Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.54
      1  1.54       agc /*	$NetBSD: kvm_proc.c,v 1.54 2003/08/07 16:44:39 agc Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  * 3. All advertising materials mentioning features or use of this software
     19  1.26   mycroft  *    must display the following acknowledgement:
     20  1.26   mycroft  *        This product includes software developed by the NetBSD
     21  1.26   mycroft  *        Foundation, Inc. and its contributors.
     22  1.26   mycroft  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.26   mycroft  *    contributors may be used to endorse or promote products derived
     24  1.26   mycroft  *    from this software without specific prior written permission.
     25  1.26   mycroft  *
     26  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     37  1.26   mycroft  */
     38  1.16   thorpej 
     39   1.1       cgd /*-
     40   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     41   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     42   1.1       cgd  *
     43   1.1       cgd  * This code is derived from software developed by the Computer Systems
     44   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     46   1.1       cgd  *
     47   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     48   1.1       cgd  * modification, are permitted provided that the following conditions
     49   1.1       cgd  * are met:
     50   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     51   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     52   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     53   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     54   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     55  1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     56   1.1       cgd  *    may be used to endorse or promote products derived from this software
     57   1.1       cgd  *    without specific prior written permission.
     58   1.1       cgd  *
     59   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69   1.1       cgd  * SUCH DAMAGE.
     70   1.1       cgd  */
     71   1.1       cgd 
     72  1.19     mikel #include <sys/cdefs.h>
     73   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     74  1.16   thorpej #if 0
     75   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     76  1.16   thorpej #else
     77  1.54       agc __RCSID("$NetBSD: kvm_proc.c,v 1.54 2003/08/07 16:44:39 agc Exp $");
     78  1.16   thorpej #endif
     79   1.1       cgd #endif /* LIBC_SCCS and not lint */
     80   1.1       cgd 
     81   1.1       cgd /*
     82   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     83   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     84   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     85   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     86   1.1       cgd  */
     87   1.1       cgd 
     88   1.1       cgd #include <sys/param.h>
     89   1.1       cgd #include <sys/user.h>
     90  1.46   thorpej #include <sys/lwp.h>
     91   1.1       cgd #include <sys/proc.h>
     92   1.1       cgd #include <sys/exec.h>
     93   1.1       cgd #include <sys/stat.h>
     94   1.1       cgd #include <sys/ioctl.h>
     95   1.1       cgd #include <sys/tty.h>
     96   1.7       cgd #include <stdlib.h>
     97  1.52      ross #include <stddef.h>
     98  1.10   mycroft #include <string.h>
     99   1.1       cgd #include <unistd.h>
    100   1.1       cgd #include <nlist.h>
    101   1.1       cgd #include <kvm.h>
    102   1.1       cgd 
    103  1.23       chs #include <uvm/uvm_extern.h>
    104  1.29       mrg #include <uvm/uvm_amap.h>
    105  1.23       chs 
    106   1.1       cgd #include <sys/sysctl.h>
    107   1.1       cgd 
    108   1.1       cgd #include <limits.h>
    109   1.1       cgd #include <db.h>
    110   1.1       cgd #include <paths.h>
    111   1.1       cgd 
    112   1.1       cgd #include "kvm_private.h"
    113   1.1       cgd 
    114  1.34    simonb /*
    115  1.34    simonb  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    116  1.34    simonb  */
    117  1.34    simonb struct miniproc {
    118  1.34    simonb 	struct	vmspace *p_vmspace;
    119  1.34    simonb 	char	p_stat;
    120  1.34    simonb 	struct	proc *p_paddr;
    121  1.34    simonb 	pid_t	p_pid;
    122  1.34    simonb };
    123  1.34    simonb 
    124  1.34    simonb /*
    125  1.34    simonb  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    126  1.34    simonb  */
    127  1.34    simonb #define PTOMINI(kp, p) \
    128  1.48     enami 	do { \
    129  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    130  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    131  1.34    simonb 		(p)->p_paddr = NULL; \
    132  1.34    simonb 		(p)->p_vmspace = (kp)->p_vmspace; \
    133  1.34    simonb 	} while (/*CONSTCOND*/0);
    134  1.34    simonb 
    135  1.34    simonb #define KPTOMINI(kp, p) \
    136  1.48     enami 	do { \
    137  1.34    simonb 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    138  1.34    simonb 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    139  1.34    simonb 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    140  1.34    simonb 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    141  1.34    simonb 	} while (/*CONSTCOND*/0);
    142  1.34    simonb 
    143  1.34    simonb #define KP2TOMINI(kp, p) \
    144  1.48     enami 	do { \
    145  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    146  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    147  1.34    simonb 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    148  1.34    simonb 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    149  1.34    simonb 	} while (/*CONSTCOND*/0);
    150  1.34    simonb 
    151  1.34    simonb 
    152  1.53  christos #define	PTRTOINT64(foo)	((u_int64_t)(const uintptr_t)(const void *)(foo))
    153  1.34    simonb 
    154   1.2   mycroft #define KREAD(kd, addr, obj) \
    155  1.34    simonb 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    156   1.2   mycroft 
    157  1.34    simonb /* XXX: What uses these two functions? */
    158  1.34    simonb char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    159  1.34    simonb 		    u_long *));
    160  1.15       cgd ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    161  1.15       cgd 		    size_t));
    162  1.15       cgd 
    163  1.34    simonb static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    164  1.34    simonb 		    u_long *));
    165  1.34    simonb static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    166  1.34    simonb 		    char *, size_t));
    167  1.34    simonb 
    168  1.34    simonb static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    169  1.15       cgd 		    int));
    170  1.53  christos static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    171  1.34    simonb static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    172  1.15       cgd 		    void (*)(struct ps_strings *, u_long *, int *)));
    173  1.34    simonb static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    174  1.15       cgd static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    175  1.15       cgd 		    struct kinfo_proc *, int));
    176  1.34    simonb static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    177  1.15       cgd static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    178  1.15       cgd static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    179   1.2   mycroft 
    180  1.34    simonb 
    181  1.34    simonb static char *
    182  1.34    simonb _kvm_ureadm(kd, p, va, cnt)
    183   1.1       cgd 	kvm_t *kd;
    184  1.34    simonb 	const struct miniproc *p;
    185   1.1       cgd 	u_long va;
    186   1.1       cgd 	u_long *cnt;
    187   1.1       cgd {
    188  1.28  christos 	int true = 1;
    189  1.21     perry 	u_long addr, head;
    190  1.21     perry 	u_long offset;
    191   1.1       cgd 	struct vm_map_entry vme;
    192  1.23       chs 	struct vm_amap amap;
    193  1.23       chs 	struct vm_anon *anonp, anon;
    194  1.23       chs 	struct vm_page pg;
    195  1.28  christos 	u_long slot;
    196   1.1       cgd 
    197  1.36      tron 	if (kd->swapspc == NULL) {
    198  1.28  christos 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    199  1.36      tron 		if (kd->swapspc == NULL)
    200  1.48     enami 			return (NULL);
    201   1.5   deraadt 	}
    202   1.8   mycroft 
    203   1.1       cgd 	/*
    204   1.1       cgd 	 * Look through the address map for the memory object
    205   1.1       cgd 	 * that corresponds to the given virtual address.
