kvm_proc.c revision 1.60 1 1.60 yamt /* $NetBSD: kvm_proc.c,v 1.60 2005/07/30 16:32:29 yamt Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft * 3. All advertising materials mentioning features or use of this software
19 1.26 mycroft * must display the following acknowledgement:
20 1.26 mycroft * This product includes software developed by the NetBSD
21 1.26 mycroft * Foundation, Inc. and its contributors.
22 1.26 mycroft * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.26 mycroft * contributors may be used to endorse or promote products derived
24 1.26 mycroft * from this software without specific prior written permission.
25 1.26 mycroft *
26 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
37 1.26 mycroft */
38 1.16 thorpej
39 1.1 cgd /*-
40 1.1 cgd * Copyright (c) 1989, 1992, 1993
41 1.1 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * This code is derived from software developed by the Computer Systems
44 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 1.1 cgd * BG 91-66 and contributed to Berkeley.
46 1.1 cgd *
47 1.1 cgd * Redistribution and use in source and binary forms, with or without
48 1.1 cgd * modification, are permitted provided that the following conditions
49 1.1 cgd * are met:
50 1.1 cgd * 1. Redistributions of source code must retain the above copyright
51 1.1 cgd * notice, this list of conditions and the following disclaimer.
52 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 cgd * notice, this list of conditions and the following disclaimer in the
54 1.1 cgd * documentation and/or other materials provided with the distribution.
55 1.54 agc * 3. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd */
71 1.1 cgd
72 1.19 mikel #include <sys/cdefs.h>
73 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
74 1.16 thorpej #if 0
75 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 1.16 thorpej #else
77 1.60 yamt __RCSID("$NetBSD: kvm_proc.c,v 1.60 2005/07/30 16:32:29 yamt Exp $");
78 1.16 thorpej #endif
79 1.1 cgd #endif /* LIBC_SCCS and not lint */
80 1.1 cgd
81 1.1 cgd /*
82 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 1.1 cgd * users of this code, so we've factored it out into a separate module.
84 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 1.1 cgd * most other applications are interested only in open/close/read/nlist).
86 1.1 cgd */
87 1.1 cgd
88 1.1 cgd #include <sys/param.h>
89 1.1 cgd #include <sys/user.h>
90 1.46 thorpej #include <sys/lwp.h>
91 1.1 cgd #include <sys/proc.h>
92 1.1 cgd #include <sys/exec.h>
93 1.1 cgd #include <sys/stat.h>
94 1.1 cgd #include <sys/ioctl.h>
95 1.1 cgd #include <sys/tty.h>
96 1.7 cgd #include <stdlib.h>
97 1.52 ross #include <stddef.h>
98 1.10 mycroft #include <string.h>
99 1.1 cgd #include <unistd.h>
100 1.1 cgd #include <nlist.h>
101 1.1 cgd #include <kvm.h>
102 1.1 cgd
103 1.23 chs #include <uvm/uvm_extern.h>
104 1.29 mrg #include <uvm/uvm_amap.h>
105 1.23 chs
106 1.1 cgd #include <sys/sysctl.h>
107 1.1 cgd
108 1.1 cgd #include <limits.h>
109 1.1 cgd #include <db.h>
110 1.1 cgd #include <paths.h>
111 1.1 cgd
112 1.1 cgd #include "kvm_private.h"
113 1.1 cgd
114 1.34 simonb /*
115 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116 1.34 simonb */
117 1.34 simonb struct miniproc {
118 1.34 simonb struct vmspace *p_vmspace;
119 1.34 simonb char p_stat;
120 1.34 simonb struct proc *p_paddr;
121 1.34 simonb pid_t p_pid;
122 1.34 simonb };
123 1.34 simonb
124 1.34 simonb /*
125 1.34 simonb * Convert from struct proc and kinfo_proc{,2} to miniproc.
