kvm_proc.c revision 1.5 1 1.1 cgd /*-
2 1.2 mycroft * Copyright (c) 1994 Charles Hannum.
3 1.1 cgd * Copyright (c) 1989, 1992, 1993
4 1.1 cgd * The Regents of the University of California. All rights reserved.
5 1.1 cgd *
6 1.1 cgd * This code is derived from software developed by the Computer Systems
7 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8 1.1 cgd * BG 91-66 and contributed to Berkeley.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
40 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41 1.1 cgd #endif /* LIBC_SCCS and not lint */
42 1.1 cgd
43 1.1 cgd /*
44 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 1.1 cgd * users of this code, so we've factored it out into a separate module.
46 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 1.1 cgd * most other applications are interested only in open/close/read/nlist).
48 1.1 cgd */
49 1.1 cgd
50 1.1 cgd #include <sys/param.h>
51 1.1 cgd #include <sys/user.h>
52 1.1 cgd #include <sys/proc.h>
53 1.1 cgd #include <sys/exec.h>
54 1.1 cgd #include <sys/stat.h>
55 1.1 cgd #include <sys/ioctl.h>
56 1.1 cgd #include <sys/tty.h>
57 1.1 cgd #include <unistd.h>
58 1.1 cgd #include <nlist.h>
59 1.1 cgd #include <kvm.h>
60 1.1 cgd
61 1.1 cgd #include <vm/vm.h>
62 1.1 cgd #include <vm/vm_param.h>
63 1.1 cgd #include <vm/swap_pager.h>
64 1.1 cgd
65 1.1 cgd #include <sys/sysctl.h>
66 1.1 cgd
67 1.1 cgd #include <limits.h>
68 1.1 cgd #include <db.h>
69 1.1 cgd #include <paths.h>
70 1.1 cgd
71 1.1 cgd #include "kvm_private.h"
72 1.1 cgd
73 1.2 mycroft #define KREAD(kd, addr, obj) \
74 1.2 mycroft (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
75 1.2 mycroft
76 1.2 mycroft int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long, char *));
77 1.2 mycroft
78 1.1 cgd static char *
79 1.1 cgd kvm_readswap(kd, p, va, cnt)
80 1.1 cgd kvm_t *kd;
81 1.1 cgd const struct proc *p;
82 1.1 cgd u_long va;
83 1.1 cgd u_long *cnt;
84 1.1 cgd {
85 1.1 cgd register u_long addr, head;
86 1.2 mycroft register u_long offset;
87 1.1 cgd struct vm_map_entry vme;
88 1.1 cgd struct vm_object vmo;
89 1.5 deraadt static char *page;
90 1.5 deraadt int nbpg = getpagesize();
91 1.1 cgd
92 1.5 deraadt if (page == 0) {
93 1.5 deraadt /* XXX should be placed in kvm_t (so we can free it) */
94 1.5 deraadt page = (char *)_kvm_malloc(kd, nbpg);
95 1.5 deraadt if (page == 0)
96 1.5 deraadt return (0);
97 1.5 deraadt }
98 1.1 cgd head = (u_long)&p->p_vmspace->vm_map.header;
99 1.1 cgd /*
100 1.1 cgd * Look through the address map for the memory object
101 1.1 cgd * that corresponds to the given virtual address.
102 1.1 cgd * The header just has the entire valid range.
103 1.1 cgd */
104 1.1 cgd addr = head;
105 1.1 cgd while (1) {
106 1.2 mycroft if (KREAD(kd, addr, &vme))
107 1.1 cgd return (0);
108 1.1 cgd
109 1.2 mycroft if (va >= vme.start && va < vme.end &&
110 1.1 cgd vme.object.vm_object != 0)
111 1.1 cgd break;
112 1.1 cgd
113 1.1 cgd addr = (u_long)vme.next;
114 1.2 mycroft if (addr == head)
115 1.1 cgd return (0);
116 1.1 cgd }
117 1.2 mycroft
118 1.1 cgd /*
119 1.1 cgd * We found the right object -- follow shadow links.
