Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.53
      1  1.53  christos /*	$NetBSD: kvm_proc.c,v 1.53 2003/03/28 14:01:32 christos Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  * 3. All advertising materials mentioning features or use of this software
     19  1.26   mycroft  *    must display the following acknowledgement:
     20  1.26   mycroft  *        This product includes software developed by the NetBSD
     21  1.26   mycroft  *        Foundation, Inc. and its contributors.
     22  1.26   mycroft  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.26   mycroft  *    contributors may be used to endorse or promote products derived
     24  1.26   mycroft  *    from this software without specific prior written permission.
     25  1.26   mycroft  *
     26  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     37  1.26   mycroft  */
     38  1.16   thorpej 
     39   1.1       cgd /*-
     40   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     41   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     42   1.1       cgd  *
     43   1.1       cgd  * This code is derived from software developed by the Computer Systems
     44   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     46   1.1       cgd  *
     47   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     48   1.1       cgd  * modification, are permitted provided that the following conditions
     49   1.1       cgd  * are met:
     50   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     51   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     52   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     53   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     54   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     55   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     56   1.1       cgd  *    must display the following acknowledgement:
     57   1.1       cgd  *	This product includes software developed by the University of
     58   1.1       cgd  *	California, Berkeley and its contributors.
     59   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     60   1.1       cgd  *    may be used to endorse or promote products derived from this software
     61   1.1       cgd  *    without specific prior written permission.
     62   1.1       cgd  *
     63   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.1       cgd  * SUCH DAMAGE.
     74   1.1       cgd  */
     75   1.1       cgd 
     76  1.19     mikel #include <sys/cdefs.h>
     77   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     78  1.16   thorpej #if 0
     79   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80  1.16   thorpej #else
     81  1.53  christos __RCSID("$NetBSD: kvm_proc.c,v 1.53 2003/03/28 14:01:32 christos Exp $");
     82  1.16   thorpej #endif
     83   1.1       cgd #endif /* LIBC_SCCS and not lint */
     84   1.1       cgd 
     85   1.1       cgd /*
     86   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     88   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     90   1.1       cgd  */
     91   1.1       cgd 
     92   1.1       cgd #include <sys/param.h>
     93   1.1       cgd #include <sys/user.h>
     94  1.46   thorpej #include <sys/lwp.h>
     95   1.1       cgd #include <sys/proc.h>
     96   1.1       cgd #include <sys/exec.h>
     97   1.1       cgd #include <sys/stat.h>
     98   1.1       cgd #include <sys/ioctl.h>
     99   1.1       cgd #include <sys/tty.h>
    100   1.7       cgd #include <stdlib.h>
    101  1.52      ross #include <stddef.h>
    102  1.10   mycroft #include <string.h>
    103   1.1       cgd #include <unistd.h>
    104   1.1       cgd #include <nlist.h>
    105   1.1       cgd #include <kvm.h>
    106   1.1       cgd 
    107  1.23       chs #include <uvm/uvm_extern.h>
    108  1.29       mrg #include <uvm/uvm_amap.h>
    109  1.23       chs 
    110   1.1       cgd #include <sys/sysctl.h>
    111   1.1       cgd 
    112   1.1       cgd #include <limits.h>
    113   1.1       cgd #include <db.h>
    114   1.1       cgd #include <paths.h>
    115   1.1       cgd 
    116   1.1       cgd #include "kvm_private.h"
    117   1.1       cgd 
    118  1.34    simonb /*
    119  1.34    simonb  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    120  1.34    simonb  */
    121  1.34    simonb struct miniproc {
    122  1.34    simonb 	struct	vmspace *p_vmspace;
    123  1.34    simonb 	char	p_stat;
    124  1.34    simonb 	struct	proc *p_paddr;
    125  1.34    simonb 	pid_t	p_pid;
    126  1.34    simonb };
    127  1.34    simonb 
    128  1.34    simonb /*
    129  1.34    simonb  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    130  1.34    simonb  */
    131  1.34    simonb #define PTOMINI(kp, p) \
    132  1.48     enami 	do { \
    133  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    134  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    135  1.34    simonb 		(p)->p_paddr = NULL; \
    136  1.34    simonb 		(p)->p_vmspace = (kp)->p_vmspace; \
    137  1.34    simonb 	} while (/*CONSTCOND*/0);
    138  1.34    simonb 
    139  1.34    simonb #define KPTOMINI(kp, p) \
    140  1.48     enami 	do { \
    141  1.34    simonb 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    142  1.34    simonb 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    143  1.34    simonb 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    144  1.34    simonb 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    145  1.34    simonb 	} while (/*CONSTCOND*/0);
    146  1.34    simonb 
    147  1.34    simonb #define KP2TOMINI(kp, p) \
    148  1.48     enami 	do { \
    149  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    150  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    151  1.34    simonb 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    152  1.34    simonb 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    153  1.34    simonb 	} while (/*CONSTCOND*/0);
    154  1.34    simonb 
    155  1.34    simonb 
    156  1.53  christos #define	PTRTOINT64(foo)	((u_int64_t)(const uintptr_t)(const void *)(foo))
    157  1.34    simonb 
    158   1.2   mycroft #define KREAD(kd, addr, obj) \
    159  1.34    simonb 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    160   1.2   mycroft 
    161  1.34    simonb /* XXX: What uses these two functions? */
    162  1.34    simonb char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    163  1.34    simonb 		    u_long *));
    164  1.15       cgd ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    165  1.15       cgd 		    size_t));
    166  1.15       cgd 
    167  1.34    simonb static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    168  1.34    simonb 		    u_long *));
    169  1.34    simonb static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    170  1.34    simonb 		    char *, size_t));
    171  1.34    simonb 
    172  1.34    simonb static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    173  1.15       cgd 		    int));
    174  1.53  christos static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    175  1.34    simonb static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    176  1.15       cgd 		    void (*)(struct ps_strings *, u_long *, int *)));
    177  1.34    simonb static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    178  1.15       cgd static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    179  1.15       cgd 		    struct kinfo_proc *, int));
    180  1.34    simonb static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    181  1.15       cgd static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    182  1.15       cgd static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    183   1.2   mycroft 
    184  1.34    simonb 
    185  1.34    simonb static char *
    186  1.34    simonb _kvm_ureadm(kd, p, va, cnt)
    187   1.1       cgd 	kvm_t *kd;
    188  1.34    simonb 	const struct miniproc *p;
    189   1.1       cgd 	u_long va;
    190   1.1       cgd 	u_long *cnt;
    191   1.1       cgd {
    192  1.28  christos 	int true = 1;
    193  1.21     perry 	u_long addr, head;
    194  1.21     perry 	u_long offset;
    195   1.1       cgd 	struct vm_map_entry vme;
    196  1.23       chs 	struct vm_amap amap;
    197  1.23       chs 	struct vm_anon *anonp, anon;
    198  1.23       chs 	struct vm_page pg;
    199  1.28  christos 	u_long slot;
    200   1.1       cgd 
    201  1.36      tron 	if (kd->swapspc == NULL) {
    202  1.28  christos 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    203  1.36      tron 		if (kd->swapspc == NULL)
    204  1.48     enami 			return (NULL);
    205   1.5   deraadt 	}
    206   1.8   mycroft 
    207   1.1       cgd 	/*
    208   1.1       cgd 	 * Look through the address map for the memory object
    209   1.1       cgd 	 * that corresponds to the given virtual address.