126 1.34 simonb */
127 1.34 simonb #define PTOMINI(kp, p) \
128 1.48 enami do { \
129 1.34 simonb (p)->p_stat = (kp)->p_stat; \
130 1.34 simonb (p)->p_pid = (kp)->p_pid; \
131 1.34 simonb (p)->p_paddr = NULL; \
132 1.34 simonb (p)->p_vmspace = (kp)->p_vmspace; \
133 1.34 simonb } while (/*CONSTCOND*/0);
134 1.34 simonb
135 1.34 simonb #define KPTOMINI(kp, p) \
136 1.48 enami do { \
137 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \
138 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \
139 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 1.34 simonb } while (/*CONSTCOND*/0);
142 1.34 simonb
143 1.34 simonb #define KP2TOMINI(kp, p) \
144 1.48 enami do { \
145 1.34 simonb (p)->p_stat = (kp)->p_stat; \
146 1.34 simonb (p)->p_pid = (kp)->p_pid; \
147 1.34 simonb (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 1.34 simonb (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 1.34 simonb } while (/*CONSTCOND*/0);
150 1.34 simonb
151 1.34 simonb
152 1.2 mycroft #define KREAD(kd, addr, obj) \
153 1.34 simonb (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
154 1.2 mycroft
155 1.34 simonb /* XXX: What uses these two functions? */
156 1.34 simonb char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
157 1.34 simonb u_long *));
158 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
159 1.15 cgd size_t));
160 1.15 cgd
161 1.34 simonb static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
162 1.34 simonb u_long *));
163 1.34 simonb static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
164 1.34 simonb char *, size_t));
165 1.34 simonb
166 1.34 simonb static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
167 1.15 cgd int));
168 1.53 christos static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
169 1.34 simonb static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
170 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
171 1.34 simonb static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
172 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
173 1.15 cgd struct kinfo_proc *, int));
174 1.34 simonb static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
175 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
176 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
177 1.2 mycroft
178 1.34 simonb
179 1.34 simonb static char *
180 1.34 simonb _kvm_ureadm(kd, p, va, cnt)
181 1.1 cgd kvm_t *kd;
182 1.34 simonb const struct miniproc *p;
183 1.1 cgd u_long va;
184 1.1 cgd u_long *cnt;
185 1.1 cgd {
186 1.28 christos int true = 1;
187 1.21 perry u_long addr, head;
188 1.21 perry u_long offset;
189 1.1 cgd struct vm_map_entry vme;
190 1.23 chs struct vm_amap amap;
191 1.23 chs struct vm_anon *anonp, anon;
192 1.23 chs struct vm_page pg;
193 1.28 christos u_long slot;
194 1.1 cgd
195 1.36 tron if (kd->swapspc == NULL) {
196 1.28 christos kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
197 1.36 tron if (kd->swapspc == NULL)
198 1.48 enami return (NULL);
199 1.5 deraadt }
200 1.8 mycroft
201 1.1 cgd /*
202 1.1 cgd * Look through the address map for the memory object
203 1.1 cgd * that corresponds to the given virtual address.
204 1.1 cgd * The header just has the entire valid range.
205 1.1 cgd */
206 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
207 1.1 cgd addr = head;
208 1.28 christos while (true) {
209 1.2 mycroft if (KREAD(kd, addr, &vme))
210 1.48 enami return (NULL);
211 1.1 cgd
212 1.23 chs if (va >= vme.start && va < vme.end &&
213 1.23 chs vme.aref.ar_amap != NULL)
214 1.23 chs break;
215 1.23 chs
216 1.1 cgd addr = (u_long)vme.next;
217 1.2 mycroft if (addr == head)
218 1.48 enami return (NULL);
219 1.1 cgd }
220 1.2 mycroft
221 1.1 cgd /*
222 1.23 chs * we found the map entry, now to find the object...
223 1.23 chs */
224 1.23 chs if (vme.aref.ar_amap == NULL)
225 1.48 enami return (NULL);
226 1.23 chs
227 1.23 chs addr = (u_long)vme.aref.ar_amap;
228 1.23 chs if (KREAD(kd, addr, &amap))
229 1.48 enami return (NULL);
230 1.23 chs
231 1.23 chs offset = va - vme.start;
232 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff;
233 1.23 chs /* sanity-check slot number */
234 1.48 enami if (slot > amap.am_nslot)
235 1.48 enami return (NULL);
236 1.23 chs
237 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
238 1.23 chs if (KREAD(kd, addr, &anonp))
239 1.48 enami return (NULL);
240 1.23 chs
241 1.23 chs addr = (u_long)anonp;
242 1.23 chs if (KREAD(kd, addr, &anon))
243 1.48 enami return (NULL);
244 1.23 chs
245 1.59 jmc addr = (u_long)anon.an_page;
246 1.23 chs if (addr) {
247 1.23 chs if (KREAD(kd, addr, &pg))
248 1.48 enami return (NULL);
249 1.23 chs
250 1.34 simonb if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
251 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
252 1.48 enami return (NULL);
253 1.48 enami } else {
254 1.60 yamt if (kd->swfd < 0 ||
255 1.60 yamt pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
256 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
257 1.48 enami return (NULL);
258 1.23 chs }
259 1.8 mycroft
260 1.2 mycroft /* Found the page. */
261 1.6 mycroft offset %= kd->nbpg;
262 1.6 mycroft *cnt = kd->nbpg - offset;
263 1.28 christos return (&kd->swapspc[(size_t)offset]);
264 1.2 mycroft }
265 1.1 cgd
266 1.34 simonb char *
267 1.34 simonb _kvm_uread(kd, p, va, cnt)
268 1.34 simonb kvm_t *kd;
269 1.34 simonb const struct proc *p;
270 1.34 simonb u_long va;
271 1.34 simonb u_long *cnt;
272 1.34 simonb {
273 1.34 simonb struct miniproc mp;
274 1.34 simonb
275 1.34 simonb PTOMINI(p, &mp);
276 1.34 simonb return (_kvm_ureadm(kd, &mp, va, cnt));
277 1.34 simonb }
278 1.34 simonb
279 1.1 cgd /*
280 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
281 1.1 cgd * at most maxcnt procs.