120 1.1 cgd */
121 1.1 cgd offset = va - vme.start + vme.offset;
122 1.1 cgd addr = (u_long)vme.object.vm_object;
123 1.1 cgd while (1) {
124 1.2 mycroft if (KREAD(kd, addr, &vmo))
125 1.1 cgd return (0);
126 1.2 mycroft
127 1.2 mycroft /* If there is a pager here, see if it has the page. */
128 1.2 mycroft if (vmo.pager != 0 &&
129 1.2 mycroft _kvm_readfrompager(kd, &vmo, offset, page))
130 1.2 mycroft break;
131 1.2 mycroft
132 1.2 mycroft /* Move down the shadow chain. */
133 1.1 cgd addr = (u_long)vmo.shadow;
134 1.1 cgd if (addr == 0)
135 1.2 mycroft return (0);
136 1.1 cgd offset += vmo.shadow_offset;
137 1.1 cgd }
138 1.2 mycroft
139 1.2 mycroft /* Found the page. */
140 1.5 deraadt offset %= nbpg;
141 1.5 deraadt *cnt = nbpg - offset;
142 1.2 mycroft return (&page[offset]);
143 1.2 mycroft }
144 1.2 mycroft
145 1.2 mycroft int
146 1.2 mycroft _kvm_readfrompager(kd, vmop, offset, buf)
147 1.2 mycroft kvm_t *kd;
148 1.2 mycroft struct vm_object *vmop;
149 1.2 mycroft u_long offset;
150 1.2 mycroft char *buf;
151 1.2 mycroft {
152 1.2 mycroft u_long addr;
153 1.2 mycroft struct pager_struct pager;
154 1.2 mycroft struct swpager swap;
155 1.2 mycroft int ix;
156 1.2 mycroft struct swblock swb;
157 1.2 mycroft register off_t seekpoint;
158 1.5 deraadt int nbpg = getpagesize();
159 1.2 mycroft
160 1.2 mycroft /* Read in the pager info and make sure it's a swap device. */
161 1.2 mycroft addr = (u_long)vmop->pager;
162 1.2 mycroft if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
163 1.1 cgd return (0);
164 1.1 cgd
165 1.2 mycroft /* Read in the swap_pager private data. */
166 1.2 mycroft addr = (u_long)pager.pg_data;
167 1.2 mycroft if (KREAD(kd, addr, &swap))
168 1.1 cgd return (0);
169 1.1 cgd
170 1.1 cgd /*
171 1.2 mycroft * Calculate the paging offset, and make sure it's within the
172 1.2 mycroft * bounds of the pager.
173 1.1 cgd */
174 1.2 mycroft offset += vmop->paging_offset;
175 1.1 cgd ix = offset / dbtob(swap.sw_bsize);
176 1.2 mycroft #if 0
177 1.1 cgd if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
178 1.1 cgd return (0);
179 1.2 mycroft #else
180 1.2 mycroft if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
181 1.2 mycroft int i;
182 1.2 mycroft printf("BUG BUG BUG BUG:\n");
183 1.2 mycroft printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
184 1.2 mycroft vmop, offset - vmop->paging_offset, vmop->paging_offset,
185 1.2 mycroft vmop->pager, pager.pg_data);
186 1.2 mycroft printf("osize %x bsize %x blocks %x nblocks %x\n",
187 1.2 mycroft swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
188 1.2 mycroft swap.sw_nblocks);
189 1.2 mycroft for (ix = 0; ix < swap.sw_nblocks; ix++) {
190 1.2 mycroft addr = (u_long)&swap.sw_blocks[ix];
191 1.2 mycroft if (KREAD(kd, addr, &swb))
192 1.2 mycroft return (0);
193 1.2 mycroft printf("sw_blocks[%d]: block %x mask %x\n", ix,
194 1.2 mycroft swb.swb_block, swb.swb_mask);
195 1.2 mycroft }
196 1.2 mycroft return (0);
197 1.2 mycroft }
198 1.2 mycroft #endif
199 1.1 cgd
200 1.2 mycroft /* Read in the swap records. */
201 1.1 cgd addr = (u_long)&swap.sw_blocks[ix];
202 1.2 mycroft if (KREAD(kd, addr, &swb))
203 1.1 cgd return (0);
204 1.1 cgd
205 1.2 mycroft /* Calculate offset within pager. */
206 1.2 mycroft offset %= dbtob(swap.sw_bsize);
207 1.1 cgd
208 1.2 mycroft /* Check that the page is actually present. */
