0) {
    668  1.34    simonb 		free(kd->procbase);
    669  1.31    simonb 		/*
    670   1.1       cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    671   1.1       cgd 		 * kvm_close() will free it again.
    672   1.1       cgd 		 */
    673   1.1       cgd 		kd->procbase = 0;
    674   1.1       cgd 	}
    675  1.34    simonb 	if (ISKMEM(kd)) {
    676   1.1       cgd 		size = 0;
    677   1.1       cgd 		mib[0] = CTL_KERN;
    678   1.1       cgd 		mib[1] = KERN_PROC;
    679   1.1       cgd 		mib[2] = op;
    680   1.1       cgd 		mib[3] = arg;
    681   1.1       cgd 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    682   1.1       cgd 		if (st == -1) {
    683   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    684  1.34    simonb 			return NULL;
    685   1.1       cgd 		}
    686   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    687   1.1       cgd 		if (kd->procbase == 0)
    688  1.34    simonb 			return NULL;
    689   1.1       cgd 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    690   1.1       cgd 		if (st == -1) {
    691   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    692  1.34    simonb 			return NULL;
    693   1.1       cgd 		}
    694   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    695   1.1       cgd 			_kvm_err(kd, kd->program,
    696   1.1       cgd 				"proc size mismatch (%d total, %d chunks)",
    697   1.1       cgd 				size, sizeof(struct kinfo_proc));
    698  1.34    simonb 			return NULL;
    699   1.1       cgd 		}
    700   1.1       cgd 		nprocs = size / sizeof(struct kinfo_proc);
    701  1.34    simonb 	} else if (ISSYSCTL(kd)) {
    702  1.34    simonb 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    703  1.34    simonb 		    "can't use kvm_getprocs");
    704  1.34    simonb 		return NULL;
    705   1.1       cgd 	} else {
    706  1.27   thorpej 		struct nlist nl[5], *p;
    707   1.1       cgd 
    708   1.1       cgd 		nl[0].n_name = "_nprocs";
    709   1.1       cgd 		nl[1].n_name = "_allproc";
    710  1.27   thorpej 		nl[2].n_name = "_deadproc";
    711  1.27   thorpej 		nl[3].n_name = "_zombproc";
    712  1.27   thorpej 		nl[4].n_name = 0;
    713   1.1       cgd 
    714   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    715   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    716   1.1       cgd 				;
    717   1.1       cgd 			_kvm_err(kd, kd->program,
    718   1.1       cgd 				 "%s: no such symbol", p->n_name);
    719  1.34    simonb 			return NULL;
    720   1.1       cgd 		}
    721   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    722   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    723  1.34    simonb 			return NULL;
    724   1.1       cgd 		}
    725   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    726   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    727   1.1       cgd 		if (kd->procbase == 0)
    728  1.34    simonb 			return NULL;
    729   1.1       cgd 
    730   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    731  1.27   thorpej 		    nl[2].n_value, nl[3].n_value, nprocs);
    732  1.32       chs 		if (nprocs < 0)
    733  1.34    simonb 			return NULL;
    734   1.1       cgd #ifdef notdef
    735   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    736   1.1       cgd 		(void)realloc(kd->procbase, size);
    737   1.1       cgd #endif
    738   1.1       cgd 	}
    739   1.1       cgd 	*cnt = nprocs;
    740   1.1       cgd 	return (kd->procbase);
    741   1.1       cgd }
    742   1.1       cgd 
    743   1.1       cgd void
    744   1.1       cgd _kvm_freeprocs(kd)
    745   1.1       cgd 	kvm_t *kd;
    746   1.1       cgd {
    747   1.1       cgd 	if (kd->procbase) {
    748   1.1       cgd 		free(kd->procbase);
    749   1.1       cgd 		kd->procbase = 0;
    750   1.1       cgd 	}
    751   1.1       cgd }
    752   1.1       cgd 
    753   1.1       cgd void *
    754   1.1       cgd _kvm_realloc(kd, p, n)
    755   1.1       cgd 	kvm_t *kd;
    756   1.1       cgd 	void *p;
    757   1.1       cgd 	size_t n;
    758   1.1       cgd {
    759  1.34    simonb 	void *np = realloc(p, n);
    760   1.1       cgd 
    761   1.1       cgd 	if (np == 0)
    762   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    763   1.1       cgd 	return (np);
    764   1.1       cgd }
    765   1.1       cgd 
    766   1.1       cgd /*
    767   1.1       cgd  * Read in an argument vector from the user address space of process p.