282 1.1 cgd */
283 1.1 cgd static int
284 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
285 1.1 cgd kvm_t *kd;
286 1.1 cgd int what, arg;
287 1.1 cgd struct proc *p;
288 1.1 cgd struct kinfo_proc *bp;
289 1.1 cgd int maxcnt;
290 1.1 cgd {
291 1.21 perry int cnt = 0;
292 1.46 thorpej int nlwps;
293 1.46 thorpej struct kinfo_lwp *kl;
294 1.1 cgd struct eproc eproc;
295 1.1 cgd struct pgrp pgrp;
296 1.1 cgd struct session sess;
297 1.1 cgd struct tty tty;
298 1.1 cgd struct proc proc;
299 1.1 cgd
300 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
301 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
302 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p);
303 1.1 cgd return (-1);
304 1.1 cgd }
305 1.1 cgd if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
306 1.28 christos if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
307 1.28 christos &eproc.e_ucred)) {
308 1.28 christos _kvm_err(kd, kd->program,
309 1.41 sommerfe "can't read proc credentials at %p", p);
310 1.48 enami return (-1);
311 1.28 christos }
312 1.1 cgd
313 1.48 enami switch (what) {
314 1.31 simonb
315 1.1 cgd case KERN_PROC_PID:
316 1.1 cgd if (proc.p_pid != (pid_t)arg)
317 1.1 cgd continue;
318 1.1 cgd break;
319 1.1 cgd
320 1.1 cgd case KERN_PROC_UID:
321 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
322 1.1 cgd continue;
323 1.1 cgd break;
324 1.1 cgd
325 1.1 cgd case KERN_PROC_RUID:
326 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
327 1.1 cgd continue;
328 1.1 cgd break;
329 1.1 cgd }
330 1.1 cgd /*
331 1.1 cgd * We're going to add another proc to the set. If this
332 1.1 cgd * will overflow the buffer, assume the reason is because
333 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
334 1.1 cgd */
335 1.1 cgd if (cnt >= maxcnt) {
336 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
337 1.1 cgd return (-1);
338 1.1 cgd }
339 1.1 cgd /*
340 1.1 cgd * gather eproc
341 1.1 cgd */
342 1.1 cgd eproc.e_paddr = p;
343 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
344 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p",
345 1.48 enami proc.p_pgrp);
346 1.1 cgd return (-1);
347 1.1 cgd }
348 1.1 cgd eproc.e_sess = pgrp.pg_session;
349 1.1 cgd eproc.e_pgid = pgrp.pg_id;
350 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
351 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
352 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p",
353 1.48 enami pgrp.pg_session);
354 1.1 cgd return (-1);
355 1.1 cgd }
356 1.1 cgd if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
357 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
358 1.1 cgd _kvm_err(kd, kd->program,
359 1.48 enami "can't read tty at %p", sess.s_ttyp);
360 1.1 cgd return (-1);
361 1.1 cgd }
362 1.1 cgd eproc.e_tdev = tty.t_dev;
363 1.1 cgd eproc.e_tsess = tty.t_session;
364 1.1 cgd if (tty.t_pgrp != NULL) {
365 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
366 1.1 cgd _kvm_err(kd, kd->program,
367 1.48 enami "can't read tpgrp at %p",
368 1.48 enami tty.t_pgrp);
369 1.1 cgd return (-1);
370 1.1 cgd }
371 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
372 1.1 cgd } else
373 1.1 cgd eproc.e_tpgid = -1;
374 1.1 cgd } else
375 1.1 cgd eproc.e_tdev = NODEV;
376 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
377 1.33 simonb eproc.e_sid = sess.s_sid;
378 1.1 cgd if (sess.s_leader == p)
379 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
380 1.48 enami /*
381 1.48 enami * Fill in the old-style proc.p_wmesg by copying the wmesg
382 1.55 wiz * from the first available LWP.