    210   1.1       cgd 	 * The header just has the entire valid range.
    211   1.1       cgd 	 */
    212   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    213   1.1       cgd 	addr = head;
    214  1.28  christos 	while (true) {
    215   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    216  1.48     enami 			return (NULL);
    217   1.1       cgd 
    218  1.23       chs 		if (va >= vme.start && va < vme.end &&
    219  1.23       chs 		    vme.aref.ar_amap != NULL)
    220  1.23       chs 			break;
    221  1.23       chs 
    222   1.1       cgd 		addr = (u_long)vme.next;
    223   1.2   mycroft 		if (addr == head)
    224  1.48     enami 			return (NULL);
    225   1.1       cgd 	}
    226   1.2   mycroft 
    227   1.1       cgd 	/*
    228  1.23       chs 	 * we found the map entry, now to find the object...
    229  1.23       chs 	 */
    230  1.23       chs 	if (vme.aref.ar_amap == NULL)
    231  1.48     enami 		return (NULL);
    232  1.23       chs 
    233  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    234  1.23       chs 	if (KREAD(kd, addr, &amap))
    235  1.48     enami 		return (NULL);
    236  1.23       chs 
    237  1.23       chs 	offset = va - vme.start;
    238  1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    239  1.23       chs 	/* sanity-check slot number */
    240  1.48     enami 	if (slot > amap.am_nslot)
    241  1.48     enami 		return (NULL);
    242  1.23       chs 
    243  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    244  1.23       chs 	if (KREAD(kd, addr, &anonp))
    245  1.48     enami 		return (NULL);
    246  1.23       chs 
    247  1.23       chs 	addr = (u_long)anonp;
    248  1.23       chs 	if (KREAD(kd, addr, &anon))
    249  1.48     enami 		return (NULL);
    250  1.23       chs 
    251  1.23       chs 	addr = (u_long)anon.u.an_page;
    252  1.23       chs 	if (addr) {
    253  1.23       chs 		if (KREAD(kd, addr, &pg))
    254  1.48     enami 			return (NULL);
    255  1.23       chs 
    256  1.34    simonb 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    257  1.24   thorpej 		    (off_t)pg.phys_addr) != kd->nbpg)
    258  1.48     enami 			return (NULL);
    259  1.48     enami 	} else {
    260  1.34    simonb 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    261  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    262  1.48     enami 			return (NULL);
    263  1.23       chs 	}
    264   1.8   mycroft 
    265   1.2   mycroft 	/* Found the page. */
    266   1.6   mycroft 	offset %= kd->nbpg;
    267   1.6   mycroft 	*cnt = kd->nbpg - offset;
    268  1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    269   1.2   mycroft }
    270   1.1       cgd 
    271  1.34    simonb char *
    272  1.34    simonb _kvm_uread(kd, p, va, cnt)
    273  1.34    simonb 	kvm_t *kd;
    274  1.34    simonb 	const struct proc *p;
    275  1.34    simonb 	u_long va;
    276  1.34    simonb 	u_long *cnt;
    277  1.34    simonb {
    278  1.34    simonb 	struct miniproc mp;
    279  1.34    simonb 
    280  1.34    simonb 	PTOMINI(p, &mp);
    281  1.34    simonb 	return (_kvm_ureadm(kd, &mp, va, cnt));
    282  1.34    simonb }
    283  1.34    simonb 
    284   1.1       cgd /*
    285   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    286   1.1       cgd  * at most maxcnt procs.
    287   1.1       cgd  */
    288   1.1       cgd static int
    289   1.1       cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    290   1.1       cgd 	kvm_t *kd;
    291   1.1       cgd 	int what, arg;
    292   1.1       cgd 	struct proc *p;
    293   1.1       cgd 	struct kinfo_proc *bp;
    294   1.1       cgd 	int maxcnt;
    295   1.1       cgd {
    296  1.21     perry 	int cnt = 0;
    297  1.46   thorpej 	int nlwps;
    298  1.46   thorpej 	struct kinfo_lwp *kl;
    299   1.1       cgd 	struct eproc eproc;
    300   1.1       cgd 	struct pgrp pgrp;
    301   1.1       cgd 	struct session sess;
    302   1.1       cgd 	struct tty tty;
    303   1.1       cgd 	struct proc proc;
    304   1.1       cgd 
    305   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    306   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    307  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    308   1.1       cgd 			return (-1);
    309   1.1       cgd 		}
    310   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    311  1.28  christos 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    312  1.28  christos 			    &eproc.e_ucred)) {
    313  1.28  christos 				_kvm_err(kd, kd->program,
    314  1.41  sommerfe 				    "can't read proc credentials at %p", p);
    315  1.48     enami 				return (-1);
    316  1.28  christos 			}
    317   1.1       cgd 
    318  1.48     enami 		switch (what) {
    319  1.31    simonb 
    320   1.1       cgd 		case KERN_PROC_PID:
    321   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    322   1.1       cgd 				continue;
    323   1.1       cgd 			break;
    324   1.1       cgd 
    325   1.1       cgd 		case KERN_PROC_UID:
    326   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    327   1.1       cgd 				continue;
    328   1.1       cgd 			break;
    329   1.1       cgd 
    330   1.1       cgd 		case KERN_PROC_RUID:
    331   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    332   1.1       cgd 				continue;
    333   1.1       cgd 			break;
    334   1.1       cgd 		}
    335   1.1       cgd 		/*
    336   1.1       cgd 		 * We're going to add another proc to the set.  If this
    337   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    338   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    339   1.1       cgd 		 */
    340   1.1       cgd 		if (cnt >= maxcnt) {
    341   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    342   1.1       cgd 			return (-1);
    343   1.1       cgd 		}
    344   1.1       cgd 		/*
    345   1.1       cgd 		 * gather eproc
    346   1.1       cgd 		 */
    347   1.1       cgd 		eproc.e_paddr = p;
    348   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    349  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    350  1.48     enami 			    proc.p_pgrp);
    351   1.1       cgd 			return (-1);
    352   1.1       cgd 		}
    353   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    354   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    355   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    356   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    357  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read session at %p",
    358  1.48     enami 			    pgrp.pg_session);
    359   1.1       cgd 			return (-1);
    360   1.1       cgd 		}
    361   1.1       cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    362   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    363   1.1       cgd 				_kvm_err(kd, kd->program,
    364  1.48     enami 				    "can't read tty at %p", sess.s_ttyp);
    365   1.1       cgd 				return (-1);
    366   1.1       cgd 			}
    367   1.1       cgd 			eproc.e_tdev = tty.t_dev;
    368   1.1       cgd 			eproc.e_tsess = tty.t_session;
    369   1.1       cgd 			if (tty.t_pgrp != NULL) {
    370   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    371   1.1       cgd 					_kvm_err(kd, kd->program,
    372  1.48     enami 					    "can't read tpgrp at %p",
    373  1.48     enami 					    tty.t_pgrp);
    374   1.1       cgd 					return (-1);
    375   1.1       cgd 				}
    376   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    377   1.1       cgd 			} else
    378   1.1       cgd 				eproc.e_tpgid = -1;
    379   1.1       cgd 		} else
    380   1.1       cgd 			eproc.e_tdev = NODEV;
    381   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    382  1.33    simonb 		eproc.e_sid = sess.s_sid;
    383   1.1       cgd 		if (sess.s_leader == p)
    384   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    385  1.48     enami 		/*
    386  1.48     enami 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    387  1.46   thorpej 		 * from the first avaliable LWP.