    768  1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    769   1.1       cgd  * strings.  This is used to read in both the command arguments and
    770   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    771   1.1       cgd  */
    772   1.1       cgd static char **
    773   1.1       cgd kvm_argv(kd, p, addr, narg, maxcnt)
    774   1.1       cgd 	kvm_t *kd;
    775  1.34    simonb 	const struct miniproc *p;
    776  1.21     perry 	u_long addr;
    777  1.21     perry 	int narg;
    778  1.21     perry 	int maxcnt;
    779  1.21     perry {
    780  1.21     perry 	char *np, *cp, *ep, *ap;
    781  1.28  christos 	u_long oaddr = (u_long)~0L;
    782  1.28  christos 	u_long len;
    783  1.28  christos 	size_t cc;
    784  1.21     perry 	char **argv;
    785   1.1       cgd 
    786   1.1       cgd 	/*
    787   1.1       cgd 	 * Check that there aren't an unreasonable number of agruments,
    788   1.1       cgd 	 * and that the address is in user space.
    789   1.1       cgd 	 */
    790  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    791  1.34    simonb 		return NULL;
    792   1.1       cgd 
    793   1.1       cgd 	if (kd->argv == 0) {
    794   1.1       cgd 		/*
    795   1.1       cgd 		 * Try to avoid reallocs.
    796   1.1       cgd 		 */
    797   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    798  1.31    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    799   1.1       cgd 						sizeof(*kd->argv));
    800   1.1       cgd 		if (kd->argv == 0)
    801  1.34    simonb 			return NULL;
    802   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    803   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    804  1.31    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    805   1.1       cgd 						sizeof(*kd->argv));
    806   1.1       cgd 		if (kd->argv == 0)
    807  1.34    simonb 			return NULL;
    808   1.1       cgd 	}
    809   1.1       cgd 	if (kd->argspc == 0) {
    810  1.28  christos 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    811   1.1       cgd 		if (kd->argspc == 0)
    812  1.34    simonb 			return NULL;
    813   1.6   mycroft 		kd->arglen = kd->nbpg;
    814   1.1       cgd 	}
    815  1.10   mycroft 	if (kd->argbuf == 0) {
    816  1.28  christos 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    817  1.10   mycroft 		if (kd->argbuf == 0)
    818  1.34    simonb 			return NULL;
    819  1.10   mycroft 	}
    820  1.10   mycroft 	cc = sizeof(char *) * narg;
    821  1.34    simonb 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    822  1.34    simonb 		return NULL;
    823  1.10   mycroft 	ap = np = kd->argspc;
    824   1.1       cgd 	argv = kd->argv;
    825   1.1       cgd 	len = 0;
    826   1.1       cgd 	/*
    827   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    828   1.1       cgd 	 */
    829  1.10   mycroft 	while (argv < kd->argv + narg && *argv != 0) {
    830  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    831  1.10   mycroft 		if (addr != oaddr) {
    832  1.34    simonb 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    833  1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    834  1.34    simonb 				return NULL;
    835  1.10   mycroft 			oaddr = addr;
    836  1.10   mycroft 		}
    837  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    838  1.28  christos 		cp = kd->argbuf + (size_t)addr;
    839  1.28  christos 		cc = kd->nbpg - (size_t)addr;
    840  1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    841  1.28  christos 			cc = (size_t)(maxcnt - len);
    842  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    843  1.10   mycroft 		if (ep != 0)
    844  1.10   mycroft 			cc = ep - cp + 1;
    845   1.1       cgd 		if (len + cc > kd->arglen) {
    846  1.21     perry 			int off;
    847  1.21     perry 			char **pp;
    848  1.21     perry 			char *op = kd->argspc;
    849   1.1       cgd 
    850   1.1       cgd 			kd->arglen *= 2;
    851   1.1       cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    852  1.28  christos 			    (size_t)kd->arglen);
    853   1.1       cgd 			if (kd->argspc == 0)
    854  1.34    simonb 				return NULL;
    855   1.1       cgd 			/*
    856   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    857   1.1       cgd 			 * the string space.