383 1.46 thorpej */
384 1.47 christos kl = kvm_getlwps(kd, proc.p_pid,
385 1.57 atatat (u_long)PTRTOUINT64(eproc.e_paddr),
386 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
387 1.46 thorpej if (kl) {
388 1.46 thorpej if (nlwps > 0) {
389 1.46 thorpej strcpy(eproc.e_wmesg, kl[0].l_wmesg);
390 1.46 thorpej }
391 1.46 thorpej }
392 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
393 1.34 simonb sizeof(eproc.e_vm));
394 1.9 pk
395 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
396 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
397 1.1 cgd
398 1.1 cgd switch (what) {
399 1.1 cgd
400 1.1 cgd case KERN_PROC_PGRP:
401 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
402 1.1 cgd continue;
403 1.1 cgd break;
404 1.1 cgd
405 1.1 cgd case KERN_PROC_TTY:
406 1.31 simonb if ((proc.p_flag & P_CONTROLT) == 0 ||
407 1.48 enami eproc.e_tdev != (dev_t)arg)
408 1.1 cgd continue;
409 1.1 cgd break;
410 1.1 cgd }
411 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
412 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
413 1.1 cgd ++bp;
414 1.1 cgd ++cnt;
415 1.1 cgd }
416 1.1 cgd return (cnt);
417 1.1 cgd }
418 1.1 cgd
419 1.1 cgd /*
420 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
421 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
422 1.1 cgd */
423 1.1 cgd static int
424 1.53 christos kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
425 1.1 cgd kvm_t *kd;
426 1.1 cgd int what, arg;
427 1.1 cgd u_long a_allproc;
428 1.1 cgd u_long a_zombproc;
429 1.1 cgd int maxcnt;
430 1.1 cgd {
431 1.21 perry struct kinfo_proc *bp = kd->procbase;
432 1.53 christos int acnt, zcnt;
433 1.1 cgd struct proc *p;
434 1.1 cgd
435 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
436 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
437 1.1 cgd return (-1);
438 1.1 cgd }
439 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
440 1.1 cgd if (acnt < 0)
441 1.1 cgd return (acnt);
442 1.1 cgd
443 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
444 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
445 1.1 cgd return (-1);
446 1.1 cgd }
447 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
448 1.53 christos maxcnt - acnt);
449 1.1 cgd if (zcnt < 0)
450 1.1 cgd zcnt = 0;
451 1.1 cgd
452 1.1 cgd return (acnt + zcnt);
453 1.1 cgd }
454 1.1 cgd
455 1.34 simonb struct kinfo_proc2 *
456 1.34 simonb kvm_getproc2(kd, op, arg, esize, cnt)
457 1.34 simonb kvm_t *kd;
458 1.34 simonb int op, arg;
459 1.34 simonb size_t esize;
460 1.34 simonb int *cnt;
461 1.34 simonb {
462 1.34 simonb size_t size;
463 1.34 simonb int mib[6], st, nprocs;
464 1.46 thorpej struct pstats pstats;
465 1.34 simonb
466 1.34 simonb if (kd->procbase2 != NULL) {
467 1.34 simonb free(kd->procbase2);
468 1.34 simonb /*
469 1.34 simonb * Clear this pointer in case this call fails. Otherwise,
470 1.34 simonb * kvm_close() will free it again.
471 1.34 simonb */
472 1.36 tron kd->procbase2 = NULL;
473 1.34 simonb }
474 1.34 simonb
475 1.34 simonb if (ISSYSCTL(kd)) {
476 1.34 simonb size = 0;
477 1.34 simonb mib[0] = CTL_KERN;
478 1.34 simonb mib[1] = KERN_PROC2;
479 1.34 simonb mib[2] = op;
480 1.34 simonb mib[3] = arg;
481 1.52 ross mib[4] = (int)esize;
482 1.34 simonb mib[5] = 0;
483 1.52 ross st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
484 1.34 simonb if (st == -1) {
485 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
486 1.48 enami return (NULL);
487 1.34 simonb }
488 1.34 simonb
489 1.52 ross mib[5] = (int) (size / esize);
490 1.34 simonb kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
491 1.36 tron if (kd->procbase2 == NULL)
492 1.48 enami return (NULL);
493 1.52 ross st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
494 1.34 simonb if (st == -1) {
495 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
496 1.48 enami return (NULL);
497 1.34 simonb }
498 1.52 ross nprocs = (int) (size / esize);
499 1.34 simonb } else {
500 1.34 simonb char *kp2c;
501 1.34 simonb struct kinfo_proc *kp;
502 1.34 simonb struct kinfo_proc2 kp2, *kp2p;
503 1.46 thorpej struct kinfo_lwp *kl;
504 1.46 thorpej int i, nlwps;
505 1.34 simonb
506 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs);
507 1.34 simonb if (kp == NULL)
508 1.48 enami return (NULL);
509 1.34 simonb
510 1.34 simonb kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
511 1.39 christos kp2c = (char *)(void *)kd->procbase2;
512 1.34 simonb kp2p = &kp2;
513 1.34 simonb for (i = 0; i < nprocs; i++, kp++) {
514 1.48 enami kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
515 1.57 atatat (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
516 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
517 1.46 thorpej /* We use kl[0] as the "representative" LWP */
518 1.34 simonb memset(kp2p, 0, sizeof(kp2));
519 1.46 thorpej kp2p->p_forw = kl[0].l_forw;
520 1.46 thorpej kp2p->p_back = kl[0].l_back;
521 1.57 atatat kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
522 1.46 thorpej kp2p->p_addr = kl[0].l_addr;
523 1.57 atatat kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
524 1.57 atatat kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
525 1.57 atatat kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
526 1.57 atatat kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
527 1.57 atatat kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
528 1.57 atatat kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
529 1.57 atatat kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
530 1.34 simonb kp2p->p_tsess = 0;
531 1.57 atatat kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