209 1.5 deraadt if ((swb.swb_mask & (1 << (offset / nbpg))) == 0)
210 1.1 cgd return (0);
211 1.1 cgd
212 1.2 mycroft /* Calculate the physical address and read the page. */
213 1.5 deraadt seekpoint = dbtob(swb.swb_block) + (offset & ~(nbpg -1));
214 1.2 mycroft if (lseek(kd->swfd, seekpoint, 0) == -1)
215 1.1 cgd return (0);
216 1.5 deraadt if (read(kd->swfd, buf, nbpg) != nbpg)
217 1.1 cgd return (0);
218 1.1 cgd
219 1.2 mycroft return (1);
220 1.1 cgd }
221 1.1 cgd
222 1.1 cgd /*
223 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
224 1.1 cgd * at most maxcnt procs.
225 1.1 cgd */
226 1.1 cgd static int
227 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
228 1.1 cgd kvm_t *kd;
229 1.1 cgd int what, arg;
230 1.1 cgd struct proc *p;
231 1.1 cgd struct kinfo_proc *bp;
232 1.1 cgd int maxcnt;
233 1.1 cgd {
234 1.1 cgd register int cnt = 0;
235 1.1 cgd struct eproc eproc;
236 1.1 cgd struct pgrp pgrp;
237 1.1 cgd struct session sess;
238 1.1 cgd struct tty tty;
239 1.1 cgd struct proc proc;
240 1.1 cgd
241 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
242 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
243 1.1 cgd _kvm_err(kd, kd->program, "can't read proc at %x", p);
244 1.1 cgd return (-1);
245 1.1 cgd }
246 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
247 1.1 cgd KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
248 1.1 cgd &eproc.e_ucred);
249 1.1 cgd
250 1.1 cgd switch(what) {
251 1.1 cgd
252 1.1 cgd case KERN_PROC_PID:
253 1.1 cgd if (proc.p_pid != (pid_t)arg)
254 1.1 cgd continue;
255 1.1 cgd break;
256 1.1 cgd
257 1.1 cgd case KERN_PROC_UID:
258 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
259 1.1 cgd continue;
260 1.1 cgd break;
261 1.1 cgd
262 1.1 cgd case KERN_PROC_RUID:
263 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
264 1.1 cgd continue;
265 1.1 cgd break;
266 1.1 cgd }
267 1.1 cgd /*
268 1.1 cgd * We're going to add another proc to the set. If this
269 1.1 cgd * will overflow the buffer, assume the reason is because
270 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
271 1.1 cgd */
272 1.1 cgd if (cnt >= maxcnt) {
273 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
274 1.1 cgd return (-1);
275 1.1 cgd }
276 1.1 cgd /*
277 1.1 cgd * gather eproc
278 1.1 cgd */
279 1.1 cgd eproc.e_paddr = p;
280 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
281 1.1 cgd _kvm_err(kd, kd->program, "can't read pgrp at %x",
282 1.1 cgd proc.p_pgrp);
283 1.1 cgd return (-1);
284 1.1 cgd }
285 1.1 cgd eproc.e_sess = pgrp.pg_session;
286 1.1 cgd eproc.e_pgid = pgrp.pg_id;
287 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
288 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
289 1.1 cgd _kvm_err(kd, kd->program, "can't read session at %x",
290 1.1 cgd pgrp.pg_session);
291 1.1 cgd return (-1);
292 1.1 cgd }
293 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
294 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
295 1.1 cgd _kvm_err(kd, kd->program,
296 1.1 cgd "can't read tty at %x", sess.s_ttyp);
297 1.1 cgd return (-1);
298 1.1 cgd }
299 1.1 cgd eproc.e_tdev = tty.t_dev;
300 1.1 cgd eproc.e_tsess = tty.t_session;
301 1.1 cgd if (tty.t_pgrp != NULL) {
302 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
303 1.1 cgd _kvm_err(kd, kd->program,