    858   1.1       cgd 			 */
    859   1.1       cgd 			off = kd->argspc - op;
    860  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    861   1.1       cgd 				*pp += off;
    862  1.12   mycroft 			ap += off;
    863  1.12   mycroft 			np += off;
    864   1.1       cgd 		}
    865  1.10   mycroft 		memcpy(np, cp, cc);
    866  1.10   mycroft 		np += cc;
    867   1.1       cgd 		len += cc;
    868  1.10   mycroft 		if (ep != 0) {
    869  1.10   mycroft 			*argv++ = ap;
    870  1.10   mycroft 			ap = np;
    871  1.10   mycroft 		} else
    872  1.10   mycroft 			*argv += cc;
    873   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
    874   1.1       cgd 			/*
    875   1.1       cgd 			 * We're stopping prematurely.  Terminate the
    876  1.10   mycroft 			 * current string.
    877   1.1       cgd 			 */
    878  1.10   mycroft 			if (ep == 0) {
    879  1.10   mycroft 				*np = '\0';
    880  1.14   mycroft 				*argv++ = ap;
    881  1.10   mycroft 			}
    882  1.10   mycroft 			break;
    883   1.1       cgd 		}
    884   1.1       cgd 	}
    885  1.10   mycroft 	/* Make sure argv is terminated. */
    886  1.10   mycroft 	*argv = 0;
    887  1.10   mycroft 	return (kd->argv);
    888   1.1       cgd }
    889   1.1       cgd 
    890   1.1       cgd static void
    891   1.1       cgd ps_str_a(p, addr, n)
    892   1.1       cgd 	struct ps_strings *p;
    893   1.1       cgd 	u_long *addr;
    894   1.1       cgd 	int *n;
    895   1.1       cgd {
    896   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
    897   1.1       cgd 	*n = p->ps_nargvstr;
    898   1.1       cgd }
    899   1.1       cgd 
    900   1.1       cgd static void
    901   1.1       cgd ps_str_e(p, addr, n)
    902   1.1       cgd 	struct ps_strings *p;
    903   1.1       cgd 	u_long *addr;
    904   1.1       cgd 	int *n;
    905   1.1       cgd {
    906   1.1       cgd 	*addr = (u_long)p->ps_envstr;
    907   1.1       cgd 	*n = p->ps_nenvstr;
    908   1.1       cgd }
    909   1.1       cgd 
    910   1.1       cgd /*
    911   1.1       cgd  * Determine if the proc indicated by p is still active.
    912   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
    913   1.1       cgd  * being wrong are very low.
    914   1.1       cgd  */
    915   1.1       cgd static int
    916   1.1       cgd proc_verify(kd, kernp, p)
    917   1.1       cgd 	kvm_t *kd;
    918   1.1       cgd 	u_long kernp;
    919  1.34    simonb 	const struct miniproc *p;
    920   1.1       cgd {
    921   1.1       cgd 	struct proc kernproc;
    922   1.1       cgd 
    923   1.1       cgd 	/*
    924   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
    925   1.1       cgd 	 * to the cost of the read system call.
    926   1.1       cgd 	 */
    927  1.34    simonb 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
    928   1.1       cgd 	    sizeof(kernproc))
    929  1.34    simonb 		return 0;
    930   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
    931   1.1       cgd 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    932   1.1       cgd }
    933   1.1       cgd 
    934   1.1       cgd static char **
    935  1.34    simonb kvm_doargv(kd, p, nchr, info)
    936   1.1       cgd 	kvm_t *kd;
    937  1.34    simonb 	const struct miniproc *p;
    938   1.1       cgd 	int nchr;
    939  1.10   mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
    940   1.1       cgd {
    941  1.21     perry 	char **ap;
    942   1.1       cgd 	u_long addr;
    943   1.1       cgd 	int cnt;
    944   1.1       cgd 	struct ps_strings arginfo;
    945   1.1       cgd 
    946   1.1       cgd 	/*
    947   1.1       cgd 	 * Pointers are stored at the top of the user stack.
    948   1.1       cgd 	 */
    949  1.18       gwr 	if (p->p_stat == SZOMB)
    950  1.34    simonb 		return NULL;
    951  1.34    simonb 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
    952  1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
    953  1.18       gwr 	if (cnt != sizeof(arginfo))
    954  1.34    simonb 		return NULL;
    955   1.1       cgd 
    956   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
    957   1.3   mycroft 	if (cnt == 0)
    958  1.34    simonb 		return NULL;
    959   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    960   1.1       cgd 	/*
    961   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
    962   1.1       cgd 	 */
    963   1.1       cgd 	if (ap != 0 && ISALIVE(kd) &&
    964  1.34    simonb 	    !proc_verify(kd, (u_long)p->p_paddr, p))
    965   1.1       cgd 		ap = 0;
    966   1.1       cgd 	return (ap);
    967   1.1       cgd }
    968   1.1       cgd 
    969   1.1       cgd /*
    970   1.1       cgd  * Get the command args.  This code is now machine independent.