    388  1.46   thorpej 		 */
    389  1.47  christos 		kl = kvm_getlwps(kd, proc.p_pid,
    390  1.48     enami 		    (u_long)PTRTOINT64(eproc.e_paddr),
    391  1.46   thorpej 		    sizeof(struct kinfo_lwp), &nlwps);
    392  1.46   thorpej 		if (kl) {
    393  1.46   thorpej 			if (nlwps > 0) {
    394  1.46   thorpej 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    395  1.46   thorpej 			}
    396  1.46   thorpej 		}
    397  1.34    simonb 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    398  1.34    simonb 		    sizeof(eproc.e_vm));
    399   1.9        pk 
    400   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    401   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    402   1.1       cgd 
    403   1.1       cgd 		switch (what) {
    404   1.1       cgd 
    405   1.1       cgd 		case KERN_PROC_PGRP:
    406   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    407   1.1       cgd 				continue;
    408   1.1       cgd 			break;
    409   1.1       cgd 
    410   1.1       cgd 		case KERN_PROC_TTY:
    411  1.31    simonb 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    412  1.48     enami 			    eproc.e_tdev != (dev_t)arg)
    413   1.1       cgd 				continue;
    414   1.1       cgd 			break;
    415   1.1       cgd 		}
    416  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    417  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    418   1.1       cgd 		++bp;
    419   1.1       cgd 		++cnt;
    420   1.1       cgd 	}
    421   1.1       cgd 	return (cnt);
    422   1.1       cgd }
    423   1.1       cgd 
    424   1.1       cgd /*
    425   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    426   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    427   1.1       cgd  */
    428   1.1       cgd static int
    429  1.53  christos kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    430   1.1       cgd 	kvm_t *kd;
    431   1.1       cgd 	int what, arg;
    432   1.1       cgd 	u_long a_allproc;
    433   1.1       cgd 	u_long a_zombproc;
    434   1.1       cgd 	int maxcnt;
    435   1.1       cgd {
    436  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    437  1.53  christos 	int acnt, zcnt;
    438   1.1       cgd 	struct proc *p;
    439   1.1       cgd 
    440   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    441   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    442   1.1       cgd 		return (-1);
    443   1.1       cgd 	}
    444   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    445   1.1       cgd 	if (acnt < 0)
    446   1.1       cgd 		return (acnt);
    447   1.1       cgd 
    448   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    449   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    450   1.1       cgd 		return (-1);
    451   1.1       cgd 	}
    452  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    453  1.53  christos 	    maxcnt - acnt);
    454   1.1       cgd 	if (zcnt < 0)
    455   1.1       cgd 		zcnt = 0;
    456   1.1       cgd 
    457   1.1       cgd 	return (acnt + zcnt);
    458   1.1       cgd }
    459   1.1       cgd 
    460  1.34    simonb struct kinfo_proc2 *
    461  1.34    simonb kvm_getproc2(kd, op, arg, esize, cnt)
    462  1.34    simonb 	kvm_t *kd;
    463  1.34    simonb 	int op, arg;
    464  1.34    simonb 	size_t esize;
    465  1.34    simonb 	int *cnt;
    466  1.34    simonb {
    467  1.34    simonb 	size_t size;
    468  1.34    simonb 	int mib[6], st, nprocs;
    469  1.46   thorpej 	struct pstats pstats;
    470  1.34    simonb 
    471  1.34    simonb 	if (kd->procbase2 != NULL) {
    472  1.34    simonb 		free(kd->procbase2);
    473  1.34    simonb 		/*
    474  1.34    simonb 		 * Clear this pointer in case this call fails.  Otherwise,
    475  1.34    simonb 		 * kvm_close() will free it again.
    476  1.34    simonb 		 */
    477  1.36      tron 		kd->procbase2 = NULL;
    478  1.34    simonb 	}
    479  1.34    simonb 
    480  1.34    simonb 	if (ISSYSCTL(kd)) {
    481  1.34    simonb 		size = 0;
    482  1.34    simonb 		mib[0] = CTL_KERN;
    483  1.34    simonb 		mib[1] = KERN_PROC2;
    484  1.34    simonb 		mib[2] = op;
    485  1.34    simonb 		mib[3] = arg;
    486  1.52      ross 		mib[4] = (int)esize;
    487  1.34    simonb 		mib[5] = 0;
    488  1.52      ross 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    489  1.34    simonb 		if (st == -1) {
    490  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    491  1.48     enami 			return (NULL);
    492  1.34    simonb 		}
    493  1.34    simonb 
    494  1.52      ross 		mib[5] = (int) (size / esize);
    495  1.34    simonb 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    496  1.36      tron 		if (kd->procbase2 == NULL)
    497  1.48     enami 			return (NULL);
    498  1.52      ross 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    499  1.34    simonb 		if (st == -1) {
    500  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    501  1.48     enami 			return (NULL);
    502  1.34    simonb 		}
    503  1.52      ross 		nprocs = (int) (size / esize);
    504  1.34    simonb 	} else {
    505  1.34    simonb 		char *kp2c;
    506  1.34    simonb 		struct kinfo_proc *kp;
    507  1.34    simonb 		struct kinfo_proc2 kp2, *kp2p;
    508  1.46   thorpej 		struct kinfo_lwp *kl;
    509  1.46   thorpej 		int i, nlwps;
    510  1.34    simonb 
    511  1.34    simonb 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    512  1.34    simonb 		if (kp == NULL)
    513  1.48     enami 			return (NULL);
    514  1.34    simonb 
    515  1.34    simonb 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    516  1.39  christos 		kp2c = (char *)(void *)kd->procbase2;
    517  1.34    simonb 		kp2p = &kp2;
    518  1.34    simonb 		for (i = 0; i < nprocs; i++, kp++) {
    519  1.48     enami 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    520  1.47  christos 			    (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
    521  1.46   thorpej 			    sizeof(struct kinfo_lwp), &nlwps);
    522  1.46   thorpej 			/* We use kl[0] as the "representative" LWP */
    523  1.34    simonb 			memset(kp2p, 0, sizeof(kp2));
    524  1.46   thorpej 			kp2p->p_forw = kl[0].l_forw;
    525  1.46   thorpej 			kp2p->p_back = kl[0].l_back;
    526  1.34    simonb 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    527  1.46   thorpej 			kp2p->p_addr = kl[0].l_addr;
    528  1.34    simonb 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    529  1.34    simonb 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    530  1.34    simonb 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    531  1.34    simonb 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    532  1.34    simonb 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    533  1.34    simonb 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    534  1.34    simonb 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    535  1.34    simonb 			kp2p->p_tsess = 0;
    536  1.34    simonb 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    537  1.34    simonb 
    538  1.34    simonb 			kp2p->p_eflag = 0;
    539  1.34    simonb 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    540  1.34    simonb 			kp2p->p_flag = kp->kp_proc.p_flag;
    541  1.34    simonb 
    542  1.34    simonb 			kp2p->p_pid = kp->kp_proc.p_pid;
    543  1.34    simonb 
    544  1.34    simonb 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    545  1.34    simonb 			kp2p->p_sid = kp->kp_eproc.e_sid;
    546  1.34    simonb 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    547  1.34    simonb 
    548  1.51       dsl 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    549  1.34    simonb 
    550  1.34    simonb 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    551  1.34    simonb 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    552  1.50    atatat 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    553  1.34    simonb 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    554  1.34    simonb 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    555  1.50    atatat 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    556  1.34    simonb 
    557  1.39  christos 			/*CONSTCOND*/
