kvm_proc.c revision 1.41 1 1.41 sommerfe /* $NetBSD: kvm_proc.c,v 1.41 2000/10/04 16:11:27 sommerfeld Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft * 3. All advertising materials mentioning features or use of this software
19 1.26 mycroft * must display the following acknowledgement:
20 1.26 mycroft * This product includes software developed by the NetBSD
21 1.26 mycroft * Foundation, Inc. and its contributors.
22 1.26 mycroft * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.26 mycroft * contributors may be used to endorse or promote products derived
24 1.26 mycroft * from this software without specific prior written permission.
25 1.26 mycroft *
26 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
37 1.26 mycroft */
38 1.16 thorpej
39 1.1 cgd /*-
40 1.1 cgd * Copyright (c) 1989, 1992, 1993
41 1.1 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * This code is derived from software developed by the Computer Systems
44 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 1.1 cgd * BG 91-66 and contributed to Berkeley.
46 1.1 cgd *
47 1.1 cgd * Redistribution and use in source and binary forms, with or without
48 1.1 cgd * modification, are permitted provided that the following conditions
49 1.1 cgd * are met:
50 1.1 cgd * 1. Redistributions of source code must retain the above copyright
51 1.1 cgd * notice, this list of conditions and the following disclaimer.
52 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 cgd * notice, this list of conditions and the following disclaimer in the
54 1.1 cgd * documentation and/or other materials provided with the distribution.
55 1.1 cgd * 3. All advertising materials mentioning features or use of this software
56 1.1 cgd * must display the following acknowledgement:
57 1.1 cgd * This product includes software developed by the University of
58 1.1 cgd * California, Berkeley and its contributors.
59 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
60 1.1 cgd * may be used to endorse or promote products derived from this software
61 1.1 cgd * without specific prior written permission.
62 1.1 cgd *
63 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 cgd * SUCH DAMAGE.
74 1.1 cgd */
75 1.1 cgd
76 1.19 mikel #include <sys/cdefs.h>
77 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
78 1.16 thorpej #if 0
79 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 1.16 thorpej #else
81 1.41 sommerfe __RCSID("$NetBSD: kvm_proc.c,v 1.41 2000/10/04 16:11:27 sommerfeld Exp $");
82 1.16 thorpej #endif
83 1.1 cgd #endif /* LIBC_SCCS and not lint */
84 1.1 cgd
85 1.1 cgd /*
86 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 1.1 cgd * users of this code, so we've factored it out into a separate module.
88 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 1.1 cgd * most other applications are interested only in open/close/read/nlist).
90 1.1 cgd */
91 1.1 cgd
92 1.1 cgd #include <sys/param.h>
93 1.1 cgd #include <sys/user.h>
94 1.1 cgd #include <sys/proc.h>
95 1.1 cgd #include <sys/exec.h>
96 1.1 cgd #include <sys/stat.h>
97 1.1 cgd #include <sys/ioctl.h>
98 1.1 cgd #include <sys/tty.h>
99 1.7 cgd #include <stdlib.h>
100 1.10 mycroft #include <string.h>
101 1.1 cgd #include <unistd.h>
102 1.1 cgd #include <nlist.h>
103 1.1 cgd #include <kvm.h>
104 1.1 cgd
105 1.23 chs #include <uvm/uvm_extern.h>
106 1.29 mrg #include <uvm/uvm_amap.h>
107 1.23 chs
108 1.1 cgd #include <sys/sysctl.h>
109 1.1 cgd
110 1.1 cgd #include <limits.h>
111 1.1 cgd #include <db.h>
112 1.1 cgd #include <paths.h>
113 1.1 cgd
114 1.1 cgd #include "kvm_private.h"
115 1.1 cgd
116 1.34 simonb /*
117 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
118 1.34 simonb */
119 1.34 simonb struct miniproc {
120 1.34 simonb struct vmspace *p_vmspace;
121 1.34 simonb char p_stat;
122 1.34 simonb struct proc *p_paddr;
123 1.34 simonb pid_t p_pid;
124 1.34 simonb };
125 1.34 simonb
126 1.34 simonb /*
127 1.34 simonb * Convert from struct proc and kinfo_proc{,2} to miniproc.