532 1.34 simonb
533 1.34 simonb kp2p->p_eflag = 0;
534 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig;
535 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag;
536 1.34 simonb
537 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid;
538 1.34 simonb
539 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid;
540 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid;
541 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid;
542 1.34 simonb
543 1.51 dsl kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
544 1.34 simonb
545 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
546 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
547 1.50 atatat kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
548 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
549 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
550 1.50 atatat kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
551 1.34 simonb
552 1.39 christos /*CONSTCOND*/
553 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
554 1.48 enami MIN(sizeof(kp2p->p_groups),
555 1.48 enami sizeof(kp->kp_eproc.e_ucred.cr_groups)));
556 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
557 1.34 simonb
558 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc;
559 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev;
560 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
561 1.57 atatat kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
562 1.34 simonb
563 1.34 simonb kp2p->p_estcpu = kp->kp_proc.p_estcpu;
564 1.34 simonb kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
565 1.34 simonb kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
566 1.34 simonb kp2p->p_cpticks = kp->kp_proc.p_cpticks;
567 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
568 1.46 thorpej kp2p->p_swtime = kl[0].l_swtime;
569 1.46 thorpej kp2p->p_slptime = kl[0].l_slptime;
570 1.35 thorpej #if 0 /* XXX thorpej */
571 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags;
572 1.35 thorpej #else
573 1.35 thorpej kp2p->p_schedflags = 0;
574 1.35 thorpej #endif
575 1.34 simonb
576 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks;
577 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks;
578 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks;
579 1.34 simonb
580 1.57 atatat kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
581 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag;
582 1.34 simonb
583 1.46 thorpej kp2p->p_holdcnt = kl[0].l_holdcnt;
584 1.34 simonb
585 1.48 enami memcpy(&kp2p->p_siglist,
586 1.48 enami &kp->kp_proc.p_sigctx.ps_siglist,
587 1.48 enami sizeof(ki_sigset_t));
588 1.48 enami memcpy(&kp2p->p_sigmask,
589 1.48 enami &kp->kp_proc.p_sigctx.ps_sigmask,
590 1.48 enami sizeof(ki_sigset_t));
591 1.48 enami memcpy(&kp2p->p_sigignore,
592 1.48 enami &kp->kp_proc.p_sigctx.ps_sigignore,
593 1.48 enami sizeof(ki_sigset_t));
594 1.48 enami memcpy(&kp2p->p_sigcatch,
595 1.48 enami &kp->kp_proc.p_sigctx.ps_sigcatch,
596 1.48 enami sizeof(ki_sigset_t));
597 1.34 simonb
598 1.34 simonb kp2p->p_stat = kp->kp_proc.p_stat;
599 1.46 thorpej kp2p->p_priority = kl[0].l_priority;
600 1.46 thorpej kp2p->p_usrpri = kl[0].l_usrpri;
601 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice;
602 1.34 simonb
603 1.34 simonb kp2p->p_xstat = kp->kp_proc.p_xstat;
604 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag;
605 1.34 simonb
606 1.39 christos /*CONSTCOND*/
607 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
608 1.48 enami MIN(sizeof(kp2p->p_comm),
609 1.48 enami sizeof(kp->kp_proc.p_comm)));
610 1.34 simonb
611 1.48 enami strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
612 1.48 enami sizeof(kp2p->p_wmesg));
613 1.46 thorpej kp2p->p_wchan = kl[0].l_wchan;
614 1.48 enami strncpy(kp2p->p_login, kp->kp_eproc.e_login,
615 1.48 enami sizeof(kp2p->p_login));
616 1.34 simonb
617 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
618 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
619 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
620 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
621 1.34 simonb
622 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
623 1.34 simonb
624 1.46 thorpej kp2p->p_realflag = kp->kp_proc.p_flag;
625 1.46 thorpej kp2p->p_nlwps = kp->kp_proc.p_nlwps;
626 1.46 thorpej kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
627 1.46 thorpej kp2p->p_realstat = kp->kp_proc.p_stat;
628 1.46 thorpej
629 1.48 enami if (P_ZOMBIE(&kp->kp_proc) ||
630 1.46 thorpej kp->kp_proc.p_stats == NULL ||
631 1.48 enami KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
632 1.34 simonb kp2p->p_uvalid = 0;
633 1.34 simonb } else {
634 1.34 simonb kp2p->p_uvalid = 1;
635 1.34 simonb
636 1.39 christos kp2p->p_ustart_sec = (u_int32_t)
637 1.46 thorpej pstats.p_start.tv_sec;
638 1.39 christos kp2p->p_ustart_usec = (u_int32_t)
639 1.46 thorpej pstats.p_start.tv_usec;
640 1.39 christos
641 1.39 christos kp2p->p_uutime_sec = (u_int32_t)
642 1.46 thorpej pstats.p_ru.ru_utime.tv_sec;
643 1.39 christos kp2p->p_uutime_usec = (u_int32_t)
644 1.46 thorpej pstats.p_ru.ru_utime.tv_usec;
645 1.39 christos kp2p->p_ustime_sec = (u_int32_t)
646 1.46 thorpej pstats.p_ru.ru_stime.tv_sec;
647 1.39 christos kp2p->p_ustime_usec = (u_int32_t)
648 1.46 thorpej pstats.p_ru.ru_stime.tv_usec;
649 1.34 simonb
650 1.46 thorpej kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
651 1.46 thorpej kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
652 1.46 thorpej kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