    558  1.34    simonb 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    559  1.48     enami 			    MIN(sizeof(kp2p->p_groups),
    560  1.48     enami 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    561  1.34    simonb 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    562  1.34    simonb 
    563  1.34    simonb 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    564  1.34    simonb 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    565  1.34    simonb 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    566  1.34    simonb 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    567  1.34    simonb 
    568  1.34    simonb 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    569  1.34    simonb 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    570  1.34    simonb 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    571  1.34    simonb 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    572  1.34    simonb 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    573  1.46   thorpej 			kp2p->p_swtime = kl[0].l_swtime;
    574  1.46   thorpej 			kp2p->p_slptime = kl[0].l_slptime;
    575  1.35   thorpej #if 0 /* XXX thorpej */
    576  1.34    simonb 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    577  1.35   thorpej #else
    578  1.35   thorpej 			kp2p->p_schedflags = 0;
    579  1.35   thorpej #endif
    580  1.34    simonb 
    581  1.34    simonb 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    582  1.34    simonb 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    583  1.34    simonb 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    584  1.34    simonb 
    585  1.34    simonb 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    586  1.34    simonb 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    587  1.34    simonb 
    588  1.46   thorpej 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    589  1.34    simonb 
    590  1.48     enami 			memcpy(&kp2p->p_siglist,
    591  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_siglist,
    592  1.48     enami 			    sizeof(ki_sigset_t));
    593  1.48     enami 			memcpy(&kp2p->p_sigmask,
    594  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    595  1.48     enami 			    sizeof(ki_sigset_t));
    596  1.48     enami 			memcpy(&kp2p->p_sigignore,
    597  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    598  1.48     enami 			    sizeof(ki_sigset_t));
    599  1.48     enami 			memcpy(&kp2p->p_sigcatch,
    600  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    601  1.48     enami 			    sizeof(ki_sigset_t));
    602  1.34    simonb 
    603  1.34    simonb 			kp2p->p_stat = kp->kp_proc.p_stat;
    604  1.46   thorpej 			kp2p->p_priority = kl[0].l_priority;
    605  1.46   thorpej 			kp2p->p_usrpri = kl[0].l_usrpri;
    606  1.34    simonb 			kp2p->p_nice = kp->kp_proc.p_nice;
    607  1.34    simonb 
    608  1.34    simonb 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    609  1.34    simonb 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    610  1.34    simonb 
    611  1.39  christos 			/*CONSTCOND*/
    612  1.34    simonb 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    613  1.48     enami 			    MIN(sizeof(kp2p->p_comm),
    614  1.48     enami 			    sizeof(kp->kp_proc.p_comm)));
    615  1.34    simonb 
    616  1.48     enami 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    617  1.48     enami 			    sizeof(kp2p->p_wmesg));
    618  1.46   thorpej 			kp2p->p_wchan = kl[0].l_wchan;
    619  1.48     enami 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    620  1.48     enami 			    sizeof(kp2p->p_login));
    621  1.34    simonb 
    622  1.34    simonb 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    623  1.34    simonb 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    624  1.34    simonb 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    625  1.34    simonb 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    626  1.34    simonb 
    627  1.39  christos 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    628  1.34    simonb 
    629  1.46   thorpej 			kp2p->p_realflag = kp->kp_proc.p_flag;
    630  1.46   thorpej 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    631  1.46   thorpej 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    632  1.46   thorpej 			kp2p->p_realstat = kp->kp_proc.p_stat;
    633  1.46   thorpej 
    634  1.48     enami 			if (P_ZOMBIE(&kp->kp_proc) ||
    635  1.46   thorpej 			    kp->kp_proc.p_stats == NULL ||
    636  1.48     enami 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    637  1.34    simonb 				kp2p->p_uvalid = 0;
    638  1.34    simonb 			} else {
    639  1.34    simonb 				kp2p->p_uvalid = 1;
    640  1.34    simonb 
    641  1.39  christos 				kp2p->p_ustart_sec = (u_int32_t)
    642  1.46   thorpej 				    pstats.p_start.tv_sec;
    643  1.39  christos 				kp2p->p_ustart_usec = (u_int32_t)
    644  1.46   thorpej 				    pstats.p_start.tv_usec;
    645  1.39  christos 
    646  1.39  christos 				kp2p->p_uutime_sec = (u_int32_t)
    647  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_sec;
    648  1.39  christos 				kp2p->p_uutime_usec = (u_int32_t)
    649  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_usec;
    650  1.39  christos 				kp2p->p_ustime_sec = (u_int32_t)
    651  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_sec;
    652  1.39  christos 				kp2p->p_ustime_usec = (u_int32_t)
    653  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_usec;
    654  1.34    simonb 
    655  1.46   thorpej 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    656  1.46   thorpej 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    657  1.46   thorpej 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    658  1.46   thorpej 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    659  1.46   thorpej 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    660  1.46   thorpej 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    661  1.46   thorpej 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    662  1.46   thorpej 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    663  1.46   thorpej 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    664  1.46   thorpej 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    665  1.46   thorpej 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    666  1.46   thorpej 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    667  1.46   thorpej 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    668  1.46   thorpej 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    669  1.34    simonb 
    670  1.39  christos 				kp2p->p_uctime_sec = (u_int32_t)
    671  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_sec +
    672  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_sec);
    673  1.39  christos 				kp2p->p_uctime_usec = (u_int32_t)
    674  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_usec +
    675  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_usec);
    676  1.34    simonb 			}
    677  1.34    simonb 
    678  1.34    simonb 			memcpy(kp2c, &kp2, esize);
    679  1.34    simonb 			kp2c += esize;
    680  1.34    simonb 		}
    681  1.34    simonb 
    682  1.49     enami 		_kvm_freeprocs(kd);
    683  1.34    simonb 	}
    684  1.34    simonb 	*cnt = nprocs;
    685  1.34    simonb 	return (kd->procbase2);
    686  1.46   thorpej }
    687  1.46   thorpej 
    688  1.46   thorpej struct kinfo_lwp *
    689  1.46   thorpej kvm_getlwps(kd, pid, paddr, esize, cnt)
    690  1.46   thorpej 	kvm_t *kd;
    691  1.46   thorpej 	int pid;
    692  1.46   thorpej 	u_long paddr;
    693  1.46   thorpej 	size_t esize;
    694  1.46   thorpej 	int *cnt;
    695  1.46   thorpej {
    696  1.46   thorpej 	size_t size;
    697  1.52      ross 	int mib[5], nlwps;
    698  1.52      ross 	ssize_t st;
    699  1.46   thorpej 	struct kinfo_lwp *kl;
    700  1.46   thorpej 
    701  1.46   thorpej 	if (kd->lwpbase != NULL) {
    702  1.46   thorpej 		free(kd->lwpbase);
    703  1.46   thorpej 		/*
    704  1.46   thorpej 		 * Clear this pointer in case this call fails.  Otherwise,
    705  1.46   thorpej 		 * kvm_close() will free it again.