128 1.34 simonb */
129 1.34 simonb #define PTOMINI(kp, p) \
130 1.34 simonb do { \
131 1.34 simonb (p)->p_stat = (kp)->p_stat; \
132 1.34 simonb (p)->p_pid = (kp)->p_pid; \
133 1.34 simonb (p)->p_paddr = NULL; \
134 1.34 simonb (p)->p_vmspace = (kp)->p_vmspace; \
135 1.34 simonb } while (/*CONSTCOND*/0);
136 1.34 simonb
137 1.34 simonb #define KPTOMINI(kp, p) \
138 1.34 simonb do { \
139 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \
140 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \
141 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
142 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
143 1.34 simonb } while (/*CONSTCOND*/0);
144 1.34 simonb
145 1.34 simonb #define KP2TOMINI(kp, p) \
146 1.34 simonb do { \
147 1.34 simonb (p)->p_stat = (kp)->p_stat; \
148 1.34 simonb (p)->p_pid = (kp)->p_pid; \
149 1.34 simonb (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
150 1.34 simonb (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
151 1.34 simonb } while (/*CONSTCOND*/0);
152 1.34 simonb
153 1.34 simonb
154 1.40 christos #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo))
155 1.34 simonb
156 1.2 mycroft #define KREAD(kd, addr, obj) \
157 1.34 simonb (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
158 1.2 mycroft
159 1.34 simonb /* XXX: What uses these two functions? */
160 1.34 simonb char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
161 1.34 simonb u_long *));
162 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
163 1.15 cgd size_t));
164 1.15 cgd
165 1.34 simonb static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
166 1.34 simonb u_long *));
167 1.34 simonb static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
168 1.34 simonb char *, size_t));
169 1.34 simonb
170 1.34 simonb static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
171 1.15 cgd int));
172 1.27 thorpej static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
173 1.27 thorpej int));
174 1.34 simonb static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
175 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
176 1.34 simonb static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
177 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
178 1.15 cgd struct kinfo_proc *, int));
179 1.34 simonb static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
180 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
181 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
182 1.2 mycroft
183 1.34 simonb
184 1.34 simonb static char *
185 1.34 simonb _kvm_ureadm(kd, p, va, cnt)
186 1.1 cgd kvm_t *kd;
187 1.34 simonb const struct miniproc *p;
188 1.1 cgd u_long va;
189 1.1 cgd u_long *cnt;
190 1.1 cgd {
191 1.28 christos int true = 1;
192 1.21 perry u_long addr, head;
193 1.21 perry u_long offset;
194 1.1 cgd struct vm_map_entry vme;
195 1.23 chs struct vm_amap amap;
196 1.23 chs struct vm_anon *anonp, anon;
197 1.23 chs struct vm_page pg;
198 1.28 christos u_long slot;
199 1.1 cgd
200 1.36 tron if (kd->swapspc == NULL) {
201 1.28 christos kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
202 1.36 tron if (kd->swapspc == NULL)
203 1.34 simonb return NULL;
204 1.5 deraadt }
205 1.8 mycroft
206 1.1 cgd /*
207 1.1 cgd * Look through the address map for the memory object
208 1.1 cgd * that corresponds to the given virtual address.
209 1.1 cgd * The header just has the entire valid range.
210 1.1 cgd */
211 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
212 1.1 cgd addr = head;
213 1.28 christos while (true) {
214 1.2 mycroft if (KREAD(kd, addr, &vme))
215 1.34 simonb return NULL;
216 1.1 cgd
217 1.23 chs if (va >= vme.start && va < vme.end &&
218 1.23 chs vme.aref.ar_amap != NULL)
219 1.23 chs break;
220 1.23 chs
221 1.1 cgd addr = (u_long)vme.next;
222 1.2 mycroft if (addr == head)
223 1.34 simonb return NULL;
224 1.23 chs
225 1.1 cgd }
226 1.2 mycroft
227 1.1 cgd /*
228 1.23 chs * we found the map entry, now to find the object...
229 1.23 chs */
230 1.23 chs if (vme.aref.ar_amap == NULL)
231 1.23 chs return NULL;
232 1.23 chs
233 1.23 chs addr = (u_long)vme.aref.ar_amap;
234 1.23 chs if (KREAD(kd, addr, &amap))
235 1.23 chs return NULL;
236 1.23 chs
237 1.23 chs offset = va - vme.start;
238 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff;
239 1.23 chs /* sanity-check slot number */
240 1.23 chs if (slot > amap.am_nslot)
241 1.23 chs return NULL;
242 1.23 chs
243 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
244 1.23 chs if (KREAD(kd, addr, &anonp))
245 1.23 chs return NULL;
246 1.23 chs
247 1.23 chs addr = (u_long)anonp;
248 1.23 chs if (KREAD(kd, addr, &anon))
249 1.23 chs return NULL;
250 1.23 chs
251 1.23 chs addr = (u_long)anon.u.an_page;
252 1.23 chs if (addr) {
253 1.23 chs if (KREAD(kd, addr, &pg))
254 1.23 chs return NULL;
255 1.23 chs
256 1.34 simonb if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
257 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
258 1.23 chs return NULL;
259 1.23 chs }
260 1.23 chs else {
261 1.34 simonb if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
262 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
263 1.23 chs return NULL;
264 1.23 chs }
265 1.8 mycroft
266 1.2 mycroft /* Found the page. */
267 1.6 mycroft offset %= kd->nbpg;
268 1.6 mycroft *cnt = kd->nbpg - offset;
269 1.28 christos return (&kd->swapspc[(size_t)offset]);
270 1.2 mycroft }
271 1.1 cgd
272 1.34 simonb char *
273 1.34 simonb _kvm_uread(kd, p, va, cnt)
274 1.34 simonb kvm_t *kd;
275 1.34 simonb const struct proc *p;
276 1.34 simonb u_long va;
277 1.34 simonb u_long *cnt;
278 1.34 simonb {
279 1.34 simonb struct miniproc mp;
280 1.34 simonb
281 1.34 simonb PTOMINI(p, &mp);
282 1.34 simonb return (_kvm_ureadm(kd, &mp, va, cnt));
283 1.34 simonb }
284 1.34 simonb
285 1.1 cgd /*
286 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
287 1.1 cgd * at most maxcnt procs.