    971   1.1       cgd  */
    972   1.1       cgd char **
    973   1.1       cgd kvm_getargv(kd, kp, nchr)
    974   1.1       cgd 	kvm_t *kd;
    975   1.1       cgd 	const struct kinfo_proc *kp;
    976   1.1       cgd 	int nchr;
    977   1.1       cgd {
    978  1.34    simonb 	struct miniproc p;
    979  1.34    simonb 
    980  1.34    simonb 	KPTOMINI(kp, &p);
    981  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
    982   1.1       cgd }
    983   1.1       cgd 
    984   1.1       cgd char **
    985   1.1       cgd kvm_getenvv(kd, kp, nchr)
    986   1.1       cgd 	kvm_t *kd;
    987   1.1       cgd 	const struct kinfo_proc *kp;
    988   1.1       cgd 	int nchr;
    989   1.1       cgd {
    990  1.34    simonb 	struct miniproc p;
    991  1.34    simonb 
    992  1.34    simonb 	KPTOMINI(kp, &p);
    993  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
    994  1.34    simonb }
    995  1.34    simonb 
    996  1.34    simonb static char **
    997  1.34    simonb kvm_doargv2(kd, pid, type, nchr)
    998  1.34    simonb 	kvm_t *kd;
    999  1.34    simonb 	pid_t pid;
   1000  1.34    simonb 	int type;
   1001  1.34    simonb 	int nchr;
   1002  1.34    simonb {
   1003  1.34    simonb 	size_t bufs;
   1004  1.34    simonb 	int narg, newarglen, mib[4];
   1005  1.34    simonb 	char **ap, *bp, *endp;
   1006  1.34    simonb 
   1007  1.34    simonb 	/*
   1008  1.34    simonb 	 * Check that there aren't an unreasonable number of agruments.
   1009  1.34    simonb 	 */
   1010  1.34    simonb 	if (nchr > ARG_MAX)
   1011  1.34    simonb 		return NULL;
   1012  1.34    simonb 
   1013  1.34    simonb 	if (nchr == 0)
   1014  1.34    simonb 		nchr = ARG_MAX;
   1015  1.34    simonb 
   1016  1.34    simonb 	/* Get number of strings in argv */
   1017  1.34    simonb 	mib[0] = CTL_KERN;
   1018  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1019  1.34    simonb 	mib[2] = pid;
   1020  1.34    simonb 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1021  1.34    simonb 	bufs = sizeof(narg);
   1022  1.34    simonb 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
   1023  1.34    simonb 		return NULL;
   1024  1.34    simonb 
   1025  1.34    simonb 	if (kd->argv == 0) {
   1026  1.34    simonb 		/*
   1027  1.34    simonb 		 * Try to avoid reallocs.
   1028  1.34    simonb 		 */
   1029  1.34    simonb 		kd->argc = MAX(narg + 1, 32);
   1030  1.34    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1031  1.34    simonb 						sizeof(*kd->argv));
   1032  1.34    simonb 		if (kd->argv == 0)
   1033  1.34    simonb 			return NULL;
   1034  1.34    simonb 	} else if (narg + 1 > kd->argc) {
   1035  1.34    simonb 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1036  1.34    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1037  1.34    simonb 						sizeof(*kd->argv));
   1038  1.34    simonb 		if (kd->argv == 0)
   1039  1.34    simonb 			return NULL;
   1040  1.34    simonb 	}
   1041  1.34    simonb 
   1042  1.34    simonb 	newarglen = MIN(nchr, ARG_MAX);
   1043  1.34    simonb 	if (kd->arglen < newarglen) {
   1044  1.34    simonb 		if (kd->arglen == 0)
   1045  1.34    simonb 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1046  1.34    simonb 		else
   1047  1.34    simonb 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1048  1.34    simonb 			    newarglen);
   1049  1.34    simonb 		if (kd->argspc == 0)
   1050  1.34    simonb 			return NULL;
   1051  1.34    simonb 		kd->arglen = newarglen;
   1052  1.34    simonb 	}
   1053  1.34    simonb 	memset(kd->argspc, 0, kd->arglen);	/* XXX necessary? */
   1054  1.34    simonb 
   1055  1.34    simonb 	mib[0] = CTL_KERN;