    706  1.46   thorpej 		 */
    707  1.46   thorpej 		kd->lwpbase = NULL;
    708  1.46   thorpej 	}
    709  1.46   thorpej 
    710  1.46   thorpej 	if (ISSYSCTL(kd)) {
    711  1.46   thorpej 		size = 0;
    712  1.46   thorpej 		mib[0] = CTL_KERN;
    713  1.46   thorpej 		mib[1] = KERN_LWP;
    714  1.46   thorpej 		mib[2] = pid;
    715  1.52      ross 		mib[3] = (int)esize;
    716  1.46   thorpej 		mib[4] = 0;
    717  1.52      ross 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    718  1.46   thorpej 		if (st == -1) {
    719  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    720  1.48     enami 			return (NULL);
    721  1.46   thorpej 		}
    722  1.46   thorpej 
    723  1.52      ross 		mib[4] = (int) (size / esize);
    724  1.46   thorpej 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
    725  1.46   thorpej 		if (kd->lwpbase == NULL)
    726  1.48     enami 			return (NULL);
    727  1.52      ross 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    728  1.46   thorpej 		if (st == -1) {
    729  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    730  1.48     enami 			return (NULL);
    731  1.46   thorpej 		}
    732  1.52      ross 		nlwps = (int) (size / esize);
    733  1.46   thorpej 	} else {
    734  1.46   thorpej 		/* grovel through the memory image */
    735  1.46   thorpej 		struct proc p;
    736  1.46   thorpej 		struct lwp l;
    737  1.46   thorpej 		u_long laddr;
    738  1.46   thorpej 		int i;
    739  1.46   thorpej 
    740  1.46   thorpej 		st = kvm_read(kd, paddr, &p, sizeof(p));
    741  1.46   thorpej 		if (st == -1) {
    742  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    743  1.48     enami 			return (NULL);
    744  1.46   thorpej 		}
    745  1.46   thorpej 
    746  1.46   thorpej 		nlwps = p.p_nlwps;
    747  1.48     enami 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
    748  1.46   thorpej 		    nlwps * sizeof(struct kinfo_lwp));
    749  1.46   thorpej 		if (kd->lwpbase == NULL)
    750  1.48     enami 			return (NULL);
    751  1.47  christos 		laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
    752  1.46   thorpej 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    753  1.46   thorpej 			st = kvm_read(kd, laddr, &l, sizeof(l));
    754  1.46   thorpej 			if (st == -1) {
    755  1.46   thorpej 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    756  1.48     enami 				return (NULL);
    757  1.46   thorpej 			}
    758  1.46   thorpej 			kl = &kd->lwpbase[i];
    759  1.46   thorpej 			kl->l_laddr = laddr;
    760  1.46   thorpej 			kl->l_forw = PTRTOINT64(l.l_forw);
    761  1.46   thorpej 			kl->l_back = PTRTOINT64(l.l_back);
    762  1.46   thorpej 			kl->l_addr = PTRTOINT64(l.l_addr);
    763  1.46   thorpej 			kl->l_lid = l.l_lid;
    764  1.46   thorpej 			kl->l_flag = l.l_flag;
    765  1.46   thorpej 			kl->l_swtime = l.l_swtime;
    766  1.46   thorpej 			kl->l_slptime = l.l_slptime;
    767  1.46   thorpej 			kl->l_schedflags = 0; /* XXX */
    768  1.46   thorpej 			kl->l_holdcnt = l.l_holdcnt;
    769  1.46   thorpej 			kl->l_priority = l.l_priority;
    770  1.46   thorpej 			kl->l_usrpri = l.l_usrpri;
    771  1.46   thorpej 			kl->l_stat = l.l_stat;
    772  1.53  christos 			kl->l_wchan = PTRTOINT64(l.l_wchan);
    773  1.46   thorpej 			if (l.l_wmesg)
    774  1.46   thorpej 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    775  1.52      ross 				    kl->l_wmesg, (size_t)WMESGLEN);
    776  1.46   thorpej 			kl->l_cpuid = KI_NOCPU;
    777  1.47  christos 			laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
    778  1.46   thorpej 		}
    779  1.46   thorpej 	}
    780  1.46   thorpej 
    781  1.46   thorpej 	*cnt = nlwps;
    782  1.48     enami 	return (kd->lwpbase);
    783  1.34    simonb }
    784  1.34    simonb 
    785   1.1       cgd struct kinfo_proc *
    786   1.1       cgd kvm_getprocs(kd, op, arg, cnt)
    787   1.1       cgd 	kvm_t *kd;
    788   1.1       cgd 	int op, arg;
    789   1.1       cgd 	int *cnt;
    790   1.1       cgd {
    791   1.7       cgd 	size_t size;
    792   1.7       cgd 	int mib[4], st, nprocs;
    793   1.1       cgd 
    794  1.36      tron 	if (kd->procbase != NULL) {
    795  1.34    simonb 		free(kd->procbase);
    796  1.31    simonb 		/*
    797   1.1       cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    798   1.1       cgd 		 * kvm_close() will free it again.