288 1.1 cgd */
289 1.1 cgd static int
290 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
291 1.1 cgd kvm_t *kd;
292 1.1 cgd int what, arg;
293 1.1 cgd struct proc *p;
294 1.1 cgd struct kinfo_proc *bp;
295 1.1 cgd int maxcnt;
296 1.1 cgd {
297 1.21 perry int cnt = 0;
298 1.1 cgd struct eproc eproc;
299 1.1 cgd struct pgrp pgrp;
300 1.1 cgd struct session sess;
301 1.1 cgd struct tty tty;
302 1.1 cgd struct proc proc;
303 1.1 cgd
304 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
305 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
306 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p);
307 1.1 cgd return (-1);
308 1.1 cgd }
309 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
310 1.28 christos if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
311 1.28 christos &eproc.e_ucred)) {
312 1.28 christos _kvm_err(kd, kd->program,
313 1.41 sommerfe "can't read proc credentials at %p", p);
314 1.28 christos return -1;
315 1.28 christos }
316 1.1 cgd
317 1.1 cgd switch(what) {
318 1.31 simonb
319 1.1 cgd case KERN_PROC_PID:
320 1.1 cgd if (proc.p_pid != (pid_t)arg)
321 1.1 cgd continue;
322 1.1 cgd break;
323 1.1 cgd
324 1.1 cgd case KERN_PROC_UID:
325 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
326 1.1 cgd continue;
327 1.1 cgd break;
328 1.1 cgd
329 1.1 cgd case KERN_PROC_RUID:
330 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
331 1.1 cgd continue;
332 1.1 cgd break;
333 1.1 cgd }
334 1.1 cgd /*
335 1.1 cgd * We're going to add another proc to the set. If this
336 1.1 cgd * will overflow the buffer, assume the reason is because
337 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
338 1.1 cgd */
339 1.1 cgd if (cnt >= maxcnt) {
340 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
341 1.1 cgd return (-1);
342 1.1 cgd }
343 1.1 cgd /*
344 1.1 cgd * gather eproc
345 1.1 cgd */
346 1.1 cgd eproc.e_paddr = p;
347 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
348 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p",
349 1.1 cgd proc.p_pgrp);
350 1.1 cgd return (-1);
351 1.1 cgd }
352 1.1 cgd eproc.e_sess = pgrp.pg_session;
353 1.1 cgd eproc.e_pgid = pgrp.pg_id;
354 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
355 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
356 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p",
357 1.1 cgd pgrp.pg_session);
358 1.1 cgd return (-1);
359 1.1 cgd }
360 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
361 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
362 1.1 cgd _kvm_err(kd, kd->program,
363 1.41 sommerfe "can't read tty at %p", sess.s_ttyp);
364 1.1 cgd return (-1);
365 1.1 cgd }
366 1.1 cgd eproc.e_tdev = tty.t_dev;
367 1.1 cgd eproc.e_tsess = tty.t_session;
368 1.1 cgd if (tty.t_pgrp != NULL) {
369 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
370 1.1 cgd _kvm_err(kd, kd->program,
371 1.41 sommerfe "can't read tpgrp at %p",
372 1.1 cgd tty.t_pgrp);
373 1.1 cgd return (-1);
374 1.1 cgd }
375 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
376 1.1 cgd } else
377 1.1 cgd eproc.e_tpgid = -1;
378 1.1 cgd } else
379 1.1 cgd eproc.e_tdev = NODEV;
380 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
381 1.33 simonb eproc.e_sid = sess.s_sid;
382 1.1 cgd if (sess.s_leader == p)
383 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
384 1.1 cgd if (proc.p_wmesg)
385 1.31 simonb (void)kvm_read(kd, (u_long)proc.p_wmesg,
386 1.1 cgd eproc.e_wmesg, WMESGLEN);
387 1.1 cgd
388 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
389 1.34 simonb sizeof(eproc.e_vm));
390 1.9 pk
391 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
392 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
393 1.1 cgd
394 1.1 cgd switch (what) {
395 1.1 cgd
396 1.1 cgd case KERN_PROC_PGRP:
397 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
398 1.1 cgd continue;
399 1.1 cgd break;
400 1.1 cgd
401 1.1 cgd case KERN_PROC_TTY:
402 1.31 simonb if ((proc.p_flag & P_CONTROLT) == 0 ||
403 1.1 cgd eproc.e_tdev != (dev_t)arg)
404 1.1 cgd continue;
405 1.1 cgd break;
406 1.1 cgd }
407 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
408 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
409 1.1 cgd ++bp;
410 1.1 cgd ++cnt;
411 1.1 cgd }
412 1.1 cgd return (cnt);
413 1.1 cgd }
414 1.1 cgd
415 1.1 cgd /*
416 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
417 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
418 1.1 cgd */
419 1.1 cgd static int
420 1.27 thorpej kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
421 1.1 cgd kvm_t *kd;
422 1.1 cgd int what, arg;
423 1.1 cgd u_long a_allproc;
424 1.27 thorpej u_long a_deadproc;
425 1.1 cgd u_long a_zombproc;
426 1.1 cgd int maxcnt;
427 1.1 cgd {
428 1.21 perry struct kinfo_proc *bp = kd->procbase;
429 1.27 thorpej int acnt, dcnt, zcnt;
430 1.1 cgd struct proc *p;
431 1.1 cgd
432 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
433 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
434 1.1 cgd return (-1);
435 1.1 cgd }
436 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
437 1.1 cgd if (acnt < 0)
438 1.1 cgd return (acnt);
439 1.1 cgd
440 1.27 thorpej if (KREAD(kd, a_deadproc, &p)) {
441 1.27 thorpej _kvm_err(kd, kd->program, "cannot read deadproc");
442 1.27 thorpej return (-1);
443 1.27 thorpej }
444 1.27 thorpej
445 1.27 thorpej dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
446 1.27 thorpej if (dcnt < 0)
447 1.27 thorpej dcnt = 0;
448 1.27 thorpej
449 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
450 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
451 1.1 cgd return (-1);
452 1.1 cgd }
453 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
454 1.27 thorpej maxcnt - (acnt + dcnt));
455 1.1 cgd if (zcnt < 0)
456 1.1 cgd zcnt = 0;
457 1.1 cgd
458 1.1 cgd return (acnt + zcnt);
459 1.1 cgd }
460 1.1 cgd
461 1.34 simonb struct kinfo_proc2 *
462 1.34 simonb kvm_getproc2(kd, op, arg, esize, cnt)
463 1.34 simonb kvm_t *kd;
464 1.34 simonb int op, arg;
465 1.34 simonb size_t esize;
466 1.34 simonb int *cnt;
467 1.34 simonb {
468 1.34 simonb size_t size;
469 1.34 simonb int mib[6], st, nprocs;
470 1.34 simonb struct user user;
471 1.34 simonb
472 1.34 simonb if (kd->procbase2 != NULL) {
473 1.34 simonb free(kd->procbase2);
474 1.34 simonb /*
475 1.34 simonb * Clear this pointer in case this call fails. Otherwise,
476 1.34 simonb * kvm_close() will free it again.