    206   1.1       cgd 	 * The header just has the entire valid range.
    207   1.1       cgd 	 */
    208   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    209   1.1       cgd 	addr = head;
    210  1.28  christos 	while (true) {
    211   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    212  1.48     enami 			return (NULL);
    213   1.1       cgd 
    214  1.23       chs 		if (va >= vme.start && va < vme.end &&
    215  1.23       chs 		    vme.aref.ar_amap != NULL)
    216  1.23       chs 			break;
    217  1.23       chs 
    218   1.1       cgd 		addr = (u_long)vme.next;
    219   1.2   mycroft 		if (addr == head)
    220  1.48     enami 			return (NULL);
    221   1.1       cgd 	}
    222   1.2   mycroft 
    223   1.1       cgd 	/*
    224  1.23       chs 	 * we found the map entry, now to find the object...
    225  1.23       chs 	 */
    226  1.23       chs 	if (vme.aref.ar_amap == NULL)
    227  1.48     enami 		return (NULL);
    228  1.23       chs 
    229  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    230  1.23       chs 	if (KREAD(kd, addr, &amap))
    231  1.48     enami 		return (NULL);
    232  1.23       chs 
    233  1.23       chs 	offset = va - vme.start;
    234  1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    235  1.23       chs 	/* sanity-check slot number */
    236  1.48     enami 	if (slot > amap.am_nslot)
    237  1.48     enami 		return (NULL);
    238  1.23       chs 
    239  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    240  1.23       chs 	if (KREAD(kd, addr, &anonp))
    241  1.48     enami 		return (NULL);
    242  1.23       chs 
    243  1.23       chs 	addr = (u_long)anonp;
    244  1.23       chs 	if (KREAD(kd, addr, &anon))
    245  1.48     enami 		return (NULL);
    246  1.23       chs 
    247  1.23       chs 	addr = (u_long)anon.u.an_page;
    248  1.23       chs 	if (addr) {
    249  1.23       chs 		if (KREAD(kd, addr, &pg))
    250  1.48     enami 			return (NULL);
    251  1.23       chs 
    252  1.34    simonb 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    253  1.24   thorpej 		    (off_t)pg.phys_addr) != kd->nbpg)
    254  1.48     enami 			return (NULL);
    255  1.48     enami 	} else {
    256  1.34    simonb 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    257  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    258  1.48     enami 			return (NULL);
    259  1.23       chs 	}
    260   1.8   mycroft 
    261   1.2   mycroft 	/* Found the page. */
    262   1.6   mycroft 	offset %= kd->nbpg;
    263   1.6   mycroft 	*cnt = kd->nbpg - offset;
    264  1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    265   1.2   mycroft }
    266   1.1       cgd 
    267  1.34    simonb char *
    268  1.34    simonb _kvm_uread(kd, p, va, cnt)
    269  1.34    simonb 	kvm_t *kd;
    270  1.34    simonb 	const struct proc *p;
    271  1.34    simonb 	u_long va;
    272  1.34    simonb 	u_long *cnt;
    273  1.34    simonb {
    274  1.34    simonb 	struct miniproc mp;
    275  1.34    simonb 
    276  1.34    simonb 	PTOMINI(p, &mp);
    277  1.34    simonb 	return (_kvm_ureadm(kd, &mp, va, cnt));
    278  1.34    simonb }
    279  1.34    simonb 
    280   1.1       cgd /*
    281   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    282   1.1       cgd  * at most maxcnt procs.
    283   1.1       cgd  */
    284   1.1       cgd static int
    285   1.1       cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
    286   1.1       cgd 	kvm_t *kd;
    287   1.1       cgd 	int what, arg;
    288   1.1       cgd 	struct proc *p;
    289   1.1       cgd 	struct kinfo_proc *bp;
    290   1.1       cgd 	int maxcnt;
    291   1.1       cgd {
    292  1.21     perry 	int cnt = 0;
    293  1.46   thorpej 	int nlwps;
    294  1.46   thorpej 	struct kinfo_lwp *kl;
    295   1.1       cgd 	struct eproc eproc;
    296   1.1       cgd 	struct pgrp pgrp;
    297   1.1       cgd 	struct session sess;
    298   1.1       cgd 	struct tty tty;
    299   1.1       cgd 	struct proc proc;
    300   1.1       cgd 
    301   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    302   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    303  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    304   1.1       cgd 			return (-1);
    305   1.1       cgd 		}
    306   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    307  1.28  christos 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    308  1.28  christos 			    &eproc.e_ucred)) {
    309  1.28  christos 				_kvm_err(kd, kd->program,
    310  1.41  sommerfe 				    "can't read proc credentials at %p", p);
    311  1.48     enami 				return (-1);
    312  1.28  christos 			}
    313   1.1       cgd 
    314  1.48     enami 		switch (what) {
    315  1.31    simonb 
    316   1.1       cgd 		case KERN_PROC_PID:
    317   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    318   1.1       cgd 				continue;
    319   1.1       cgd 			break;
    320   1.1       cgd 
    321   1.1       cgd 		case KERN_PROC_UID:
    322   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    323   1.1       cgd 				continue;
    324   1.1       cgd 			break;
    325   1.1       cgd 
    326   1.1       cgd 		case KERN_PROC_RUID:
    327   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    328   1.1       cgd 				continue;
    329   1.1       cgd 			break;
    330   1.1       cgd 		}
    331   1.1       cgd 		/*
    332   1.1       cgd 		 * We're going to add another proc to the set.  If this
    333   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    334   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    335   1.1       cgd 		 */
    336   1.1       cgd 		if (cnt >= maxcnt) {
    337   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    338   1.1       cgd 			return (-1);
    339   1.1       cgd 		}
    340   1.1       cgd 		/*
    341   1.1       cgd 		 * gather eproc
    342   1.1       cgd 		 */
    343   1.1       cgd 		eproc.e_paddr = p;
    344   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    345  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    346  1.48     enami 			    proc.p_pgrp);
    347   1.1       cgd 			return (-1);
    348   1.1       cgd 		}
    349   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    350   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    351   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    352   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    353  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read session at %p",
    354  1.48     enami 			    pgrp.pg_session);
    355   1.1       cgd 			return (-1);
    356   1.1       cgd 		}
    357   1.1       cgd 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    358   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    359   1.1       cgd 				_kvm_err(kd, kd->program,
    360  1.48     enami 				    "can't read tty at %p", sess.s_ttyp);
    361   1.1       cgd 				return (-1);
    362   1.1       cgd 			}
    363   1.1       cgd 			eproc.e_tdev = tty.t_dev;
    364   1.1       cgd 			eproc.e_tsess = tty.t_session;
    365   1.1       cgd 			if (tty.t_pgrp != NULL) {
    366   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    367   1.1       cgd 					_kvm_err(kd, kd->program,
    368  1.48     enami 					    "can't read tpgrp at %p",
    369  1.48     enami 					    tty.t_pgrp);
    370   1.1       cgd 					return (-1);
    371   1.1       cgd 				}
    372   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    373   1.1       cgd 			} else
    374   1.1       cgd 				eproc.e_tpgid = -1;
    375   1.1       cgd 		} else
    376   1.1       cgd 			eproc.e_tdev = NODEV;
    377   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    378  1.33    simonb 		eproc.e_sid = sess.s_sid;
    379   1.1       cgd 		if (sess.s_leader == p)
    380   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    381  1.48     enami 		/*
    382  1.48     enami 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    383  1.46   thorpej 		 * from the first avaliable LWP.