    799   1.1       cgd 		 */
    800  1.36      tron 		kd->procbase = NULL;
    801   1.1       cgd 	}
    802  1.34    simonb 	if (ISKMEM(kd)) {
    803   1.1       cgd 		size = 0;
    804   1.1       cgd 		mib[0] = CTL_KERN;
    805   1.1       cgd 		mib[1] = KERN_PROC;
    806   1.1       cgd 		mib[2] = op;
    807   1.1       cgd 		mib[3] = arg;
    808  1.52      ross 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    809   1.1       cgd 		if (st == -1) {
    810   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    811  1.48     enami 			return (NULL);
    812   1.1       cgd 		}
    813   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    814  1.36      tron 		if (kd->procbase == NULL)
    815  1.48     enami 			return (NULL);
    816  1.52      ross 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    817   1.1       cgd 		if (st == -1) {
    818   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    819  1.48     enami 			return (NULL);
    820   1.1       cgd 		}
    821   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    822   1.1       cgd 			_kvm_err(kd, kd->program,
    823  1.42     enami 			    "proc size mismatch (%lu total, %lu chunks)",
    824  1.42     enami 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    825  1.48     enami 			return (NULL);
    826   1.1       cgd 		}
    827  1.52      ross 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    828  1.34    simonb 	} else if (ISSYSCTL(kd)) {
    829  1.34    simonb 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    830  1.34    simonb 		    "can't use kvm_getprocs");
    831  1.48     enami 		return (NULL);
    832   1.1       cgd 	} else {
    833  1.53  christos 		struct nlist nl[4], *p;
    834   1.1       cgd 
    835   1.1       cgd 		nl[0].n_name = "_nprocs";
    836   1.1       cgd 		nl[1].n_name = "_allproc";
    837  1.53  christos 		nl[2].n_name = "_zombproc";
    838  1.53  christos 		nl[3].n_name = NULL;
    839   1.1       cgd 
    840   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    841   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    842  1.48     enami 				continue;
    843   1.1       cgd 			_kvm_err(kd, kd->program,
    844  1.48     enami 			    "%s: no such symbol", p->n_name);
    845  1.48     enami 			return (NULL);
    846   1.1       cgd 		}
    847   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    848   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    849  1.48     enami 			return (NULL);
    850   1.1       cgd 		}
    851   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    852   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    853  1.36      tron 		if (kd->procbase == NULL)
    854  1.48     enami 			return (NULL);
    855   1.1       cgd 
    856   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    857  1.53  christos 		    nl[2].n_value, nprocs);
    858  1.32       chs 		if (nprocs < 0)
    859  1.48     enami 			return (NULL);
    860   1.1       cgd #ifdef notdef
    861   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    862   1.1       cgd 		(void)realloc(kd->procbase, size);
    863   1.1       cgd #endif
    864   1.1       cgd 	}
    865   1.1       cgd 	*cnt = nprocs;
    866   1.1       cgd 	return (kd->procbase);
    867   1.1       cgd }
    868   1.1       cgd 
    869   1.1       cgd void
    870   1.1       cgd _kvm_freeprocs(kd)
    871   1.1       cgd 	kvm_t *kd;
    872   1.1       cgd {
    873  1.48     enami 
    874   1.1       cgd 	if (kd->procbase) {
    875   1.1       cgd 		free(kd->procbase);
    876  1.36      tron 		kd->procbase = NULL;
    877   1.1       cgd 	}
    878   1.1       cgd }
    879   1.1       cgd 
    880   1.1       cgd void *
    881   1.1       cgd _kvm_realloc(kd, p, n)
    882   1.1       cgd 	kvm_t *kd;
    883   1.1       cgd 	void *p;
    884   1.1       cgd 	size_t n;
    885   1.1       cgd {
    886  1.34    simonb 	void *np = realloc(p, n);
    887   1.1       cgd 
    888  1.36      tron 	if (np == NULL)
    889   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    890   1.1       cgd 	return (np);
    891   1.1       cgd }
    892   1.1       cgd 
    893   1.1       cgd /*
    894   1.1       cgd  * Read in an argument vector from the user address space of process p.
    895  1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    896   1.1       cgd  * strings.  This is used to read in both the command arguments and
    897   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    898   1.1       cgd  */
    899   1.1       cgd static char **
    900   1.1       cgd kvm_argv(kd, p, addr, narg, maxcnt)
    901   1.1       cgd 	kvm_t *kd;
    902  1.34    simonb 	const struct miniproc *p;
    903  1.21     perry 	u_long addr;
    904  1.21     perry 	int narg;
    905  1.21     perry 	int maxcnt;
    906  1.21     perry {
    907  1.21     perry 	char *np, *cp, *ep, *ap;
    908  1.28  christos 	u_long oaddr = (u_long)~0L;
    909  1.28  christos 	u_long len;
    910  1.28  christos 	size_t cc;
    911  1.21     perry 	char **argv;
    912   1.1       cgd 
    913   1.1       cgd 	/*
    914   1.1       cgd 	 * Check that there aren't an unreasonable number of agruments,
    915   1.1       cgd 	 * and that the address is in user space.
    916   1.1       cgd 	 */
    917  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    918  1.48     enami 		return (NULL);
    919   1.1       cgd 
    920  1.36      tron 	if (kd->argv == NULL) {
    921   1.1       cgd 		/*
    922   1.1       cgd 		 * Try to avoid reallocs.
    923   1.1       cgd 		 */
    924   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    925  1.31    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    926  1.48     enami 		    sizeof(*kd->argv));
    927  1.36      tron 		if (kd->argv == NULL)
    928  1.48     enami 			return (NULL);
    929   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    930   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    931  1.31    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    932  1.48     enami 		    sizeof(*kd->argv));
    933  1.36      tron 		if (kd->argv == NULL)
    934  1.48     enami 			return (NULL);
    935   1.1       cgd 	}
    936  1.36      tron 	if (kd->argspc == NULL) {
    937  1.28  christos 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    938  1.36      tron 		if (kd->argspc == NULL)
    939  1.48     enami 			return (NULL);
    940   1.6   mycroft 		kd->arglen = kd->nbpg;
    941   1.1       cgd 	}
    942  1.36      tron 	if (kd->argbuf == NULL) {
    943  1.28  christos 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    944  1.36      tron 		if (kd->argbuf == NULL)
    945  1.48     enami 			return (NULL);
    946  1.10   mycroft 	}
    947  1.10   mycroft 	cc = sizeof(char *) * narg;
    948  1.34    simonb 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    949  1.48     enami 		return (NULL);
    950  1.10   mycroft 	ap = np = kd->argspc;
    951   1.1       cgd 	argv = kd->argv;
    952   1.1       cgd 	len = 0;
    953   1.1       cgd 	/*
    954   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    955   1.1       cgd 	 */
    956  1.36      tron 	while (argv < kd->argv + narg && *argv != NULL) {
    957  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    958  1.10   mycroft 		if (addr != oaddr) {
    959  1.34    simonb 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    960  1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    961  1.48     enami 				return (NULL);
    962  1.10   mycroft 			oaddr = addr;
    963  1.10   mycroft 		}
    964  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    965  1.28  christos 		cp = kd->argbuf + (size_t)addr;
    966  1.28  christos 		cc = kd->nbpg - (size_t)addr;
    967  1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    968  1.28  christos 			cc = (size_t)(maxcnt - len);
    969  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    970  1.36      tron 		if (ep != NULL)
    971  1.10   mycroft 			cc = ep - cp + 1;
    972   1.1       cgd 		if (len + cc > kd->arglen) {
    973  1.52      ross 			ptrdiff_t off;
    974  1.21     perry 			char **pp;
    975  1.21     perry 			char *op = kd->argspc;
    976   1.1       cgd 
    977   1.1       cgd 			kd->arglen *= 2;
    978   1.1       cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    979  1.28  christos 			    (size_t)kd->arglen);
    980  1.36      tron 			if (kd->argspc == NULL)
    981  1.48     enami 				return (NULL);
    982   1.1       cgd 			/*
    983   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    984   1.1       cgd 			 * the string space.