477 1.34 simonb */
478 1.36 tron kd->procbase2 = NULL;
479 1.34 simonb }
480 1.34 simonb
481 1.34 simonb if (ISSYSCTL(kd)) {
482 1.34 simonb size = 0;
483 1.34 simonb mib[0] = CTL_KERN;
484 1.34 simonb mib[1] = KERN_PROC2;
485 1.34 simonb mib[2] = op;
486 1.34 simonb mib[3] = arg;
487 1.34 simonb mib[4] = esize;
488 1.34 simonb mib[5] = 0;
489 1.34 simonb st = sysctl(mib, 6, NULL, &size, NULL, 0);
490 1.34 simonb if (st == -1) {
491 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
492 1.34 simonb return NULL;
493 1.34 simonb }
494 1.34 simonb
495 1.34 simonb mib[5] = size / esize;
496 1.34 simonb kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
497 1.36 tron if (kd->procbase2 == NULL)
498 1.34 simonb return NULL;
499 1.34 simonb st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
500 1.34 simonb if (st == -1) {
501 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
502 1.34 simonb return NULL;
503 1.34 simonb }
504 1.34 simonb nprocs = size / esize;
505 1.34 simonb } else {
506 1.34 simonb char *kp2c;
507 1.34 simonb struct kinfo_proc *kp;
508 1.34 simonb struct kinfo_proc2 kp2, *kp2p;
509 1.34 simonb int i;
510 1.34 simonb
511 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs);
512 1.34 simonb if (kp == NULL)
513 1.34 simonb return NULL;
514 1.34 simonb
515 1.34 simonb kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
516 1.39 christos kp2c = (char *)(void *)kd->procbase2;
517 1.34 simonb kp2p = &kp2;
518 1.34 simonb for (i = 0; i < nprocs; i++, kp++) {
519 1.34 simonb memset(kp2p, 0, sizeof(kp2));
520 1.34 simonb kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
521 1.34 simonb kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
522 1.34 simonb kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
523 1.34 simonb
524 1.34 simonb kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
525 1.34 simonb kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
526 1.34 simonb kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
527 1.34 simonb kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
528 1.34 simonb kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
529 1.34 simonb kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
530 1.34 simonb kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
531 1.34 simonb kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
532 1.34 simonb kp2p->p_tsess = 0;
533 1.34 simonb kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
534 1.34 simonb
535 1.34 simonb kp2p->p_eflag = 0;
536 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig;
537 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag;
538 1.34 simonb
539 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid;
540 1.34 simonb
541 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid;
542 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid;
543 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid;
544 1.34 simonb
545 1.34 simonb kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
546 1.34 simonb
547 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
548 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
549 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
550 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
551 1.34 simonb
552 1.39 christos /*CONSTCOND*/
553 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
554 1.34 simonb MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
555 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
556 1.34 simonb
557 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc;
558 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev;
559 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
560 1.34 simonb kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
561 1.34 simonb
562 1.34 simonb kp2p->p_estcpu = kp->kp_proc.p_estcpu;
563 1.34 simonb kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
564 1.34 simonb kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
565 1.34 simonb kp2p->p_cpticks = kp->kp_proc.p_cpticks;
566 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
567 1.34 simonb kp2p->p_swtime = kp->kp_proc.p_swtime;
568 1.34 simonb kp2p->p_slptime = kp->kp_proc.p_slptime;
569 1.35 thorpej #if 0 /* XXX thorpej */
570 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags;
571 1.35 thorpej #else
572 1.35 thorpej kp2p->p_schedflags = 0;
573 1.35 thorpej #endif
574 1.34 simonb
575 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks;
576 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks;
577 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks;
578 1.34 simonb
579 1.34 simonb kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
580 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag;
581 1.34 simonb
582 1.34 simonb kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
583 1.34 simonb
584 1.34 simonb memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t));
585 1.34 simonb memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t));
586 1.34 simonb memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t));
587 1.34 simonb memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t));
588 1.34 simonb
589 1.34 simonb kp2p->p_stat = kp->kp_proc.p_stat;
590 1.34 simonb kp2p->p_priority = kp->kp_proc.p_priority;
591 1.34 simonb kp2p->p_usrpri = kp->kp_proc.p_usrpri;
592 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice;
593 1.34 simonb
594 1.34 simonb kp2p->p_xstat = kp->kp_proc.p_xstat;
595 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag;
596 1.34 simonb
597 1.39 christos /*CONSTCOND*/
598 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
599 1.34 simonb MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
600 1.34 simonb
601 1.34 simonb strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
602 1.34 simonb kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
603 1.34 simonb
604 1.34 simonb strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
605 1.34 simonb
606 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
607 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
608 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
609 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
610 1.34 simonb