304 1.1 cgd "can't read tpgrp at &x",
305 1.1 cgd tty.t_pgrp);
306 1.1 cgd return (-1);
307 1.1 cgd }
308 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
309 1.1 cgd } else
310 1.1 cgd eproc.e_tpgid = -1;
311 1.1 cgd } else
312 1.1 cgd eproc.e_tdev = NODEV;
313 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
314 1.1 cgd if (sess.s_leader == p)
315 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
316 1.1 cgd if (proc.p_wmesg)
317 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_wmesg,
318 1.1 cgd eproc.e_wmesg, WMESGLEN);
319 1.1 cgd
320 1.1 cgd #ifdef sparc
321 1.1 cgd (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
322 1.1 cgd (char *)&eproc.e_vm.vm_rssize,
323 1.1 cgd sizeof(eproc.e_vm.vm_rssize));
324 1.1 cgd (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
325 1.1 cgd (char *)&eproc.e_vm.vm_tsize,
326 1.1 cgd 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */
327 1.1 cgd #else
328 1.1 cgd (void)kvm_read(kd, (u_long)proc.p_vmspace,
329 1.1 cgd (char *)&eproc.e_vm, sizeof(eproc.e_vm));
330 1.1 cgd #endif
331 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
332 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
333 1.1 cgd
334 1.1 cgd switch (what) {
335 1.1 cgd
336 1.1 cgd case KERN_PROC_PGRP:
337 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
338 1.1 cgd continue;
339 1.1 cgd break;
340 1.1 cgd
341 1.1 cgd case KERN_PROC_TTY:
342 1.1 cgd if ((proc.p_flag & P_CONTROLT) == 0 ||
343 1.1 cgd eproc.e_tdev != (dev_t)arg)
344 1.1 cgd continue;
345 1.1 cgd break;
346 1.1 cgd }
347 1.1 cgd bcopy(&proc, &bp->kp_proc, sizeof(proc));
348 1.1 cgd bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
349 1.1 cgd ++bp;
350 1.1 cgd ++cnt;
351 1.1 cgd }
352 1.1 cgd return (cnt);
353 1.1 cgd }
354 1.1 cgd
355 1.1 cgd /*
356 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
357 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
358 1.1 cgd */
359 1.1 cgd static int
360 1.1 cgd kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
361 1.1 cgd kvm_t *kd;
362 1.1 cgd int what, arg;
363 1.1 cgd u_long a_allproc;
364 1.1 cgd u_long a_zombproc;
365 1.1 cgd int maxcnt;
366 1.1 cgd {
367 1.1 cgd register struct kinfo_proc *bp = kd->procbase;
368 1.1 cgd register int acnt, zcnt;
369 1.1 cgd struct proc *p;
370 1.1 cgd
371 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
372 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
373 1.1 cgd return (-1);
374 1.1 cgd }
375 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
376 1.1 cgd if (acnt < 0)
377 1.1 cgd return (acnt);
378 1.1 cgd
379 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
380 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
381 1.1 cgd return (-1);
382 1.1 cgd }
383 1.1 cgd zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
384 1.1 cgd if (zcnt < 0)
385 1.1 cgd zcnt = 0;
386 1.1 cgd
387 1.1 cgd return (acnt + zcnt);
388 1.1 cgd }
389 1.1 cgd
390 1.1 cgd struct kinfo_proc *
391 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
392 1.1 cgd kvm_t *kd;
393 1.1 cgd int op, arg;
394 1.1 cgd int *cnt;
395 1.1 cgd {
396 1.1 cgd int mib[4], size, st, nprocs;
397 1.1 cgd
398 1.1 cgd if (kd->procbase != 0) {
399 1.1 cgd free((void *)kd->procbase);
400 1.1 cgd /*
401 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
402 1.1 cgd * kvm_close() will free it again.