    985   1.1       cgd 			 */
    986   1.1       cgd 			off = kd->argspc - op;
    987  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    988   1.1       cgd 				*pp += off;
    989  1.12   mycroft 			ap += off;
    990  1.12   mycroft 			np += off;
    991   1.1       cgd 		}
    992  1.10   mycroft 		memcpy(np, cp, cc);
    993  1.10   mycroft 		np += cc;
    994   1.1       cgd 		len += cc;
    995  1.36      tron 		if (ep != NULL) {
    996  1.10   mycroft 			*argv++ = ap;
    997  1.10   mycroft 			ap = np;
    998  1.10   mycroft 		} else
    999  1.10   mycroft 			*argv += cc;
   1000   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
   1001   1.1       cgd 			/*
   1002   1.1       cgd 			 * We're stopping prematurely.  Terminate the
   1003  1.10   mycroft 			 * current string.
   1004   1.1       cgd 			 */
   1005  1.36      tron 			if (ep == NULL) {
   1006  1.10   mycroft 				*np = '\0';
   1007  1.14   mycroft 				*argv++ = ap;
   1008  1.10   mycroft 			}
   1009  1.10   mycroft 			break;
   1010   1.1       cgd 		}
   1011   1.1       cgd 	}
   1012  1.10   mycroft 	/* Make sure argv is terminated. */
   1013  1.36      tron 	*argv = NULL;
   1014  1.10   mycroft 	return (kd->argv);
   1015   1.1       cgd }
   1016   1.1       cgd 
   1017   1.1       cgd static void
   1018   1.1       cgd ps_str_a(p, addr, n)
   1019   1.1       cgd 	struct ps_strings *p;
   1020   1.1       cgd 	u_long *addr;
   1021   1.1       cgd 	int *n;
   1022   1.1       cgd {
   1023  1.48     enami 
   1024   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
   1025   1.1       cgd 	*n = p->ps_nargvstr;
   1026   1.1       cgd }
   1027   1.1       cgd 
   1028   1.1       cgd static void
   1029   1.1       cgd ps_str_e(p, addr, n)
   1030   1.1       cgd 	struct ps_strings *p;
   1031   1.1       cgd 	u_long *addr;
   1032   1.1       cgd 	int *n;
   1033   1.1       cgd {
   1034  1.48     enami 
   1035   1.1       cgd 	*addr = (u_long)p->ps_envstr;
   1036   1.1       cgd 	*n = p->ps_nenvstr;
   1037   1.1       cgd }
   1038   1.1       cgd 
   1039   1.1       cgd /*
   1040   1.1       cgd  * Determine if the proc indicated by p is still active.
   1041   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
   1042   1.1       cgd  * being wrong are very low.
   1043   1.1       cgd  */
   1044   1.1       cgd static int
   1045   1.1       cgd proc_verify(kd, kernp, p)
   1046   1.1       cgd 	kvm_t *kd;
   1047   1.1       cgd 	u_long kernp;
   1048  1.34    simonb 	const struct miniproc *p;
   1049   1.1       cgd {
   1050   1.1       cgd 	struct proc kernproc;
   1051   1.1       cgd 
   1052   1.1       cgd 	/*
   1053   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
   1054   1.1       cgd 	 * to the cost of the read system call.
   1055   1.1       cgd 	 */
   1056  1.34    simonb 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1057   1.1       cgd 	    sizeof(kernproc))
   1058  1.48     enami 		return (0);
   1059   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
   1060  1.48     enami 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1061   1.1       cgd }
   1062   1.1       cgd 
   1063   1.1       cgd static char **
   1064  1.34    simonb kvm_doargv(kd, p, nchr, info)
   1065   1.1       cgd 	kvm_t *kd;
   1066  1.34    simonb 	const struct miniproc *p;
   1067   1.1       cgd 	int nchr;
   1068  1.10   mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
   1069   1.1       cgd {
   1070  1.21     perry 	char **ap;
   1071   1.1       cgd 	u_long addr;
   1072   1.1       cgd 	int cnt;
   1073   1.1       cgd 	struct ps_strings arginfo;
   1074   1.1       cgd 
   1075   1.1       cgd 	/*
   1076   1.1       cgd 	 * Pointers are stored at the top of the user stack.
   1077   1.1       cgd 	 */
   1078  1.18       gwr 	if (p->p_stat == SZOMB)
   1079  1.48     enami 		return (NULL);
   1080  1.52      ross 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1081  1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
   1082  1.18       gwr 	if (cnt != sizeof(arginfo))
   1083  1.48     enami 		return (NULL);
   1084   1.1       cgd 
   1085   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
   1086   1.3   mycroft 	if (cnt == 0)
   1087  1.48     enami 		return (NULL);
   1088   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1089   1.1       cgd 	/*
   1090   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
   1091   1.1       cgd 	 */
   1092  1.36      tron 	if (ap != NULL && ISALIVE(kd) &&
   1093  1.34    simonb 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1094  1.36      tron 		ap = NULL;
   1095   1.1       cgd 	return (ap);
   1096   1.1       cgd }
   1097   1.1       cgd 
   1098   1.1       cgd /*
   1099   1.1       cgd  * Get the command args.  This code is now machine independent.
   1100   1.1       cgd  */
   1101   1.1       cgd char **
   1102   1.1       cgd kvm_getargv(kd, kp, nchr)
   1103   1.1       cgd 	kvm_t *kd;
   1104   1.1       cgd 	const struct kinfo_proc *kp;
   1105   1.1       cgd 	int nchr;
   1106   1.1       cgd {
   1107  1.34    simonb 	struct miniproc p;
   1108  1.34    simonb 
   1109  1.34    simonb 	KPTOMINI(kp, &p);
   1110  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1111   1.1       cgd }
   1112   1.1       cgd 
   1113   1.1       cgd char **
   1114   1.1       cgd kvm_getenvv(kd, kp, nchr)
   1115   1.1       cgd 	kvm_t *kd;
   1116   1.1       cgd 	const struct kinfo_proc *kp;
   1117   1.1       cgd 	int nchr;
   1118   1.1       cgd {
   1119  1.34    simonb 	struct miniproc p;
   1120  1.34    simonb 
   1121  1.34    simonb 	KPTOMINI(kp, &p);
   1122  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1123  1.34    simonb }
   1124  1.34    simonb 
   1125  1.34    simonb static char **
   1126  1.34    simonb kvm_doargv2(kd, pid, type, nchr)
   1127  1.34    simonb 	kvm_t *kd;
   1128  1.34    simonb 	pid_t pid;
   1129  1.34    simonb 	int type;
   1130  1.34    simonb 	int nchr;
   1131  1.34    simonb {
   1132  1.34    simonb 	size_t bufs;
   1133  1.39  christos 	int narg, mib[4];
   1134  1.39  christos 	size_t newarglen;
   1135  1.34    simonb 	char **ap, *bp, *endp;
   1136  1.34    simonb 
   1137  1.34    simonb 	/*
   1138  1.34    simonb 	 * Check that there aren't an unreasonable number of agruments.