611 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
612 1.34 simonb
613 1.34 simonb if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
614 1.34 simonb KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
615 1.34 simonb kp2p->p_uvalid = 0;
616 1.34 simonb } else {
617 1.34 simonb kp2p->p_uvalid = 1;
618 1.34 simonb
619 1.39 christos kp2p->p_ustart_sec = (u_int32_t)
620 1.39 christos user.u_stats.p_start.tv_sec;
621 1.39 christos kp2p->p_ustart_usec = (u_int32_t)
622 1.39 christos user.u_stats.p_start.tv_usec;
623 1.39 christos
624 1.39 christos kp2p->p_uutime_sec = (u_int32_t)
625 1.39 christos user.u_stats.p_ru.ru_utime.tv_sec;
626 1.39 christos kp2p->p_uutime_usec = (u_int32_t)
627 1.39 christos user.u_stats.p_ru.ru_utime.tv_usec;
628 1.39 christos kp2p->p_ustime_sec = (u_int32_t)
629 1.39 christos user.u_stats.p_ru.ru_stime.tv_sec;
630 1.39 christos kp2p->p_ustime_usec = (u_int32_t)
631 1.39 christos user.u_stats.p_ru.ru_stime.tv_usec;
632 1.34 simonb
633 1.34 simonb kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
634 1.34 simonb kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
635 1.34 simonb kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
636 1.34 simonb kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
637 1.34 simonb kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
638 1.34 simonb kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
639 1.34 simonb kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
640 1.34 simonb kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
641 1.34 simonb kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
642 1.34 simonb kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
643 1.34 simonb kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
644 1.34 simonb kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
645 1.34 simonb kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
646 1.34 simonb kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
647 1.34 simonb
648 1.39 christos kp2p->p_uctime_sec = (u_int32_t)
649 1.39 christos (user.u_stats.p_cru.ru_utime.tv_sec +
650 1.39 christos user.u_stats.p_cru.ru_stime.tv_sec);
651 1.39 christos kp2p->p_uctime_usec = (u_int32_t)
652 1.39 christos (user.u_stats.p_cru.ru_utime.tv_usec +
653 1.39 christos user.u_stats.p_cru.ru_stime.tv_usec);
654 1.34 simonb }
655 1.34 simonb
656 1.34 simonb memcpy(kp2c, &kp2, esize);
657 1.34 simonb kp2c += esize;
658 1.34 simonb }
659 1.34 simonb
660 1.34 simonb free(kd->procbase);
661 1.34 simonb }
662 1.34 simonb *cnt = nprocs;
663 1.34 simonb return (kd->procbase2);
664 1.34 simonb }
665 1.34 simonb
666 1.1 cgd struct kinfo_proc *
667 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
668 1.1 cgd kvm_t *kd;
669 1.1 cgd int op, arg;
670 1.1 cgd int *cnt;
671 1.1 cgd {
672 1.7 cgd size_t size;
673 1.7 cgd int mib[4], st, nprocs;
674 1.1 cgd
675 1.36 tron if (kd->procbase != NULL) {
676 1.34 simonb free(kd->procbase);
677 1.31 simonb /*
678 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
679 1.1 cgd * kvm_close() will free it again.
680 1.1 cgd */
681 1.36 tron kd->procbase = NULL;
682 1.1 cgd }
683 1.34 simonb if (ISKMEM(kd)) {
684 1.1 cgd size = 0;
685 1.1 cgd mib[0] = CTL_KERN;
686 1.1 cgd mib[1] = KERN_PROC;
687 1.1 cgd mib[2] = op;
688 1.1 cgd mib[3] = arg;
689 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
690 1.1 cgd if (st == -1) {
691 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
692 1.34 simonb return NULL;
693 1.1 cgd }
694 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
695 1.36 tron if (kd->procbase == NULL)
696 1.34 simonb return NULL;
697 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
698 1.1 cgd if (st == -1) {
699 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
700 1.34 simonb return NULL;
701 1.1 cgd }
702 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
703 1.1 cgd _kvm_err(kd, kd->program,
704 1.1 cgd "proc size mismatch (%d total, %d chunks)",
705 1.1 cgd size, sizeof(struct kinfo_proc));
706 1.34 simonb return NULL;
707 1.1 cgd }
708 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
709 1.34 simonb } else if (ISSYSCTL(kd)) {
710 1.34 simonb _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
711 1.34 simonb "can't use kvm_getprocs");
712 1.34 simonb return NULL;
713 1.1 cgd } else {
714 1.27 thorpej struct nlist nl[5], *p;
715 1.1 cgd
716 1.1 cgd nl[0].n_name = "_nprocs";
717 1.1 cgd nl[1].n_name = "_allproc";
718 1.27 thorpej nl[2].n_name = "_deadproc";
719 1.27 thorpej nl[3].n_name = "_zombproc";
720 1.36 tron nl[4].n_name = NULL;
721 1.1 cgd
722 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
723 1.1 cgd for (p = nl; p->n_type != 0; ++p)
724 1.1 cgd ;
725 1.1 cgd _kvm_err(kd, kd->program,
726 1.1 cgd "%s: no such symbol", p->n_name);
727 1.34 simonb return NULL;
728 1.1 cgd }
729 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
730 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
731 1.34 simonb return NULL;
732 1.1 cgd }
733 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
734 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
735 1.36 tron if (kd->procbase == NULL)
736 1.34 simonb return NULL;
737 1.1 cgd
738 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
739 1.27 thorpej nl[2].n_value, nl[3].n_value, nprocs);
740 1.32 chs if (nprocs < 0)
741 1.34 simonb return NULL;
742 1.1 cgd #ifdef notdef
743 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
744 1.1 cgd (void)realloc(kd->procbase, size);
745 1.1 cgd #endif
746 1.1 cgd }
747 1.1 cgd *cnt = nprocs;
748 1.1 cgd return (kd->procbase);
749 1.1 cgd }
750 1.1 cgd
751 1.1 cgd void
752 1.1 cgd _kvm_freeprocs(kd)
753 1.1 cgd kvm_t *kd;
754 1.1 cgd {
755 1.1 cgd if (kd->procbase) {
756 1.1 cgd free(kd->procbase);
757 1.36 tron kd->procbase = NULL;
758 1.1 cgd }
759 1.1 cgd }
760 1.1 cgd
761 1.1 cgd void *
762 1.1 cgd _kvm_realloc(kd, p, n)
763 1.1 cgd kvm_t *kd;
764 1.1 cgd void *p;
765 1.1 cgd size_t n;
766 1.1 cgd {
767 1.34 simonb void *np = realloc(p, n);
768 1.1 cgd
769 1.36 tron if (np == NULL)
770 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
771 1.1 cgd return (np);
772 1.1 cgd }
773 1.1 cgd
774 1.1 cgd /*
775 1.1 cgd * Read in an argument vector from the user address space of process p.