403 1.1 cgd */
404 1.1 cgd kd->procbase = 0;
405 1.1 cgd }
406 1.1 cgd if (ISALIVE(kd)) {
407 1.1 cgd size = 0;
408 1.1 cgd mib[0] = CTL_KERN;
409 1.1 cgd mib[1] = KERN_PROC;
410 1.1 cgd mib[2] = op;
411 1.1 cgd mib[3] = arg;
412 1.1 cgd st = sysctl(mib, 4, NULL, &size, NULL, 0);
413 1.1 cgd if (st == -1) {
414 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
415 1.1 cgd return (0);
416 1.1 cgd }
417 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
418 1.1 cgd if (kd->procbase == 0)
419 1.1 cgd return (0);
420 1.1 cgd st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
421 1.1 cgd if (st == -1) {
422 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
423 1.1 cgd return (0);
424 1.1 cgd }
425 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
426 1.1 cgd _kvm_err(kd, kd->program,
427 1.1 cgd "proc size mismatch (%d total, %d chunks)",
428 1.1 cgd size, sizeof(struct kinfo_proc));
429 1.1 cgd return (0);
430 1.1 cgd }
431 1.1 cgd nprocs = size / sizeof(struct kinfo_proc);
432 1.1 cgd } else {
433 1.1 cgd struct nlist nl[4], *p;
434 1.1 cgd
435 1.1 cgd nl[0].n_name = "_nprocs";
436 1.1 cgd nl[1].n_name = "_allproc";
437 1.1 cgd nl[2].n_name = "_zombproc";
438 1.1 cgd nl[3].n_name = 0;
439 1.1 cgd
440 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
441 1.1 cgd for (p = nl; p->n_type != 0; ++p)
442 1.1 cgd ;
443 1.1 cgd _kvm_err(kd, kd->program,
444 1.1 cgd "%s: no such symbol", p->n_name);
445 1.1 cgd return (0);
446 1.1 cgd }
447 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
448 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
449 1.1 cgd return (0);
450 1.1 cgd }
451 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
452 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
453 1.1 cgd if (kd->procbase == 0)
454 1.1 cgd return (0);
455 1.1 cgd
456 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
457 1.1 cgd nl[2].n_value, nprocs);
458 1.1 cgd #ifdef notdef
459 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
460 1.1 cgd (void)realloc(kd->procbase, size);
461 1.1 cgd #endif
462 1.1 cgd }
463 1.1 cgd *cnt = nprocs;
464 1.1 cgd return (kd->procbase);
465 1.1 cgd }
466 1.1 cgd
467 1.1 cgd void
468 1.1 cgd _kvm_freeprocs(kd)
469 1.1 cgd kvm_t *kd;
470 1.1 cgd {
471 1.1 cgd if (kd->procbase) {
472 1.1 cgd free(kd->procbase);
473 1.1 cgd kd->procbase = 0;
474 1.1 cgd }
475 1.1 cgd }
476 1.1 cgd
477 1.1 cgd void *
478 1.1 cgd _kvm_realloc(kd, p, n)
479 1.1 cgd kvm_t *kd;
480 1.1 cgd void *p;
481 1.1 cgd size_t n;
482 1.1 cgd {
483 1.1 cgd void *np = (void *)realloc(p, n);
484 1.1 cgd
485 1.1 cgd if (np == 0)
486 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
487 1.1 cgd return (np);
488 1.1 cgd }
489 1.1 cgd
490 1.1 cgd #ifndef MAX
491 1.1 cgd #define MAX(a, b) ((a) > (b) ? (a) : (b))
492 1.1 cgd #endif
493 1.1 cgd
494 1.1 cgd /*
495 1.1 cgd * Read in an argument vector from the user address space of process p.