   1056  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1057  1.34    simonb 	mib[2] = pid;
   1058  1.34    simonb 	mib[3] = type;
   1059  1.34    simonb 	bufs = kd->arglen;
   1060  1.34    simonb 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
   1061  1.34    simonb 		return NULL;
   1062  1.34    simonb 
   1063  1.34    simonb 	bp = kd->argspc;
   1064  1.34    simonb 	ap = kd->argv;
   1065  1.34    simonb 	endp = bp + MIN(nchr, bufs);
   1066  1.34    simonb 
   1067  1.34    simonb 	while (bp < endp) {
   1068  1.34    simonb 		*ap++ = bp;
   1069  1.34    simonb 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
   1070  1.34    simonb 		if (ap >= kd->argv + kd->argc) {
   1071  1.34    simonb 			kd->argc *= 2;
   1072  1.34    simonb 			kd->argv = _kvm_realloc(kd, kd->argv,
   1073  1.34    simonb 			    kd->argc * sizeof(*kd->argv));
   1074  1.34    simonb 		}
   1075  1.34    simonb 		bp += strlen(bp) + 1;
   1076  1.34    simonb 	}
   1077  1.34    simonb 	*ap = NULL;
   1078  1.34    simonb 
   1079  1.34    simonb 	return (kd->argv);
   1080  1.34    simonb }
   1081  1.34    simonb 
   1082  1.34    simonb char **
   1083  1.34    simonb kvm_getargv2(kd, kp, nchr)
   1084  1.34    simonb 	kvm_t *kd;
   1085  1.34    simonb 	const struct kinfo_proc2 *kp;
   1086  1.34    simonb 	int nchr;
   1087  1.34    simonb {
   1088  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1089  1.34    simonb }
   1090  1.34    simonb 
   1091  1.34    simonb char **
   1092  1.34    simonb kvm_getenvv2(kd, kp, nchr)
   1093  1.34    simonb 	kvm_t *kd;
   1094  1.34    simonb 	const struct kinfo_proc2 *kp;
   1095  1.34    simonb 	int nchr;
   1096  1.34    simonb {
   1097  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1098   1.1       cgd }
   1099   1.1       cgd 
   1100   1.1       cgd /*
   1101   1.1       cgd  * Read from user space.  The user context is given by p.
   1102   1.1       cgd  */
   1103  1.34    simonb static ssize_t
   1104  1.34    simonb kvm_ureadm(kd, p, uva, buf, len)
   1105   1.1       cgd 	kvm_t *kd;
   1106  1.34    simonb 	const struct miniproc *p;
   1107  1.21     perry 	u_long uva;
   1108  1.21     perry 	char *buf;
   1109  1.21     perry 	size_t len;
   1110   1.1       cgd {
   1111  1.21     perry 	char *cp;
   1112   1.1       cgd 
   1113   1.1       cgd 	cp = buf;
   1114   1.1       cgd 	while (len > 0) {
   1115  1.28  christos 		size_t cc;
   1116  1.21     perry 		char *dp;
   1117  1.15       cgd 		u_long cnt;
   1118   1.8   mycroft 
   1119  1.34    simonb 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1120   1.8   mycroft 		if (dp == 0) {
   1121   1.8   mycroft 			_kvm_err(kd, 0, "invalid address (%x)", uva);
   1122  1.34    simonb 			return 0;
   1123   1.8   mycroft 		}
   1124  1.28  christos 		cc = (size_t)MIN(cnt, len);
   1125  1.25     perry 		memcpy(cp, dp, cc);
   1126   1.1       cgd 		cp += cc;
   1127   1.1       cgd 		uva += cc;
   1128   1.1       cgd 		len -= cc;
   1129   1.1       cgd 	}
   1130   1.1       cgd 	return (ssize_t)(cp - buf);
   1131  1.34    simonb }
   1132  1.34    simonb 
   1133  1.34    simonb ssize_t
   1134  1.34    simonb kvm_uread(kd, p, uva, buf, len)
   1135  1.34    simonb 	kvm_t *kd;
   1136  1.34    simonb 	const struct proc *p;
   1137  1.34    simonb 	u_long uva;
   1138  1.34    simonb 	char *buf;
   1139  1.34    simonb 	size_t len;
   1140  1.34    simonb {
   1141  1.34    simonb 	struct miniproc mp;
   1142  1.34    simonb 
   1143  1.34    simonb 	PTOMINI(p, &mp);
   1144  1.34    simonb 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1145   1.1       cgd }
   1146