776 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous
777 1.1 cgd * strings. This is used to read in both the command arguments and
778 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
779 1.1 cgd */
780 1.1 cgd static char **
781 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
782 1.1 cgd kvm_t *kd;
783 1.34 simonb const struct miniproc *p;
784 1.21 perry u_long addr;
785 1.21 perry int narg;
786 1.21 perry int maxcnt;
787 1.21 perry {
788 1.21 perry char *np, *cp, *ep, *ap;
789 1.28 christos u_long oaddr = (u_long)~0L;
790 1.28 christos u_long len;
791 1.28 christos size_t cc;
792 1.21 perry char **argv;
793 1.1 cgd
794 1.1 cgd /*
795 1.1 cgd * Check that there aren't an unreasonable number of agruments,
796 1.1 cgd * and that the address is in user space.
797 1.1 cgd */
798 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
799 1.34 simonb return NULL;
800 1.1 cgd
801 1.36 tron if (kd->argv == NULL) {
802 1.1 cgd /*
803 1.1 cgd * Try to avoid reallocs.
804 1.1 cgd */
805 1.1 cgd kd->argc = MAX(narg + 1, 32);
806 1.31 simonb kd->argv = (char **)_kvm_malloc(kd, kd->argc *
807 1.1 cgd sizeof(*kd->argv));
808 1.36 tron if (kd->argv == NULL)
809 1.34 simonb return NULL;
810 1.1 cgd } else if (narg + 1 > kd->argc) {
811 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
812 1.31 simonb kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
813 1.1 cgd sizeof(*kd->argv));
814 1.36 tron if (kd->argv == NULL)
815 1.34 simonb return NULL;
816 1.1 cgd }
817 1.36 tron if (kd->argspc == NULL) {
818 1.28 christos kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
819 1.36 tron if (kd->argspc == NULL)
820 1.34 simonb return NULL;
821 1.6 mycroft kd->arglen = kd->nbpg;
822 1.1 cgd }
823 1.36 tron if (kd->argbuf == NULL) {
824 1.28 christos kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
825 1.36 tron if (kd->argbuf == NULL)
826 1.34 simonb return NULL;
827 1.10 mycroft }
828 1.10 mycroft cc = sizeof(char *) * narg;
829 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
830 1.34 simonb return NULL;
831 1.10 mycroft ap = np = kd->argspc;
832 1.1 cgd argv = kd->argv;
833 1.1 cgd len = 0;
834 1.1 cgd /*
835 1.1 cgd * Loop over pages, filling in the argument vector.
836 1.1 cgd */
837 1.36 tron while (argv < kd->argv + narg && *argv != NULL) {
838 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
839 1.10 mycroft if (addr != oaddr) {
840 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf,
841 1.28 christos (size_t)kd->nbpg) != kd->nbpg)
842 1.34 simonb return NULL;
843 1.10 mycroft oaddr = addr;
844 1.10 mycroft }
845 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
846 1.28 christos cp = kd->argbuf + (size_t)addr;
847 1.28 christos cc = kd->nbpg - (size_t)addr;
848 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
849 1.28 christos cc = (size_t)(maxcnt - len);
850 1.10 mycroft ep = memchr(cp, '\0', cc);
851 1.36 tron if (ep != NULL)
852 1.10 mycroft cc = ep - cp + 1;
853 1.1 cgd if (len + cc > kd->arglen) {
854 1.21 perry int off;
855 1.21 perry char **pp;
856 1.21 perry char *op = kd->argspc;
857 1.1 cgd
858 1.1 cgd kd->arglen *= 2;
859 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
860 1.28 christos (size_t)kd->arglen);
861 1.36 tron if (kd->argspc == NULL)
862 1.34 simonb return NULL;
863 1.1 cgd /*
864 1.1 cgd * Adjust argv pointers in case realloc moved
865 1.1 cgd * the string space.
866 1.1 cgd */
867 1.1 cgd off = kd->argspc - op;
868 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
869 1.1 cgd *pp += off;
870 1.12 mycroft ap += off;
871 1.12 mycroft np += off;
872 1.1 cgd }
873 1.10 mycroft memcpy(np, cp, cc);
874 1.10 mycroft np += cc;
875 1.1 cgd len += cc;
876 1.36 tron if (ep != NULL) {
877 1.10 mycroft *argv++ = ap;
878 1.10 mycroft ap = np;
879 1.10 mycroft } else
880 1.10 mycroft *argv += cc;
881 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
882 1.1 cgd /*
883 1.1 cgd * We're stopping prematurely. Terminate the
884 1.10 mycroft * current string.