    384  1.46   thorpej 		 */
    385  1.47  christos 		kl = kvm_getlwps(kd, proc.p_pid,
    386  1.48     enami 		    (u_long)PTRTOINT64(eproc.e_paddr),
    387  1.46   thorpej 		    sizeof(struct kinfo_lwp), &nlwps);
    388  1.46   thorpej 		if (kl) {
    389  1.46   thorpej 			if (nlwps > 0) {
    390  1.46   thorpej 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    391  1.46   thorpej 			}
    392  1.46   thorpej 		}
    393  1.34    simonb 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    394  1.34    simonb 		    sizeof(eproc.e_vm));
    395   1.9        pk 
    396   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    397   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    398   1.1       cgd 
    399   1.1       cgd 		switch (what) {
    400   1.1       cgd 
    401   1.1       cgd 		case KERN_PROC_PGRP:
    402   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    403   1.1       cgd 				continue;
    404   1.1       cgd 			break;
    405   1.1       cgd 
    406   1.1       cgd 		case KERN_PROC_TTY:
    407  1.31    simonb 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    408  1.48     enami 			    eproc.e_tdev != (dev_t)arg)
    409   1.1       cgd 				continue;
    410   1.1       cgd 			break;
    411   1.1       cgd 		}
    412  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    413  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    414   1.1       cgd 		++bp;
    415   1.1       cgd 		++cnt;
    416   1.1       cgd 	}
    417   1.1       cgd 	return (cnt);
    418   1.1       cgd }
    419   1.1       cgd 
    420   1.1       cgd /*
    421   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    422   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    423   1.1       cgd  */
    424   1.1       cgd static int
    425  1.53  christos kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    426   1.1       cgd 	kvm_t *kd;
    427   1.1       cgd 	int what, arg;
    428   1.1       cgd 	u_long a_allproc;
    429   1.1       cgd 	u_long a_zombproc;
    430   1.1       cgd 	int maxcnt;
    431   1.1       cgd {
    432  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    433  1.53  christos 	int acnt, zcnt;
    434   1.1       cgd 	struct proc *p;
    435   1.1       cgd 
    436   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    437   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    438   1.1       cgd 		return (-1);
    439   1.1       cgd 	}
    440   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    441   1.1       cgd 	if (acnt < 0)
    442   1.1       cgd 		return (acnt);
    443   1.1       cgd 
    444   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    445   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    446   1.1       cgd 		return (-1);
    447   1.1       cgd 	}
    448  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    449  1.53  christos 	    maxcnt - acnt);
    450   1.1       cgd 	if (zcnt < 0)
    451   1.1       cgd 		zcnt = 0;
    452   1.1       cgd 
    453   1.1       cgd 	return (acnt + zcnt);
    454   1.1       cgd }
    455   1.1       cgd 
    456  1.34    simonb struct kinfo_proc2 *
    457  1.34    simonb kvm_getproc2(kd, op, arg, esize, cnt)
    458  1.34    simonb 	kvm_t *kd;
    459  1.34    simonb 	int op, arg;
    460  1.34    simonb 	size_t esize;
    461  1.34    simonb 	int *cnt;
    462  1.34    simonb {
    463  1.34    simonb 	size_t size;
    464  1.34    simonb 	int mib[6], st, nprocs;
    465  1.46   thorpej 	struct pstats pstats;
    466  1.34    simonb 
    467  1.34    simonb 	if (kd->procbase2 != NULL) {
    468  1.34    simonb 		free(kd->procbase2);
    469  1.34    simonb 		/*
    470  1.34    simonb 		 * Clear this pointer in case this call fails.  Otherwise,
    471  1.34    simonb 		 * kvm_close() will free it again.
    472  1.34    simonb 		 */
    473  1.36      tron 		kd->procbase2 = NULL;
    474  1.34    simonb 	}
    475  1.34    simonb 
    476  1.34    simonb 	if (ISSYSCTL(kd)) {
    477  1.34    simonb 		size = 0;
    478  1.34    simonb 		mib[0] = CTL_KERN;
    479  1.34    simonb 		mib[1] = KERN_PROC2;
    480  1.34    simonb 		mib[2] = op;
    481  1.34    simonb 		mib[3] = arg;
    482  1.52      ross 		mib[4] = (int)esize;
    483  1.34    simonb 		mib[5] = 0;
    484  1.52      ross 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    485  1.34    simonb 		if (st == -1) {
    486  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    487  1.48     enami 			return (NULL);
    488  1.34    simonb 		}
    489  1.34    simonb 
    490  1.52      ross 		mib[5] = (int) (size / esize);
    491  1.34    simonb 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    492  1.36      tron 		if (kd->procbase2 == NULL)
    493  1.48     enami 			return (NULL);
    494  1.52      ross 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    495  1.34    simonb 		if (st == -1) {
    496  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    497  1.48     enami 			return (NULL);
    498  1.34    simonb 		}
    499  1.52      ross 		nprocs = (int) (size / esize);
    500  1.34    simonb 	} else {
    501  1.34    simonb 		char *kp2c;
    502  1.34    simonb 		struct kinfo_proc *kp;
    503  1.34    simonb 		struct kinfo_proc2 kp2, *kp2p;
    504  1.46   thorpej 		struct kinfo_lwp *kl;
    505  1.46   thorpej 		int i, nlwps;
    506  1.34    simonb 
    507  1.34    simonb 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    508  1.34    simonb 		if (kp == NULL)
    509  1.48     enami 			return (NULL);
    510  1.34    simonb 
    511  1.34    simonb 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    512  1.39  christos 		kp2c = (char *)(void *)kd->procbase2;
    513  1.34    simonb 		kp2p = &kp2;
    514  1.34    simonb 		for (i = 0; i < nprocs; i++, kp++) {
    515  1.48     enami 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    516  1.47  christos 			    (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
    517  1.46   thorpej 			    sizeof(struct kinfo_lwp), &nlwps);
    518  1.46   thorpej 			/* We use kl[0] as the "representative" LWP */
    519  1.34    simonb 			memset(kp2p, 0, sizeof(kp2));
    520  1.46   thorpej 			kp2p->p_forw = kl[0].l_forw;
    521  1.46   thorpej 			kp2p->p_back = kl[0].l_back;
    522  1.34    simonb 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    523  1.46   thorpej 			kp2p->p_addr = kl[0].l_addr;
    524  1.34    simonb 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    525  1.34    simonb 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    526  1.34    simonb 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    527  1.34    simonb 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    528  1.34    simonb 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    529  1.34    simonb 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    530  1.34    simonb 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    531  1.34    simonb 			kp2p->p_tsess = 0;
    532  1.34    simonb 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    533  1.34    simonb 
    534  1.34    simonb 			kp2p->p_eflag = 0;
    535  1.34    simonb 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    536  1.34    simonb 			kp2p->p_flag = kp->kp_proc.p_flag;
    537  1.34    simonb 
    538  1.34    simonb 			kp2p->p_pid = kp->kp_proc.p_pid;
    539  1.34    simonb 
    540  1.34    simonb 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    541  1.34    simonb 			kp2p->p_sid = kp->kp_eproc.e_sid;
    542  1.34    simonb 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    543  1.34    simonb 
    544  1.51       dsl 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    545  1.34    simonb 
    546  1.34    simonb 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    547  1.34    simonb 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    548  1.50    atatat 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    549  1.34    simonb 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    550  1.34    simonb 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    551  1.50    atatat 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    552  1.34    simonb 
    553  1.39  christos 			/*CONSTCOND*/