653 1.46 thorpej kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
654 1.46 thorpej kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
655 1.46 thorpej kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
656 1.46 thorpej kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
657 1.46 thorpej kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
658 1.46 thorpej kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
659 1.46 thorpej kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
660 1.46 thorpej kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
661 1.46 thorpej kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
662 1.46 thorpej kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
663 1.46 thorpej kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
664 1.34 simonb
665 1.39 christos kp2p->p_uctime_sec = (u_int32_t)
666 1.46 thorpej (pstats.p_cru.ru_utime.tv_sec +
667 1.46 thorpej pstats.p_cru.ru_stime.tv_sec);
668 1.39 christos kp2p->p_uctime_usec = (u_int32_t)
669 1.46 thorpej (pstats.p_cru.ru_utime.tv_usec +
670 1.46 thorpej pstats.p_cru.ru_stime.tv_usec);
671 1.34 simonb }
672 1.34 simonb
673 1.34 simonb memcpy(kp2c, &kp2, esize);
674 1.34 simonb kp2c += esize;
675 1.34 simonb }
676 1.34 simonb
677 1.49 enami _kvm_freeprocs(kd);
678 1.34 simonb }
679 1.34 simonb *cnt = nprocs;
680 1.34 simonb return (kd->procbase2);
681 1.46 thorpej }
682 1.46 thorpej
683 1.46 thorpej struct kinfo_lwp *
684 1.46 thorpej kvm_getlwps(kd, pid, paddr, esize, cnt)
685 1.46 thorpej kvm_t *kd;
686 1.46 thorpej int pid;
687 1.46 thorpej u_long paddr;
688 1.46 thorpej size_t esize;
689 1.46 thorpej int *cnt;
690 1.46 thorpej {
691 1.46 thorpej size_t size;
692 1.52 ross int mib[5], nlwps;
693 1.52 ross ssize_t st;
694 1.46 thorpej struct kinfo_lwp *kl;
695 1.46 thorpej
696 1.46 thorpej if (kd->lwpbase != NULL) {
697 1.46 thorpej free(kd->lwpbase);
698 1.46 thorpej /*
699 1.46 thorpej * Clear this pointer in case this call fails. Otherwise,
700 1.46 thorpej * kvm_close() will free it again.
701 1.46 thorpej */
702 1.46 thorpej kd->lwpbase = NULL;
703 1.46 thorpej }
704 1.46 thorpej
705 1.46 thorpej if (ISSYSCTL(kd)) {
706 1.46 thorpej size = 0;
707 1.46 thorpej mib[0] = CTL_KERN;
708 1.46 thorpej mib[1] = KERN_LWP;
709 1.46 thorpej mib[2] = pid;
710 1.52 ross mib[3] = (int)esize;
711 1.46 thorpej mib[4] = 0;
712 1.52 ross st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
713 1.46 thorpej if (st == -1) {
714 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
715 1.48 enami return (NULL);
716 1.46 thorpej }
717 1.46 thorpej
718 1.52 ross mib[4] = (int) (size / esize);
719 1.46 thorpej kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
720 1.46 thorpej if (kd->lwpbase == NULL)
721 1.48 enami return (NULL);
722 1.52 ross st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
723 1.46 thorpej if (st == -1) {
724 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
725 1.48 enami return (NULL);
726 1.46 thorpej }
727 1.52 ross nlwps = (int) (size / esize);
728 1.46 thorpej } else {
729 1.46 thorpej /* grovel through the memory image */
730 1.46 thorpej struct proc p;
731 1.46 thorpej struct lwp l;
732 1.46 thorpej u_long laddr;
733 1.46 thorpej int i;
734 1.46 thorpej
735 1.46 thorpej st = kvm_read(kd, paddr, &p, sizeof(p));
736 1.46 thorpej if (st == -1) {
737 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
738 1.48 enami return (NULL);
739 1.46 thorpej }
740 1.46 thorpej
741 1.46 thorpej nlwps = p.p_nlwps;
742 1.48 enami kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
743 1.46 thorpej nlwps * sizeof(struct kinfo_lwp));
744 1.46 thorpej if (kd->lwpbase == NULL)
745 1.48 enami return (NULL);
746 1.57 atatat laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
747 1.46 thorpej for (i = 0; (i < nlwps) && (laddr != 0); i++) {
748 1.46 thorpej st = kvm_read(kd, laddr, &l, sizeof(l));
749 1.46 thorpej if (st == -1) {
750 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
751 1.48 enami return (NULL);
752 1.46 thorpej }
753 1.46 thorpej kl = &kd->lwpbase[i];
754 1.46 thorpej kl->l_laddr = laddr;
755 1.57 atatat kl->l_forw = PTRTOUINT64(l.l_forw);
756 1.57 atatat kl->l_back = PTRTOUINT64(l.l_back);
757 1.57 atatat kl->l_addr = PTRTOUINT64(l.l_addr);
758 1.46 thorpej kl->l_lid = l.l_lid;
759 1.46 thorpej kl->l_flag = l.l_flag;
760 1.46 thorpej kl->l_swtime = l.l_swtime;
761 1.46 thorpej kl->l_slptime = l.l_slptime;
762 1.46 thorpej kl->l_schedflags = 0; /* XXX */
763 1.46 thorpej kl->l_holdcnt = l.l_holdcnt;
764 1.46 thorpej kl->l_priority = l.l_priority;
765 1.46 thorpej kl->l_usrpri = l.l_usrpri;
766 1.46 thorpej kl->l_stat = l.l_stat;
767 1.57 atatat kl->l_wchan = PTRTOUINT64(l.l_wchan);
768 1.46 thorpej if (l.l_wmesg)
769 1.46 thorpej (void)kvm_read(kd, (u_long)l.l_wmesg,
770 1.52 ross kl->l_wmesg, (size_t)WMESGLEN);
771 1.46 thorpej kl->l_cpuid = KI_NOCPU;
772 1.57 atatat laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
773 1.46 thorpej }
774 1.46 thorpej }
775 1.46 thorpej
776 1.46 thorpej *cnt = nlwps;
777 1.48 enami return (kd->lwpbase);
778 1.34 simonb }
779 1.34 simonb
780 1.1 cgd struct kinfo_proc *
781 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
782 1.1 cgd kvm_t *kd;
783 1.1 cgd int op, arg;
784 1.1 cgd int *cnt;
785 1.1 cgd {
786 1.7 cgd size_t size;
787 1.7 cgd int mib[4], st, nprocs;
788 1.1 cgd
789 1.36 tron if (kd->procbase != NULL) {
790 1.34 simonb free(kd->procbase);
791 1.31 simonb /*
792 1.1 cgd * Clear this pointer in case this call fails. Otherwise,
793 1.1 cgd * kvm_close() will free it again.