885 1.1 cgd */
886 1.36 tron if (ep == NULL) {
887 1.10 mycroft *np = '\0';
888 1.14 mycroft *argv++ = ap;
889 1.10 mycroft }
890 1.10 mycroft break;
891 1.1 cgd }
892 1.1 cgd }
893 1.10 mycroft /* Make sure argv is terminated. */
894 1.36 tron *argv = NULL;
895 1.10 mycroft return (kd->argv);
896 1.1 cgd }
897 1.1 cgd
898 1.1 cgd static void
899 1.1 cgd ps_str_a(p, addr, n)
900 1.1 cgd struct ps_strings *p;
901 1.1 cgd u_long *addr;
902 1.1 cgd int *n;
903 1.1 cgd {
904 1.1 cgd *addr = (u_long)p->ps_argvstr;
905 1.1 cgd *n = p->ps_nargvstr;
906 1.1 cgd }
907 1.1 cgd
908 1.1 cgd static void
909 1.1 cgd ps_str_e(p, addr, n)
910 1.1 cgd struct ps_strings *p;
911 1.1 cgd u_long *addr;
912 1.1 cgd int *n;
913 1.1 cgd {
914 1.1 cgd *addr = (u_long)p->ps_envstr;
915 1.1 cgd *n = p->ps_nenvstr;
916 1.1 cgd }
917 1.1 cgd
918 1.1 cgd /*
919 1.1 cgd * Determine if the proc indicated by p is still active.
920 1.1 cgd * This test is not 100% foolproof in theory, but chances of
921 1.1 cgd * being wrong are very low.
922 1.1 cgd */
923 1.1 cgd static int
924 1.1 cgd proc_verify(kd, kernp, p)
925 1.1 cgd kvm_t *kd;
926 1.1 cgd u_long kernp;
927 1.34 simonb const struct miniproc *p;
928 1.1 cgd {
929 1.1 cgd struct proc kernproc;
930 1.1 cgd
931 1.1 cgd /*
932 1.1 cgd * Just read in the whole proc. It's not that big relative
933 1.1 cgd * to the cost of the read system call.
934 1.1 cgd */
935 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
936 1.1 cgd sizeof(kernproc))
937 1.34 simonb return 0;
938 1.1 cgd return (p->p_pid == kernproc.p_pid &&
939 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
940 1.1 cgd }
941 1.1 cgd
942 1.1 cgd static char **
943 1.34 simonb kvm_doargv(kd, p, nchr, info)
944 1.1 cgd kvm_t *kd;
945 1.34 simonb const struct miniproc *p;
946 1.1 cgd int nchr;
947 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
948 1.1 cgd {
949 1.21 perry char **ap;
950 1.1 cgd u_long addr;
951 1.1 cgd int cnt;
952 1.1 cgd struct ps_strings arginfo;
953 1.1 cgd
954 1.1 cgd /*
955 1.1 cgd * Pointers are stored at the top of the user stack.
956 1.1 cgd */
957 1.18 gwr if (p->p_stat == SZOMB)
958 1.34 simonb return NULL;
959 1.34 simonb cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
960 1.28 christos (void *)&arginfo, sizeof(arginfo));
961 1.18 gwr if (cnt != sizeof(arginfo))
962 1.34 simonb return NULL;
963 1.1 cgd
964 1.1 cgd (*info)(&arginfo, &addr, &cnt);
965 1.3 mycroft if (cnt == 0)
966 1.34 simonb return NULL;
967 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
968 1.1 cgd /*
969 1.1 cgd * For live kernels, make sure this process didn't go away.
970 1.1 cgd */
971 1.36 tron if (ap != NULL && ISALIVE(kd) &&
972 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p))
973 1.36 tron ap = NULL;
974 1.1 cgd return (ap);
975 1.1 cgd }
976 1.1 cgd
977 1.1 cgd /*
978 1.1 cgd * Get the command args. This code is now machine independent.
979 1.1 cgd */
980 1.1 cgd char **
981 1.1 cgd kvm_getargv(kd, kp, nchr)
982 1.1 cgd kvm_t *kd;
983 1.1 cgd const struct kinfo_proc *kp;
984 1.1 cgd int nchr;
985 1.1 cgd {
986 1.34 simonb struct miniproc p;
987 1.34 simonb
988 1.34 simonb KPTOMINI(kp, &p);
989 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a));
990 1.1 cgd }
991 1.1 cgd
992 1.1 cgd char **
993 1.1 cgd kvm_getenvv(kd, kp, nchr)
994 1.1 cgd kvm_t *kd;
995 1.1 cgd const struct kinfo_proc *kp;
996 1.1 cgd int nchr;
997 1.1 cgd {
998 1.34 simonb struct miniproc p;
999 1.34 simonb
1000 1.34 simonb KPTOMINI(kp, &p);
1001 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e));
1002 1.34 simonb }
1003 1.34 simonb
1004 1.34 simonb static char **
1005 1.34 simonb kvm_doargv2(kd, pid, type, nchr)
1006 1.34 simonb kvm_t *kd;
1007 1.34 simonb pid_t pid;
1008 1.34 simonb int type;
1009 1.34 simonb int nchr;
1010 1.34 simonb {
1011 1.34 simonb size_t bufs;
1012 1.39 christos int narg, mib[4];
1013 1.39 christos size_t newarglen;
1014 1.34 simonb char **ap, *bp, *endp;
1015 1.34 simonb
1016 1.34 simonb /*
1017 1.34 simonb * Check that there aren't an unreasonable number of agruments.