   1139  1.34    simonb 	 */
   1140  1.34    simonb 	if (nchr > ARG_MAX)
   1141  1.48     enami 		return (NULL);
   1142  1.34    simonb 
   1143  1.34    simonb 	if (nchr == 0)
   1144  1.34    simonb 		nchr = ARG_MAX;
   1145  1.34    simonb 
   1146  1.34    simonb 	/* Get number of strings in argv */
   1147  1.34    simonb 	mib[0] = CTL_KERN;
   1148  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1149  1.34    simonb 	mib[2] = pid;
   1150  1.34    simonb 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1151  1.34    simonb 	bufs = sizeof(narg);
   1152  1.52      ross 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1153  1.48     enami 		return (NULL);
   1154  1.34    simonb 
   1155  1.36      tron 	if (kd->argv == NULL) {
   1156  1.34    simonb 		/*
   1157  1.34    simonb 		 * Try to avoid reallocs.
   1158  1.34    simonb 		 */
   1159  1.34    simonb 		kd->argc = MAX(narg + 1, 32);
   1160  1.34    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1161  1.48     enami 		    sizeof(*kd->argv));
   1162  1.36      tron 		if (kd->argv == NULL)
   1163  1.48     enami 			return (NULL);
   1164  1.34    simonb 	} else if (narg + 1 > kd->argc) {
   1165  1.34    simonb 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1166  1.34    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1167  1.48     enami 		    sizeof(*kd->argv));
   1168  1.36      tron 		if (kd->argv == NULL)
   1169  1.48     enami 			return (NULL);
   1170  1.34    simonb 	}
   1171  1.34    simonb 
   1172  1.34    simonb 	newarglen = MIN(nchr, ARG_MAX);
   1173  1.34    simonb 	if (kd->arglen < newarglen) {
   1174  1.34    simonb 		if (kd->arglen == 0)
   1175  1.34    simonb 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1176  1.34    simonb 		else
   1177  1.34    simonb 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1178  1.34    simonb 			    newarglen);
   1179  1.36      tron 		if (kd->argspc == NULL)
   1180  1.48     enami 			return (NULL);
   1181  1.52      ross 		if (newarglen > INT_MAX)
   1182  1.52      ross 			return NULL;
   1183  1.52      ross 		kd->arglen = (int)newarglen;
   1184  1.34    simonb 	}
   1185  1.39  christos 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
   1186  1.34    simonb 
   1187  1.34    simonb 	mib[0] = CTL_KERN;
   1188  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1189  1.34    simonb 	mib[2] = pid;
   1190  1.34    simonb 	mib[3] = type;
   1191  1.34    simonb 	bufs = kd->arglen;
   1192  1.52      ross 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1193  1.48     enami 		return (NULL);
   1194  1.34    simonb 
   1195  1.34    simonb 	bp = kd->argspc;
   1196  1.45  jdolecek 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
   1197  1.34    simonb 	ap = kd->argv;
   1198  1.34    simonb 	endp = bp + MIN(nchr, bufs);
   1199  1.34    simonb 
   1200  1.34    simonb 	while (bp < endp) {
   1201  1.34    simonb 		*ap++ = bp;
   1202  1.48     enami 		/*
   1203  1.48     enami 		 * XXX: don't need following anymore, or stick check
   1204  1.48     enami 		 * for max argc in above while loop?
   1205  1.48     enami 		 */
   1206  1.34    simonb 		if (ap >= kd->argv + kd->argc) {
   1207  1.34    simonb 			kd->argc *= 2;
   1208  1.34    simonb 			kd->argv = _kvm_realloc(kd, kd->argv,
   1209  1.34    simonb 			    kd->argc * sizeof(*kd->argv));
   1210  1.44  jdolecek 			ap = kd->argv;
   1211  1.34    simonb 		}
   1212  1.34    simonb 		bp += strlen(bp) + 1;
   1213  1.34    simonb 	}
   1214  1.34    simonb 	*ap = NULL;
   1215  1.48     enami 
   1216  1.34    simonb 	return (kd->argv);
   1217  1.34    simonb }
   1218  1.34    simonb 
   1219  1.34    simonb char **
   1220  1.34    simonb kvm_getargv2(kd, kp, nchr)
   1221  1.34    simonb 	kvm_t *kd;
   1222  1.34    simonb 	const struct kinfo_proc2 *kp;
   1223  1.34    simonb 	int nchr;
   1224  1.34    simonb {
   1225  1.48     enami 
   1226  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1227  1.34    simonb }
   1228  1.34    simonb 
   1229  1.34    simonb char **
   1230  1.34    simonb kvm_getenvv2(kd, kp, nchr)
   1231  1.34    simonb 	kvm_t *kd;
   1232  1.34    simonb 	const struct kinfo_proc2 *kp;
   1233  1.34    simonb 	int nchr;
   1234  1.34    simonb {
   1235  1.48     enami 
   1236  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1237   1.1       cgd }
   1238   1.1       cgd 
   1239   1.1       cgd /*
   1240   1.1       cgd  * Read from user space.  The user context is given by p.
   1241   1.1       cgd  */
   1242  1.34    simonb static ssize_t
   1243  1.34    simonb kvm_ureadm(kd, p, uva, buf, len)
   1244   1.1       cgd 	kvm_t *kd;
   1245  1.34    simonb 	const struct miniproc *p;
   1246  1.21     perry 	u_long uva;
   1247  1.21     perry 	char *buf;
   1248  1.21     perry 	size_t len;
   1249   1.1       cgd {
   1250  1.21     perry 	char *cp;
   1251   1.1       cgd 
   1252   1.1       cgd 	cp = buf;
   1253   1.1       cgd 	while (len > 0) {
   1254  1.28  christos 		size_t cc;
   1255  1.21     perry 		char *dp;
   1256  1.15       cgd 		u_long cnt;
   1257   1.8   mycroft 
   1258  1.34    simonb 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1259  1.36      tron 		if (dp == NULL) {
   1260  1.41  sommerfe 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1261  1.48     enami 			return (0);
   1262   1.8   mycroft 		}
   1263  1.28  christos 		cc = (size_t)MIN(cnt, len);
   1264  1.25     perry 		memcpy(cp, dp, cc);
   1265   1.1       cgd 		cp += cc;
   1266   1.1       cgd 		uva += cc;
   1267   1.1       cgd 		len -= cc;
   1268   1.1       cgd 	}
   1269   1.1       cgd 	return (ssize_t)(cp - buf);
   1270  1.34    simonb }
   1271  1.34    simonb 
   1272  1.34    simonb ssize_t
   1273  1.34    simonb kvm_uread(kd, p, uva, buf, len)
   1274  1.34    simonb 	kvm_t *kd;
   1275  1.34    simonb 	const struct proc *p;
   1276  1.48     enami 	u_long uva;
   1277  1.34    simonb 	char *buf;
   1278  1.34    simonb 	size_t len;
   1279  1.34    simonb {
   1280  1.34    simonb 	struct miniproc mp;
   1281  1.34    simonb 
   1282  1.34    simonb 	PTOMINI(p, &mp);
   1283  1.34    simonb 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1284   1.1       cgd }
   1285