496 1.1 cgd * addr if the user-space base address of narg null-terminated contiguous
497 1.1 cgd * strings. This is used to read in both the command arguments and
498 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
499 1.1 cgd */
500 1.1 cgd static char **
501 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
502 1.1 cgd kvm_t *kd;
503 1.1 cgd struct proc *p;
504 1.1 cgd register u_long addr;
505 1.1 cgd register int narg;
506 1.1 cgd register int maxcnt;
507 1.1 cgd {
508 1.1 cgd register char *cp;
509 1.1 cgd register int len, cc;
510 1.1 cgd register char **argv;
511 1.5 deraadt int nbpg = getpagesize();
512 1.1 cgd
513 1.1 cgd /*
514 1.1 cgd * Check that there aren't an unreasonable number of agruments,
515 1.1 cgd * and that the address is in user space.
516 1.1 cgd */
517 1.1 cgd if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
518 1.1 cgd return (0);
519 1.1 cgd
520 1.1 cgd if (kd->argv == 0) {
521 1.1 cgd /*
522 1.1 cgd * Try to avoid reallocs.
523 1.1 cgd */
524 1.1 cgd kd->argc = MAX(narg + 1, 32);
525 1.1 cgd kd->argv = (char **)_kvm_malloc(kd, kd->argc *
526 1.1 cgd sizeof(*kd->argv));
527 1.1 cgd if (kd->argv == 0)
528 1.1 cgd return (0);
529 1.1 cgd } else if (narg + 1 > kd->argc) {
530 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
531 1.1 cgd kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
532 1.1 cgd sizeof(*kd->argv));
533 1.1 cgd if (kd->argv == 0)
534 1.1 cgd return (0);
535 1.1 cgd }
536 1.1 cgd if (kd->argspc == 0) {
537 1.5 deraadt kd->argspc = (char *)_kvm_malloc(kd, nbpg);
538 1.1 cgd if (kd->argspc == 0)
539 1.1 cgd return (0);
540 1.5 deraadt kd->arglen = nbpg;
541 1.1 cgd }
542 1.1 cgd cp = kd->argspc;
543 1.1 cgd argv = kd->argv;
544 1.1 cgd *argv = cp;
545 1.1 cgd len = 0;
546 1.1 cgd /*
547 1.1 cgd * Loop over pages, filling in the argument vector.
548 1.1 cgd */
549 1.1 cgd while (addr < VM_MAXUSER_ADDRESS) {
550 1.5 deraadt cc = nbpg - (addr & (nbpg - 1));
551 1.1 cgd if (maxcnt > 0 && cc > maxcnt - len)
552 1.1 cgd cc = maxcnt - len;;
553 1.1 cgd if (len + cc > kd->arglen) {
554 1.1 cgd register int off;
555 1.1 cgd register char **pp;
556 1.1 cgd register char *op = kd->argspc;
557 1.1 cgd
558 1.1 cgd kd->arglen *= 2;
559 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
560 1.1 cgd kd->arglen);
561 1.1 cgd if (kd->argspc == 0)
562 1.1 cgd return (0);
563 1.1 cgd cp = &kd->argspc[len];
564 1.1 cgd /*
565 1.1 cgd * Adjust argv pointers in case realloc moved
566 1.1 cgd * the string space.