1018 1.34 simonb */
1019 1.34 simonb if (nchr > ARG_MAX)
1020 1.34 simonb return NULL;
1021 1.34 simonb
1022 1.34 simonb if (nchr == 0)
1023 1.34 simonb nchr = ARG_MAX;
1024 1.34 simonb
1025 1.34 simonb /* Get number of strings in argv */
1026 1.34 simonb mib[0] = CTL_KERN;
1027 1.34 simonb mib[1] = KERN_PROC_ARGS;
1028 1.34 simonb mib[2] = pid;
1029 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1030 1.34 simonb bufs = sizeof(narg);
1031 1.34 simonb if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1032 1.34 simonb return NULL;
1033 1.34 simonb
1034 1.36 tron if (kd->argv == NULL) {
1035 1.34 simonb /*
1036 1.34 simonb * Try to avoid reallocs.
1037 1.34 simonb */
1038 1.34 simonb kd->argc = MAX(narg + 1, 32);
1039 1.34 simonb kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1040 1.34 simonb sizeof(*kd->argv));
1041 1.36 tron if (kd->argv == NULL)
1042 1.34 simonb return NULL;
1043 1.34 simonb } else if (narg + 1 > kd->argc) {
1044 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1);
1045 1.34 simonb kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1046 1.34 simonb sizeof(*kd->argv));
1047 1.36 tron if (kd->argv == NULL)
1048 1.34 simonb return NULL;
1049 1.34 simonb }
1050 1.34 simonb
1051 1.34 simonb newarglen = MIN(nchr, ARG_MAX);
1052 1.34 simonb if (kd->arglen < newarglen) {
1053 1.34 simonb if (kd->arglen == 0)
1054 1.34 simonb kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1055 1.34 simonb else
1056 1.34 simonb kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1057 1.34 simonb newarglen);
1058 1.36 tron if (kd->argspc == NULL)
1059 1.34 simonb return NULL;
1060 1.34 simonb kd->arglen = newarglen;
1061 1.34 simonb }
1062 1.39 christos memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1063 1.34 simonb
1064 1.34 simonb mib[0] = CTL_KERN;
1065 1.34 simonb mib[1] = KERN_PROC_ARGS;
1066 1.34 simonb mib[2] = pid;
1067 1.34 simonb mib[3] = type;
1068 1.34 simonb bufs = kd->arglen;
1069 1.34 simonb if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1070 1.34 simonb return NULL;
1071 1.34 simonb
1072 1.34 simonb bp = kd->argspc;
1073 1.34 simonb ap = kd->argv;
1074 1.34 simonb endp = bp + MIN(nchr, bufs);
1075 1.34 simonb
1076 1.34 simonb while (bp < endp) {
1077 1.34 simonb *ap++ = bp;
1078 1.34 simonb /* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1079 1.34 simonb if (ap >= kd->argv + kd->argc) {
1080 1.34 simonb kd->argc *= 2;
1081 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv,
1082 1.34 simonb kd->argc * sizeof(*kd->argv));
1083 1.34 simonb }
1084 1.34 simonb bp += strlen(bp) + 1;
1085 1.34 simonb }
1086 1.34 simonb *ap = NULL;
1087 1.34 simonb
1088 1.34 simonb return (kd->argv);
1089 1.34 simonb }
1090 1.34 simonb
1091 1.34 simonb char **
1092 1.34 simonb kvm_getargv2(kd, kp, nchr)
1093 1.34 simonb kvm_t *kd;
1094 1.34 simonb const struct kinfo_proc2 *kp;
1095 1.34 simonb int nchr;
1096 1.34 simonb {
1097 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1098 1.34 simonb }
1099 1.34 simonb
1100 1.34 simonb char **
1101 1.34 simonb kvm_getenvv2(kd, kp, nchr)
1102 1.34 simonb kvm_t *kd;
1103 1.34 simonb const struct kinfo_proc2 *kp;
1104 1.34 simonb int nchr;
1105 1.34 simonb {
1106 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1107 1.1 cgd }
1108 1.1 cgd
1109 1.1 cgd /*
1110 1.1 cgd * Read from user space. The user context is given by p.
1111 1.1 cgd */
1112 1.34 simonb static ssize_t
1113 1.34 simonb kvm_ureadm(kd, p, uva, buf, len)
1114 1.1 cgd kvm_t *kd;
1115 1.34 simonb const struct miniproc *p;
1116 1.21 perry u_long uva;
1117 1.21 perry char *buf;
1118 1.21 perry size_t len;
1119 1.1 cgd {
1120 1.21 perry char *cp;
1121 1.1 cgd
1122 1.1 cgd cp = buf;
1123 1.1 cgd while (len > 0) {
1124 1.28 christos size_t cc;
1125 1.21 perry char *dp;
1126 1.15 cgd u_long cnt;
1127 1.8 mycroft
1128 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt);
1129 1.36 tron if (dp == NULL) {
1130 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva);
1131 1.34 simonb return 0;
1132 1.8 mycroft }
1133 1.28 christos cc = (size_t)MIN(cnt, len);
1134 1.25 perry memcpy(cp, dp, cc);
1135 1.1 cgd cp += cc;
1136 1.1 cgd uva += cc;
1137 1.1 cgd len -= cc;
1138 1.1 cgd }
1139 1.1 cgd return (ssize_t)(cp - buf);
1140 1.34 simonb }
1141 1.34 simonb
1142 1.34 simonb ssize_t
1143 1.34 simonb kvm_uread(kd, p, uva, buf, len)
1144 1.34 simonb kvm_t *kd;
1145 1.34 simonb const struct proc *p;
1146 1.34 simonb u_long uva;
1147 1.34 simonb char *buf;
1148 1.34 simonb size_t len;
1149 1.34 simonb {
1150 1.34 simonb struct miniproc mp;
1151 1.34 simonb
1152 1.34 simonb PTOMINI(p, &mp);
1153 1.34 simonb return (kvm_ureadm(kd, &mp, uva, buf, len));
1154 1.1 cgd }
1155