794 1.1 cgd */
795 1.36 tron kd->procbase = NULL;
796 1.1 cgd }
797 1.34 simonb if (ISKMEM(kd)) {
798 1.1 cgd size = 0;
799 1.1 cgd mib[0] = CTL_KERN;
800 1.1 cgd mib[1] = KERN_PROC;
801 1.1 cgd mib[2] = op;
802 1.1 cgd mib[3] = arg;
803 1.52 ross st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
804 1.1 cgd if (st == -1) {
805 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
806 1.48 enami return (NULL);
807 1.1 cgd }
808 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
809 1.36 tron if (kd->procbase == NULL)
810 1.48 enami return (NULL);
811 1.52 ross st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
812 1.1 cgd if (st == -1) {
813 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
814 1.48 enami return (NULL);
815 1.1 cgd }
816 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
817 1.1 cgd _kvm_err(kd, kd->program,
818 1.42 enami "proc size mismatch (%lu total, %lu chunks)",
819 1.42 enami (u_long)size, (u_long)sizeof(struct kinfo_proc));
820 1.48 enami return (NULL);
821 1.1 cgd }
822 1.52 ross nprocs = (int) (size / sizeof(struct kinfo_proc));
823 1.34 simonb } else if (ISSYSCTL(kd)) {
824 1.34 simonb _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
825 1.34 simonb "can't use kvm_getprocs");
826 1.48 enami return (NULL);
827 1.1 cgd } else {
828 1.53 christos struct nlist nl[4], *p;
829 1.1 cgd
830 1.56 christos (void)memset(nl, 0, sizeof(nl));
831 1.1 cgd nl[0].n_name = "_nprocs";
832 1.1 cgd nl[1].n_name = "_allproc";
833 1.53 christos nl[2].n_name = "_zombproc";
834 1.53 christos nl[3].n_name = NULL;
835 1.1 cgd
836 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
837 1.1 cgd for (p = nl; p->n_type != 0; ++p)
838 1.48 enami continue;
839 1.1 cgd _kvm_err(kd, kd->program,
840 1.48 enami "%s: no such symbol", p->n_name);
841 1.48 enami return (NULL);
842 1.1 cgd }
843 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
844 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
845 1.48 enami return (NULL);
846 1.1 cgd }
847 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
848 1.1 cgd kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
849 1.36 tron if (kd->procbase == NULL)
850 1.48 enami return (NULL);
851 1.1 cgd
852 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
853 1.53 christos nl[2].n_value, nprocs);
854 1.32 chs if (nprocs < 0)
855 1.48 enami return (NULL);
856 1.1 cgd #ifdef notdef
857 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
858 1.1 cgd (void)realloc(kd->procbase, size);
859 1.1 cgd #endif
860 1.1 cgd }
861 1.1 cgd *cnt = nprocs;
862 1.1 cgd return (kd->procbase);
863 1.1 cgd }
864 1.1 cgd
865 1.1 cgd void
866 1.1 cgd _kvm_freeprocs(kd)
867 1.1 cgd kvm_t *kd;
868 1.1 cgd {
869 1.48 enami
870 1.1 cgd if (kd->procbase) {
871 1.1 cgd free(kd->procbase);
872 1.36 tron kd->procbase = NULL;
873 1.1 cgd }
874 1.1 cgd }
875 1.1 cgd
876 1.1 cgd void *
877 1.1 cgd _kvm_realloc(kd, p, n)
878 1.1 cgd kvm_t *kd;
879 1.1 cgd void *p;
880 1.1 cgd size_t n;
881 1.1 cgd {
882 1.34 simonb void *np = realloc(p, n);
883 1.1 cgd
884 1.36 tron if (np == NULL)
885 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
886 1.1 cgd return (np);
887 1.1 cgd }
888 1.1 cgd
889 1.1 cgd /*
890 1.1 cgd * Read in an argument vector from the user address space of process p.