567 1.1 cgd */
568 1.1 cgd off = kd->argspc - op;
569 1.1 cgd for (pp = kd->argv; pp < argv; ++pp)
570 1.1 cgd *pp += off;
571 1.1 cgd }
572 1.1 cgd if (kvm_uread(kd, p, addr, cp, cc) != cc)
573 1.1 cgd /* XXX */
574 1.1 cgd return (0);
575 1.1 cgd len += cc;
576 1.1 cgd addr += cc;
577 1.1 cgd
578 1.5 deraadt if (maxcnt == 0 && len > 16 * nbpg)
579 1.1 cgd /* sanity */
580 1.1 cgd return (0);
581 1.1 cgd
582 1.1 cgd while (--cc >= 0) {
583 1.1 cgd if (*cp++ == 0) {
584 1.1 cgd if (--narg <= 0) {
585 1.1 cgd *++argv = 0;
586 1.1 cgd return (kd->argv);
587 1.1 cgd } else
588 1.1 cgd *++argv = cp;
589 1.1 cgd }
590 1.1 cgd }
591 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
592 1.1 cgd /*
593 1.1 cgd * We're stopping prematurely. Terminate the
594 1.1 cgd * argv and current string.
595 1.1 cgd */
596 1.1 cgd *++argv = 0;
597 1.1 cgd *cp = 0;
598 1.1 cgd return (kd->argv);
599 1.1 cgd }
600 1.1 cgd }
601 1.1 cgd }
602 1.1 cgd
603 1.1 cgd static void
604 1.1 cgd ps_str_a(p, addr, n)
605 1.1 cgd struct ps_strings *p;
606 1.1 cgd u_long *addr;
607 1.1 cgd int *n;
608 1.1 cgd {
609 1.1 cgd *addr = (u_long)p->ps_argvstr;
610 1.1 cgd *n = p->ps_nargvstr;
611 1.1 cgd }
612 1.1 cgd
613 1.1 cgd static void
614 1.1 cgd ps_str_e(p, addr, n)
615 1.1 cgd struct ps_strings *p;
616 1.1 cgd u_long *addr;
617 1.1 cgd int *n;
618 1.1 cgd {
619 1.1 cgd *addr = (u_long)p->ps_envstr;
620 1.1 cgd *n = p->ps_nenvstr;
621 1.1 cgd }
622 1.1 cgd
623 1.1 cgd /*
624 1.1 cgd * Determine if the proc indicated by p is still active.
625 1.1 cgd * This test is not 100% foolproof in theory, but chances of
626 1.1 cgd * being wrong are very low.
627 1.1 cgd */
628 1.1 cgd static int
629 1.1 cgd proc_verify(kd, kernp, p)
630 1.1 cgd kvm_t *kd;
631 1.1 cgd u_long kernp;
632 1.1 cgd const struct proc *p;
633 1.1 cgd {
634 1.1 cgd struct proc kernproc;
635 1.1 cgd
636 1.1 cgd /*
637 1.1 cgd * Just read in the whole proc. It's not that big relative
638 1.1 cgd * to the cost of the read system call.
639 1.1 cgd */
640 1.1 cgd if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
641 1.1 cgd sizeof(kernproc))
642 1.1 cgd return (0);
643 1.1 cgd return (p->p_pid == kernproc.p_pid &&
644 1.1 cgd (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
645 1.1 cgd }
646 1.1 cgd
647 1.1 cgd static char **
648 1.1 cgd kvm_doargv(kd, kp, nchr, info)
649 1.1 cgd kvm_t *kd;
650 1.1 cgd const struct kinfo_proc *kp;
651 1.1 cgd int nchr;
652 1.1 cgd int (*info)(struct ps_strings*, u_long *, int *);
653 1.1 cgd {
654 1.1 cgd register const struct proc *p = &kp->kp_proc;
655 1.1 cgd register char **ap;
656 1.1 cgd u_long addr;
657 1.1 cgd int cnt;
658 1.1 cgd struct ps_strings arginfo;
659 1.1 cgd
660 1.1 cgd /*
661 1.1 cgd * Pointers are stored at the top of the user stack.