    554  1.34    simonb 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    555  1.48     enami 			    MIN(sizeof(kp2p->p_groups),
    556  1.48     enami 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    557  1.34    simonb 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    558  1.34    simonb 
    559  1.34    simonb 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    560  1.34    simonb 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    561  1.34    simonb 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    562  1.34    simonb 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    563  1.34    simonb 
    564  1.34    simonb 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    565  1.34    simonb 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    566  1.34    simonb 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    567  1.34    simonb 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    568  1.34    simonb 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    569  1.46   thorpej 			kp2p->p_swtime = kl[0].l_swtime;
    570  1.46   thorpej 			kp2p->p_slptime = kl[0].l_slptime;
    571  1.35   thorpej #if 0 /* XXX thorpej */
    572  1.34    simonb 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    573  1.35   thorpej #else
    574  1.35   thorpej 			kp2p->p_schedflags = 0;
    575  1.35   thorpej #endif
    576  1.34    simonb 
    577  1.34    simonb 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    578  1.34    simonb 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    579  1.34    simonb 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    580  1.34    simonb 
    581  1.34    simonb 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    582  1.34    simonb 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    583  1.34    simonb 
    584  1.46   thorpej 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    585  1.34    simonb 
    586  1.48     enami 			memcpy(&kp2p->p_siglist,
    587  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_siglist,
    588  1.48     enami 			    sizeof(ki_sigset_t));
    589  1.48     enami 			memcpy(&kp2p->p_sigmask,
    590  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    591  1.48     enami 			    sizeof(ki_sigset_t));
    592  1.48     enami 			memcpy(&kp2p->p_sigignore,
    593  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    594  1.48     enami 			    sizeof(ki_sigset_t));
    595  1.48     enami 			memcpy(&kp2p->p_sigcatch,
    596  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    597  1.48     enami 			    sizeof(ki_sigset_t));
    598  1.34    simonb 
    599  1.34    simonb 			kp2p->p_stat = kp->kp_proc.p_stat;
    600  1.46   thorpej 			kp2p->p_priority = kl[0].l_priority;
    601  1.46   thorpej 			kp2p->p_usrpri = kl[0].l_usrpri;
    602  1.34    simonb 			kp2p->p_nice = kp->kp_proc.p_nice;
    603  1.34    simonb 
    604  1.34    simonb 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    605  1.34    simonb 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    606  1.34    simonb 
    607  1.39  christos 			/*CONSTCOND*/
    608  1.34    simonb 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    609  1.48     enami 			    MIN(sizeof(kp2p->p_comm),
    610  1.48     enami 			    sizeof(kp->kp_proc.p_comm)));
    611  1.34    simonb 
    612  1.48     enami 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    613  1.48     enami 			    sizeof(kp2p->p_wmesg));
    614  1.46   thorpej 			kp2p->p_wchan = kl[0].l_wchan;
    615  1.48     enami 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    616  1.48     enami 			    sizeof(kp2p->p_login));
    617  1.34    simonb 
    618  1.34    simonb 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    619  1.34    simonb 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    620  1.34    simonb 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    621  1.34    simonb 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    622  1.34    simonb 
    623  1.39  christos 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    624  1.34    simonb 
    625  1.46   thorpej 			kp2p->p_realflag = kp->kp_proc.p_flag;
    626  1.46   thorpej 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    627  1.46   thorpej 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    628  1.46   thorpej 			kp2p->p_realstat = kp->kp_proc.p_stat;
    629  1.46   thorpej 
    630  1.48     enami 			if (P_ZOMBIE(&kp->kp_proc) ||
    631  1.46   thorpej 			    kp->kp_proc.p_stats == NULL ||
    632  1.48     enami 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    633  1.34    simonb 				kp2p->p_uvalid = 0;
    634  1.34    simonb 			} else {
    635  1.34    simonb 				kp2p->p_uvalid = 1;
    636  1.34    simonb 
    637  1.39  christos 				kp2p->p_ustart_sec = (u_int32_t)
    638  1.46   thorpej 				    pstats.p_start.tv_sec;
    639  1.39  christos 				kp2p->p_ustart_usec = (u_int32_t)
    640  1.46   thorpej 				    pstats.p_start.tv_usec;
    641  1.39  christos 
    642  1.39  christos 				kp2p->p_uutime_sec = (u_int32_t)
    643  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_sec;
    644  1.39  christos 				kp2p->p_uutime_usec = (u_int32_t)
    645  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_usec;
    646  1.39  christos 				kp2p->p_ustime_sec = (u_int32_t)
    647  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_sec;
    648  1.39  christos 				kp2p->p_ustime_usec = (u_int32_t)
    649  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_usec;
    650  1.34    simonb 
    651  1.46   thorpej 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    652  1.46   thorpej 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    653  1.46   thorpej 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    654  1.46   thorpej 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    655  1.46   thorpej 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    656  1.46   thorpej 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    657  1.46   thorpej 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    658  1.46   thorpej 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    659  1.46   thorpej 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    660  1.46   thorpej 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    661  1.46   thorpej 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    662  1.46   thorpej 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    663  1.46   thorpej 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    664  1.46   thorpej 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    665  1.34    simonb 
    666  1.39  christos 				kp2p->p_uctime_sec = (u_int32_t)
    667  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_sec +
    668  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_sec);
    669  1.39  christos 				kp2p->p_uctime_usec = (u_int32_t)
    670  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_usec +
    671  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_usec);
    672  1.34    simonb 			}
    673  1.34    simonb 
    674  1.34    simonb 			memcpy(kp2c, &kp2, esize);
    675  1.34    simonb 			kp2c += esize;
    676  1.34    simonb 		}
    677  1.34    simonb 
    678  1.49     enami 		_kvm_freeprocs(kd);
    679  1.34    simonb 	}
    680  1.34    simonb 	*cnt = nprocs;
    681  1.34    simonb 	return (kd->procbase2);
    682  1.46   thorpej }
    683  1.46   thorpej 
    684  1.46   thorpej struct kinfo_lwp *
    685  1.46   thorpej kvm_getlwps(kd, pid, paddr, esize, cnt)
    686  1.46   thorpej 	kvm_t *kd;
    687  1.46   thorpej 	int pid;
    688  1.46   thorpej 	u_long paddr;
    689  1.46   thorpej 	size_t esize;
    690  1.46   thorpej 	int *cnt;
    691  1.46   thorpej {
    692  1.46   thorpej 	size_t size;
    693  1.52      ross 	int mib[5], nlwps;
    694  1.52      ross 	ssize_t st;
    695  1.46   thorpej 	struct kinfo_lwp *kl;
    696  1.46   thorpej 
    697  1.46   thorpej 	if (kd->lwpbase != NULL) {
    698  1.46   thorpej 		free(kd->lwpbase);
    699  1.46   thorpej 		/*
    700  1.46   thorpej 		 * Clear this pointer in case this call fails.  Otherwise,
    701  1.46   thorpej 		 * kvm_close() will free it again.
    702  1.46   thorpej 		 */
    703  1.46   thorpej 		kd->lwpbase = NULL;
    704  1.46   thorpej 	}
    705  1.46   thorpej 
    706  1.46   thorpej 	if (ISSYSCTL(kd)) {
    707  1.46   thorpej 		size = 0;
    708  1.46   thorpej 		mib[0] = CTL_KERN;
    709  1.46   thorpej 		mib[1] = KERN_LWP;
    710  1.46   thorpej 		mib[2] = pid;
    711  1.52      ross 		mib[3] = (int)esize;
    712  1.46   thorpej 		mib[4] = 0;
    713  1.52      ross 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    714  1.46   thorpej 		if (st == -1) {
    715  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    716  1.48     enami 			return (NULL);
    717  1.46   thorpej 		}
    718  1.46   thorpej 
    719  1.52      ross 		mib[4] = (int) (size / esize);
    720  1.46   thorpej 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
    721  1.46   thorpej 		if (kd->lwpbase == NULL)
    722  1.48     enami 			return (NULL);
    723  1.52      ross 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    724  1.46   thorpej 		if (st == -1) {
    725  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    726  1.48     enami 			return (NULL);
    727  1.46   thorpej 		}
    728  1.52      ross 		nlwps = (int) (size / esize);
    729  1.46   thorpej 	} else {
    730  1.46   thorpej 		/* grovel through the memory image */
    731  1.46   thorpej 		struct proc p;
    732  1.46   thorpej 		struct lwp l;
    733  1.46   thorpej 		u_long laddr;
    734  1.46   thorpej 		int i;
    735  1.46   thorpej 
    736  1.46   thorpej 		st = kvm_read(kd, paddr, &p, sizeof(p));
    737  1.46   thorpej 		if (st == -1) {
    738  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    739  1.48     enami 			return (NULL);
    740  1.46   thorpej 		}
    741  1.46   thorpej 
    742  1.46   thorpej 		nlwps = p.p_nlwps;
    743  1.48     enami 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
    744  1.46   thorpej 		    nlwps * sizeof(struct kinfo_lwp));
    745  1.46   thorpej 		if (kd->lwpbase == NULL)
    746  1.48     enami 			return (NULL);
    747  1.47  christos 		laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
    748  1.46   thorpej 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    749  1.46   thorpej 			st = kvm_read(kd, laddr, &l, sizeof(l));
    750  1.46   thorpej 			if (st == -1) {
    751  1.46   thorpej 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    752  1.48     enami 				return (NULL);
    753  1.46   thorpej 			}
    754  1.46   thorpej 			kl = &kd->lwpbase[i];
    755  1.46   thorpej 			kl->l_laddr = laddr;
    756  1.46   thorpej 			kl->l_forw = PTRTOINT64(l.l_forw);
    757  1.46   thorpej 			kl->l_back = PTRTOINT64(l.l_back);
    758  1.46   thorpej 			kl->l_addr = PTRTOINT64(l.l_addr);
    759  1.46   thorpej 			kl->l_lid = l.l_lid;
    760  1.46   thorpej 			kl->l_flag = l.l_flag;
    761  1.46   thorpej 			kl->l_swtime = l.l_swtime;
    762  1.46   thorpej 			kl->l_slptime = l.l_slptime;
    763  1.46   thorpej 			kl->l_schedflags = 0; /* XXX */
    764  1.46   thorpej 			kl->l_holdcnt = l.l_holdcnt;
    765  1.46   thorpej 			kl->l_priority = l.l_priority;
    766  1.46   thorpej 			kl->l_usrpri = l.l_usrpri;
    767  1.46   thorpej 			kl->l_stat = l.l_stat;
    768  1.53  christos 			kl->l_wchan = PTRTOINT64(l.l_wchan);
    769  1.46   thorpej 			if (l.l_wmesg)
    770  1.46   thorpej 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    771  1.52      ross 				    kl->l_wmesg, (size_t)WMESGLEN);
    772  1.46   thorpej 			kl->l_cpuid = KI_NOCPU;
    773  1.47  christos 			laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
    774  1.46   thorpej 		}
    775  1.46   thorpej 	}
    776  1.46   thorpej 
    777  1.46   thorpej 	*cnt = nlwps;
    778  1.48     enami 	return (kd->lwpbase);
    779  1.34    simonb }
    780  1.34    simonb 
    781   1.1       cgd struct kinfo_proc *
    782   1.1       cgd kvm_getprocs(kd, op, arg, cnt)
    783   1.1       cgd 	kvm_t *kd;
    784   1.1       cgd 	int op, arg;
    785   1.1       cgd 	int *cnt;
    786   1.1       cgd {
    787   1.7       cgd 	size_t size;
    788   1.7       cgd 	int mib[4], st, nprocs;
    789   1.1       cgd 
    790  1.36      tron 	if (kd->procbase != NULL) {
    791  1.34    simonb 		free(kd->procbase);
    792  1.31    simonb 		/*
    793   1.1       cgd 		 * Clear this pointer in case this call fails.  Otherwise,
    794   1.1       cgd 		 * kvm_close() will free it again.