662 1.1 cgd */
663 1.1 cgd if (p->p_stat == SZOMB ||
664 1.1 cgd kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
665 1.1 cgd sizeof(arginfo)) != sizeof(arginfo))
666 1.1 cgd return (0);
667 1.1 cgd
668 1.1 cgd (*info)(&arginfo, &addr, &cnt);
669 1.3 mycroft if (cnt == 0)
670 1.3 mycroft return (0);
671 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
672 1.1 cgd /*
673 1.1 cgd * For live kernels, make sure this process didn't go away.
674 1.1 cgd */
675 1.1 cgd if (ap != 0 && ISALIVE(kd) &&
676 1.1 cgd !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
677 1.1 cgd ap = 0;
678 1.1 cgd return (ap);
679 1.1 cgd }
680 1.1 cgd
681 1.1 cgd /*
682 1.1 cgd * Get the command args. This code is now machine independent.
683 1.1 cgd */
684 1.1 cgd char **
685 1.1 cgd kvm_getargv(kd, kp, nchr)
686 1.1 cgd kvm_t *kd;
687 1.1 cgd const struct kinfo_proc *kp;
688 1.1 cgd int nchr;
689 1.1 cgd {
690 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_a));
691 1.1 cgd }
692 1.1 cgd
693 1.1 cgd char **
694 1.1 cgd kvm_getenvv(kd, kp, nchr)
695 1.1 cgd kvm_t *kd;
696 1.1 cgd const struct kinfo_proc *kp;
697 1.1 cgd int nchr;
698 1.1 cgd {
699 1.1 cgd return (kvm_doargv(kd, kp, nchr, ps_str_e));
700 1.1 cgd }
701 1.1 cgd
702 1.1 cgd /*
703 1.1 cgd * Read from user space. The user context is given by p.
704 1.1 cgd */
705 1.1 cgd ssize_t
706 1.1 cgd kvm_uread(kd, p, uva, buf, len)
707 1.1 cgd kvm_t *kd;
708 1.1 cgd register struct proc *p;
709 1.1 cgd register u_long uva;
710 1.1 cgd register char *buf;
711 1.1 cgd register size_t len;
712 1.1 cgd {
713 1.1 cgd register char *cp;
714 1.1 cgd
715 1.1 cgd cp = buf;
716 1.1 cgd while (len > 0) {
717 1.1 cgd u_long pa;
718 1.1 cgd register int cc;
719 1.1 cgd
720 1.1 cgd cc = _kvm_uvatop(kd, p, uva, &pa);
721 1.1 cgd if (cc > 0) {
722 1.1 cgd if (cc > len)
723 1.1 cgd cc = len;
724 1.1 cgd errno = 0;
725 1.1 cgd if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
726 1.1 cgd _kvm_err(kd, 0, "invalid address (%x)", uva);
727 1.1 cgd break;
728 1.1 cgd }
729 1.1 cgd cc = read(kd->pmfd, cp, cc);
730 1.1 cgd if (cc < 0) {
731 1.1 cgd _kvm_syserr(kd, 0, _PATH_MEM);
732 1.1 cgd break;
733 1.1 cgd } else if (cc < len) {
734 1.1 cgd _kvm_err(kd, kd->program, "short read");
735 1.1 cgd break;
736 1.1 cgd }
737 1.1 cgd } else if (ISALIVE(kd)) {
738 1.1 cgd /* try swap */
739 1.1 cgd register char *dp;
740 1.1 cgd int cnt;
741 1.1 cgd
742 1.1 cgd dp = kvm_readswap(kd, p, uva, &cnt);
743 1.1 cgd if (dp == 0) {
744 1.1 cgd _kvm_err(kd, 0, "invalid address (%x)", uva);
745 1.1 cgd return (0);
746 1.1 cgd }
747 1.1 cgd cc = MIN(cnt, len);
748 1.1 cgd bcopy(dp, cp, cc);
749 1.1 cgd } else
750 1.1 cgd break;
751 1.1 cgd cp += cc;
752 1.1 cgd uva += cc;
753 1.1 cgd len -= cc;
754 1.1 cgd }
755 1.1 cgd return (ssize_t)(cp - buf);
756 1.1 cgd }
757