    795   1.1       cgd 		 */
    796  1.36      tron 		kd->procbase = NULL;
    797   1.1       cgd 	}
    798  1.34    simonb 	if (ISKMEM(kd)) {
    799   1.1       cgd 		size = 0;
    800   1.1       cgd 		mib[0] = CTL_KERN;
    801   1.1       cgd 		mib[1] = KERN_PROC;
    802   1.1       cgd 		mib[2] = op;
    803   1.1       cgd 		mib[3] = arg;
    804  1.52      ross 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    805   1.1       cgd 		if (st == -1) {
    806   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    807  1.48     enami 			return (NULL);
    808   1.1       cgd 		}
    809   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    810  1.36      tron 		if (kd->procbase == NULL)
    811  1.48     enami 			return (NULL);
    812  1.52      ross 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    813   1.1       cgd 		if (st == -1) {
    814   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    815  1.48     enami 			return (NULL);
    816   1.1       cgd 		}
    817   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    818   1.1       cgd 			_kvm_err(kd, kd->program,
    819  1.42     enami 			    "proc size mismatch (%lu total, %lu chunks)",
    820  1.42     enami 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    821  1.48     enami 			return (NULL);
    822   1.1       cgd 		}
    823  1.52      ross 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    824  1.34    simonb 	} else if (ISSYSCTL(kd)) {
    825  1.34    simonb 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    826  1.34    simonb 		    "can't use kvm_getprocs");
    827  1.48     enami 		return (NULL);
    828   1.1       cgd 	} else {
    829  1.53  christos 		struct nlist nl[4], *p;
    830   1.1       cgd 
    831   1.1       cgd 		nl[0].n_name = "_nprocs";
    832   1.1       cgd 		nl[1].n_name = "_allproc";
    833  1.53  christos 		nl[2].n_name = "_zombproc";
    834  1.53  christos 		nl[3].n_name = NULL;
    835   1.1       cgd 
    836   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    837   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    838  1.48     enami 				continue;
    839   1.1       cgd 			_kvm_err(kd, kd->program,
    840  1.48     enami 			    "%s: no such symbol", p->n_name);
    841  1.48     enami 			return (NULL);
    842   1.1       cgd 		}
    843   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    844   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    845  1.48     enami 			return (NULL);
    846   1.1       cgd 		}
    847   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    848   1.1       cgd 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    849  1.36      tron 		if (kd->procbase == NULL)
    850  1.48     enami 			return (NULL);
    851   1.1       cgd 
    852   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    853  1.53  christos 		    nl[2].n_value, nprocs);
    854  1.32       chs 		if (nprocs < 0)
    855  1.48     enami 			return (NULL);
    856   1.1       cgd #ifdef notdef
    857   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    858   1.1       cgd 		(void)realloc(kd->procbase, size);
    859   1.1       cgd #endif
    860   1.1       cgd 	}
    861   1.1       cgd 	*cnt = nprocs;
    862   1.1       cgd 	return (kd->procbase);
    863   1.1       cgd }
    864   1.1       cgd 
    865   1.1       cgd void
    866   1.1       cgd _kvm_freeprocs(kd)
    867   1.1       cgd 	kvm_t *kd;
    868   1.1       cgd {
    869  1.48     enami 
    870   1.1       cgd 	if (kd->procbase) {
    871   1.1       cgd 		free(kd->procbase);
    872  1.36      tron 		kd->procbase = NULL;
    873   1.1       cgd 	}
    874   1.1       cgd }
    875   1.1       cgd 
    876   1.1       cgd void *
    877   1.1       cgd _kvm_realloc(kd, p, n)
    878   1.1       cgd 	kvm_t *kd;
    879   1.1       cgd 	void *p;
    880   1.1       cgd 	size_t n;
    881   1.1       cgd {
    882  1.34    simonb 	void *np = realloc(p, n);
    883   1.1       cgd 
    884  1.36      tron 	if (np == NULL)
    885   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    886   1.1       cgd 	return (np);
    887   1.1       cgd }
    888   1.1       cgd 
    889   1.1       cgd /*
    890   1.1       cgd  * Read in an argument vector from the user address space of process p.
    891  1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    892   1.1       cgd  * strings.  This is used to read in both the command arguments and
    893   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    894   1.1       cgd  */
    895   1.1       cgd static char **
    896   1.1       cgd kvm_argv(kd, p, addr, narg, maxcnt)
    897   1.1       cgd 	kvm_t *kd;
    898  1.34    simonb 	const struct miniproc *p;
    899  1.21     perry 	u_long addr;
    900  1.21     perry 	int narg;
    901  1.21     perry 	int maxcnt;
    902  1.21     perry {
    903  1.21     perry 	char *np, *cp, *ep, *ap;
    904  1.28  christos 	u_long oaddr = (u_long)~0L;
    905  1.28  christos 	u_long len;
    906  1.28  christos 	size_t cc;
    907  1.21     perry 	char **argv;
    908   1.1       cgd 
    909   1.1       cgd 	/*
    910   1.1       cgd 	 * Check that there aren't an unreasonable number of agruments,
    911   1.1       cgd 	 * and that the address is in user space.
    912   1.1       cgd 	 */
    913  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    914  1.48     enami 		return (NULL);
    915   1.1       cgd 
    916  1.36      tron 	if (kd->argv == NULL) {
    917   1.1       cgd 		/*
    918   1.1       cgd 		 * Try to avoid reallocs.
    919   1.1       cgd 		 */
    920   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    921  1.31    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    922  1.48     enami 		    sizeof(*kd->argv));
    923  1.36      tron 		if (kd->argv == NULL)
    924  1.48     enami 			return (NULL);
    925   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    926   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    927  1.31    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    928  1.48     enami 		    sizeof(*kd->argv));
    929  1.36      tron 		if (kd->argv == NULL)
    930  1.48     enami 			return (NULL);
    931   1.1       cgd 	}
    932  1.36      tron 	if (kd->argspc == NULL) {
    933  1.28  christos 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    934  1.36      tron 		if (kd->argspc == NULL)
    935  1.48     enami 			return (NULL);
    936   1.6   mycroft 		kd->arglen = kd->nbpg;
    937   1.1       cgd 	}
    938  1.36      tron 	if (kd->argbuf == NULL) {
    939  1.28  christos 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    940  1.36      tron 		if (kd->argbuf == NULL)
    941  1.48     enami 			return (NULL);
    942  1.10   mycroft 	}
    943  1.10   mycroft 	cc = sizeof(char *) * narg;
    944  1.34    simonb 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    945  1.48     enami 		return (NULL);
    946  1.10   mycroft 	ap = np = kd->argspc;
    947   1.1       cgd 	argv = kd->argv;
    948   1.1       cgd 	len = 0;
    949   1.1       cgd 	/*
    950   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    951   1.1       cgd 	 */
    952  1.36      tron 	while (argv < kd->argv + narg && *argv != NULL) {
    953  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    954  1.10   mycroft 		if (addr != oaddr) {
    955  1.34    simonb 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    956  1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    957  1.48     enami 				return (NULL);
    958  1.10   mycroft 			oaddr = addr;
    959  1.10   mycroft 		}
    960  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    961  1.28  christos 		cp = kd->argbuf + (size_t)addr;
    962  1.28  christos 		cc = kd->nbpg - (size_t)addr;
    963  1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    964  1.28  christos 			cc = (size_t)(maxcnt - len);
    965  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    966  1.36      tron 		if (ep != NULL)
    967  1.10   mycroft 			cc = ep - cp + 1;
    968   1.1       cgd 		if (len + cc > kd->arglen) {
    969  1.52      ross 			ptrdiff_t off;
    970  1.21     perry 			char **pp;
    971  1.21     perry 			char *op = kd->argspc;
    972   1.1       cgd 
    973   1.1       cgd 			kd->arglen *= 2;
    974   1.1       cgd 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    975  1.28  christos 			    (size_t)kd->arglen);
    976  1.36      tron 			if (kd->argspc == NULL)
    977  1.48     enami 				return (NULL);
    978   1.1       cgd 			/*
    979   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    980   1.1       cgd 			 * the string space.
    981   1.1       cgd 			 */
    982   1.1       cgd 			off = kd->argspc - op;
    983  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    984   1.1       cgd 				*pp += off;
    985  1.12   mycroft 			ap += off;
    986  1.12   mycroft 			np += off;
    987   1.1       cgd 		}
    988  1.10   mycroft 		memcpy(np, cp, cc);
    989  1.10   mycroft 		np += cc;
    990   1.1       cgd 		len += cc;
    991  1.36      tron 		if (ep != NULL) {
    992  1.10   mycroft 			*argv++ = ap;
    993  1.10   mycroft 			ap = np;
    994  1.10   mycroft 		} else
    995  1.10   mycroft 			*argv += cc;
    996   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
    997   1.1       cgd 			/*
    998   1.1       cgd 			 * We're stopping prematurely.  Terminate the
    999  1.10   mycroft 			 * current string.
   1000   1.1       cgd 			 */
   1001  1.36      tron 			if (ep == NULL) {
   1002  1.10   mycroft 				*np = '\0';
   1003  1.14   mycroft 				*argv++ = ap;
   1004  1.10   mycroft 			}
   1005  1.10   mycroft 			break;
   1006   1.1       cgd 		}
   1007   1.1       cgd 	}
   1008  1.10   mycroft 	/* Make sure argv is terminated. */
   1009  1.36      tron 	*argv = NULL;
   1010  1.10   mycroft 	return (kd->argv);
   1011   1.1       cgd }
   1012   1.1       cgd 
   1013   1.1       cgd static void
   1014   1.1       cgd ps_str_a(p, addr, n)
   1015   1.1       cgd 	struct ps_strings *p;
   1016   1.1       cgd 	u_long *addr;
   1017   1.1       cgd 	int *n;
   1018   1.1       cgd {
   1019  1.48     enami 
   1020   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
   1021   1.1       cgd 	*n = p->ps_nargvstr;
   1022   1.1       cgd }
   1023   1.1       cgd 
   1024   1.1       cgd static void
   1025   1.1       cgd ps_str_e(p, addr, n)
   1026   1.1       cgd 	struct ps_strings *p;
   1027   1.1       cgd 	u_long *addr;
   1028   1.1       cgd 	int *n;
   1029   1.1       cgd {
   1030  1.48     enami 
   1031   1.1       cgd 	*addr = (u_long)p->ps_envstr;
   1032   1.1       cgd 	*n = p->ps_nenvstr;
   1033   1.1       cgd }
   1034   1.1       cgd 
   1035   1.1       cgd /*
   1036   1.1       cgd  * Determine if the proc indicated by p is still active.
   1037   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
   1038   1.1       cgd  * being wrong are very low.
   1039   1.1       cgd  */
   1040   1.1       cgd static int
   1041   1.1       cgd proc_verify(kd, kernp, p)
   1042   1.1       cgd 	kvm_t *kd;
   1043   1.1       cgd 	u_long kernp;
   1044  1.34    simonb 	const struct miniproc *p;
   1045   1.1       cgd {
   1046   1.1       cgd 	struct proc kernproc;
   1047   1.1       cgd 
   1048   1.1       cgd 	/*
   1049   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
   1050   1.1       cgd 	 * to the cost of the read system call.
   1051   1.1       cgd 	 */
   1052  1.34    simonb 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1053   1.1       cgd 	    sizeof(kernproc))
   1054  1.48     enami 		return (0);
   1055   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
   1056  1.48     enami 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1057   1.1       cgd }
   1058   1.1       cgd 
   1059   1.1       cgd static char **
   1060  1.34    simonb kvm_doargv(kd, p, nchr, info)
   1061   1.1       cgd 	kvm_t *kd;
   1062  1.34    simonb 	const struct miniproc *p;
   1063   1.1       cgd 	int nchr;
   1064  1.10   mycroft 	void (*info)(struct ps_strings *, u_long *, int *);
   1065   1.1       cgd {
   1066  1.21     perry 	char **ap;
   1067   1.1       cgd 	u_long addr;
   1068   1.1       cgd 	int cnt;
   1069   1.1       cgd 	struct ps_strings arginfo;
   1070   1.1       cgd 
   1071   1.1       cgd 	/*
   1072   1.1       cgd 	 * Pointers are stored at the top of the user stack.
   1073   1.1       cgd 	 */
   1074  1.18       gwr 	if (p->p_stat == SZOMB)
   1075  1.48     enami 		return (NULL);
   1076  1.52      ross 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1077  1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
   1078  1.18       gwr 	if (cnt != sizeof(arginfo))
   1079  1.48     enami 		return (NULL);
   1080   1.1       cgd 
   1081   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
   1082   1.3   mycroft 	if (cnt == 0)
   1083  1.48     enami 		return (NULL);
   1084   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1085   1.1       cgd 	/*
   1086   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
   1087   1.1       cgd 	 */
   1088  1.36      tron 	if (ap != NULL && ISALIVE(kd) &&
   1089  1.34    simonb 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1090  1.36      tron 		ap = NULL;
   1091   1.1       cgd 	return (ap);
   1092   1.1       cgd }
   1093   1.1       cgd 
   1094   1.1       cgd /*
   1095   1.1       cgd  * Get the command args.  This code is now machine independent.
   1096   1.1       cgd  */
   1097   1.1       cgd char **
   1098   1.1       cgd kvm_getargv(kd, kp, nchr)
   1099   1.1       cgd 	kvm_t *kd;
   1100   1.1       cgd 	const struct kinfo_proc *kp;
   1101   1.1       cgd 	int nchr;
   1102   1.1       cgd {
   1103  1.34    simonb 	struct miniproc p;
   1104  1.34    simonb 
   1105  1.34    simonb 	KPTOMINI(kp, &p);
   1106  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1107   1.1       cgd }
   1108   1.1       cgd 
   1109   1.1       cgd char **
   1110   1.1       cgd kvm_getenvv(kd, kp, nchr)
   1111   1.1       cgd 	kvm_t *kd;
   1112   1.1       cgd 	const struct kinfo_proc *kp;
   1113   1.1       cgd 	int nchr;
   1114   1.1       cgd {
   1115  1.34    simonb 	struct miniproc p;
   1116  1.34    simonb 
   1117  1.34    simonb 	KPTOMINI(kp, &p);
   1118  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1119  1.34    simonb }
   1120  1.34    simonb 
   1121  1.34    simonb static char **
   1122  1.34    simonb kvm_doargv2(kd, pid, type, nchr)
   1123  1.34    simonb 	kvm_t *kd;
   1124  1.34    simonb 	pid_t pid;
   1125  1.34    simonb 	int type;
   1126  1.34    simonb 	int nchr;
   1127  1.34    simonb {
   1128  1.34    simonb 	size_t bufs;
   1129  1.39  christos 	int narg, mib[4];
   1130  1.39  christos 	size_t newarglen;
   1131  1.34    simonb 	char **ap, *bp, *endp;
   1132  1.34    simonb 
   1133  1.34    simonb 	/*
   1134  1.34    simonb 	 * Check that there aren't an unreasonable number of agruments.
   1135  1.34    simonb 	 */
   1136  1.34    simonb 	if (nchr > ARG_MAX)
   1137  1.48     enami 		return (NULL);
   1138  1.34    simonb 
   1139  1.34    simonb 	if (nchr == 0)
   1140  1.34    simonb 		nchr = ARG_MAX;
   1141  1.34    simonb 
   1142  1.34    simonb 	/* Get number of strings in argv */
   1143  1.34    simonb 	mib[0] = CTL_KERN;
   1144  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1145  1.34    simonb 	mib[2] = pid;
   1146  1.34    simonb 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1147  1.34    simonb 	bufs = sizeof(narg);
   1148  1.52      ross 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1149  1.48     enami 		return (NULL);
   1150  1.34    simonb 
   1151  1.36      tron 	if (kd->argv == NULL) {
   1152  1.34    simonb 		/*
   1153  1.34    simonb 		 * Try to avoid reallocs.
   1154  1.34    simonb 		 */
   1155  1.34    simonb 		kd->argc = MAX(narg + 1, 32);
   1156  1.34    simonb 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1157  1.48     enami 		    sizeof(*kd->argv));
   1158  1.36      tron 		if (kd->argv == NULL)
   1159  1.48     enami 			return (NULL);
   1160  1.34    simonb 	} else if (narg + 1 > kd->argc) {
   1161  1.34    simonb 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1162  1.34    simonb 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1163  1.48     enami 		    sizeof(*kd->argv));
   1164  1.36      tron 		if (kd->argv == NULL)
   1165  1.48     enami 			return (NULL);
   1166  1.34    simonb 	}
   1167  1.34    simonb 
   1168  1.34    simonb 	newarglen = MIN(nchr, ARG_MAX);
   1169  1.34    simonb 	if (kd->arglen < newarglen) {
   1170  1.34    simonb 		if (kd->arglen == 0)
   1171  1.34    simonb 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1172  1.34    simonb 		else
   1173  1.34    simonb 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1174  1.34    simonb 			    newarglen);
   1175  1.36      tron 		if (kd->argspc == NULL)
   1176  1.48     enami 			return (NULL);
   1177  1.52      ross 		if (newarglen > INT_MAX)
   1178  1.52      ross 			return NULL;
   1179  1.52      ross 		kd->arglen = (int)newarglen;
   1180  1.34    simonb 	}
   1181  1.39  christos 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
   1182  1.34    simonb 
   1183  1.34    simonb 	mib[0] = CTL_KERN;
   1184  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1185  1.34    simonb 	mib[2] = pid;
   1186  1.34    simonb 	mib[3] = type;
   1187  1.34    simonb 	bufs = kd->arglen;
   1188  1.52      ross 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1189  1.48     enami 		return (NULL);
   1190  1.34    simonb 
   1191  1.34    simonb 	bp = kd->argspc;
   1192  1.45  jdolecek 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
   1193  1.34    simonb 	ap = kd->argv;
   1194  1.34    simonb 	endp = bp + MIN(nchr, bufs);
   1195  1.34    simonb 
   1196  1.34    simonb 	while (bp < endp) {
   1197  1.34    simonb 		*ap++ = bp;
   1198  1.48     enami 		/*
   1199  1.48     enami 		 * XXX: don't need following anymore, or stick check
   1200  1.48     enami 		 * for max argc in above while loop?
   1201  1.48     enami 		 */
   1202  1.34    simonb 		if (ap >= kd->argv + kd->argc) {
   1203  1.34    simonb 			kd->argc *= 2;
   1204  1.34    simonb 			kd->argv = _kvm_realloc(kd, kd->argv,
   1205  1.34    simonb 			    kd->argc * sizeof(*kd->argv));
   1206  1.44  jdolecek 			ap = kd->argv;
   1207  1.34    simonb 		}
   1208  1.34    simonb 		bp += strlen(bp) + 1;
   1209  1.34    simonb 	}
   1210  1.34    simonb 	*ap = NULL;
   1211  1.48     enami 
   1212  1.34    simonb 	return (kd->argv);
   1213  1.34    simonb }
   1214  1.34    simonb 
   1215  1.34    simonb char **
   1216  1.34    simonb kvm_getargv2(kd, kp, nchr)
   1217  1.34    simonb 	kvm_t *kd;
   1218  1.34    simonb 	const struct kinfo_proc2 *kp;
   1219  1.34    simonb 	int nchr;
   1220  1.34    simonb {
   1221  1.48     enami 
   1222  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1223  1.34    simonb }
   1224  1.34    simonb 
   1225  1.34    simonb char **
   1226  1.34    simonb kvm_getenvv2(kd, kp, nchr)
   1227  1.34    simonb 	kvm_t *kd;
   1228  1.34    simonb 	const struct kinfo_proc2 *kp;
   1229  1.34    simonb 	int nchr;
   1230  1.34    simonb {
   1231  1.48     enami 
   1232  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1233   1.1       cgd }
   1234   1.1       cgd 
   1235   1.1       cgd /*
   1236   1.1       cgd  * Read from user space.  The user context is given by p.
   1237   1.1       cgd  */
   1238  1.34    simonb static ssize_t
   1239  1.34    simonb kvm_ureadm(kd, p, uva, buf, len)
   1240   1.1       cgd 	kvm_t *kd;
   1241  1.34    simonb 	const struct miniproc *p;
   1242  1.21     perry 	u_long uva;
   1243  1.21     perry 	char *buf;
   1244  1.21     perry 	size_t len;
   1245   1.1       cgd {
   1246  1.21     perry 	char *cp;
   1247   1.1       cgd 
   1248   1.1       cgd 	cp = buf;
   1249   1.1       cgd 	while (len > 0) {
   1250  1.28  christos 		size_t cc;
   1251  1.21     perry 		char *dp;
   1252  1.15       cgd 		u_long cnt;
   1253   1.8   mycroft 
   1254  1.34    simonb 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1255  1.36      tron 		if (dp == NULL) {
   1256  1.41  sommerfe 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1257  1.48     enami 			return (0);
   1258   1.8   mycroft 		}
   1259  1.28  christos 		cc = (size_t)MIN(cnt, len);
   1260  1.25     perry 		memcpy(cp, dp, cc);
   1261   1.1       cgd 		cp += cc;
   1262   1.1       cgd 		uva += cc;
   1263   1.1       cgd 		len -= cc;
   1264   1.1       cgd 	}
   1265   1.1       cgd 	return (ssize_t)(cp - buf);
   1266  1.34    simonb }
   1267  1.34    simonb 
   1268  1.34    simonb ssize_t
   1269  1.34    simonb kvm_uread(kd, p, uva, buf, len)
   1270  1.34    simonb 	kvm_t *kd;
   1271  1.34    simonb 	const struct proc *p;
   1272  1.48     enami 	u_long uva;
   1273  1.34    simonb 	char *buf;
   1274  1.34    simonb 	size_t len;
   1275  1.34    simonb {
   1276  1.34    simonb 	struct miniproc mp;
   1277  1.34    simonb 
   1278  1.34    simonb 	PTOMINI(p, &mp);
   1279  1.34    simonb 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1280   1.1       cgd }
   1281