891 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous
892 1.1 cgd * strings. This is used to read in both the command arguments and
893 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
894 1.1 cgd */
895 1.1 cgd static char **
896 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
897 1.1 cgd kvm_t *kd;
898 1.34 simonb const struct miniproc *p;
899 1.21 perry u_long addr;
900 1.21 perry int narg;
901 1.21 perry int maxcnt;
902 1.21 perry {
903 1.21 perry char *np, *cp, *ep, *ap;
904 1.28 christos u_long oaddr = (u_long)~0L;
905 1.28 christos u_long len;
906 1.28 christos size_t cc;
907 1.21 perry char **argv;
908 1.1 cgd
909 1.1 cgd /*
910 1.58 toshii * Check that there aren't an unreasonable number of arguments,
911 1.1 cgd * and that the address is in user space.
912 1.1 cgd */
913 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
914 1.48 enami return (NULL);
915 1.1 cgd
916 1.36 tron if (kd->argv == NULL) {
917 1.1 cgd /*
918 1.1 cgd * Try to avoid reallocs.
919 1.1 cgd */
920 1.1 cgd kd->argc = MAX(narg + 1, 32);
921 1.31 simonb kd->argv = (char **)_kvm_malloc(kd, kd->argc *
922 1.48 enami sizeof(*kd->argv));
923 1.36 tron if (kd->argv == NULL)
924 1.48 enami return (NULL);
925 1.1 cgd } else if (narg + 1 > kd->argc) {
926 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
927 1.31 simonb kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
928 1.48 enami sizeof(*kd->argv));
929 1.36 tron if (kd->argv == NULL)
930 1.48 enami return (NULL);
931 1.1 cgd }
932 1.36 tron if (kd->argspc == NULL) {
933 1.28 christos kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
934 1.36 tron if (kd->argspc == NULL)
935 1.48 enami return (NULL);
936 1.6 mycroft kd->arglen = kd->nbpg;
937 1.1 cgd }
938 1.36 tron if (kd->argbuf == NULL) {
939 1.28 christos kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
940 1.36 tron if (kd->argbuf == NULL)
941 1.48 enami return (NULL);
942 1.10 mycroft }
943 1.10 mycroft cc = sizeof(char *) * narg;
944 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
945 1.48 enami return (NULL);
946 1.10 mycroft ap = np = kd->argspc;
947 1.1 cgd argv = kd->argv;
948 1.1 cgd len = 0;
949 1.1 cgd /*
950 1.1 cgd * Loop over pages, filling in the argument vector.
951 1.1 cgd */
952 1.36 tron while (argv < kd->argv + narg && *argv != NULL) {
953 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
954 1.10 mycroft if (addr != oaddr) {
955 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf,
956 1.28 christos (size_t)kd->nbpg) != kd->nbpg)
957 1.48 enami return (NULL);
958 1.10 mycroft oaddr = addr;
959 1.10 mycroft }
960 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
961 1.28 christos cp = kd->argbuf + (size_t)addr;
962 1.28 christos cc = kd->nbpg - (size_t)addr;
963 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
964 1.28 christos cc = (size_t)(maxcnt - len);
965 1.10 mycroft ep = memchr(cp, '\0', cc);
966 1.36 tron if (ep != NULL)
967 1.10 mycroft cc = ep - cp + 1;
968 1.1 cgd if (len + cc > kd->arglen) {
969 1.52 ross ptrdiff_t off;
970 1.21 perry char **pp;
971 1.21 perry char *op = kd->argspc;
972 1.1 cgd
973 1.1 cgd kd->arglen *= 2;
974 1.1 cgd kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
975 1.28 christos (size_t)kd->arglen);
976 1.36 tron if (kd->argspc == NULL)
977 1.48 enami return (NULL);
978 1.1 cgd /*
979 1.1 cgd * Adjust argv pointers in case realloc moved
980 1.1 cgd * the string space.
981 1.1 cgd */
982 1.1 cgd off = kd->argspc - op;
983 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
984 1.1 cgd *pp += off;
985 1.12 mycroft ap += off;
986 1.12 mycroft np += off;
987 1.1 cgd }
988 1.10 mycroft memcpy(np, cp, cc);
989 1.10 mycroft np += cc;
990 1.1 cgd len += cc;
991 1.36 tron if (ep != NULL) {
992 1.10 mycroft *argv++ = ap;
993 1.10 mycroft ap = np;
994 1.10 mycroft } else
995 1.10 mycroft *argv += cc;
996 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
997 1.1 cgd /*
998 1.1 cgd * We're stopping prematurely. Terminate the
999 1.10 mycroft * current string.
1000 1.1 cgd */
1001 1.36 tron if (ep == NULL) {
1002 1.10 mycroft *np = '\0';
1003 1.14 mycroft *argv++ = ap;
1004 1.10 mycroft }
1005 1.10 mycroft break;
1006 1.1 cgd }
1007 1.1 cgd }
1008 1.10 mycroft /* Make sure argv is terminated. */
1009 1.36 tron *argv = NULL;
1010 1.10 mycroft return (kd->argv);
1011 1.1 cgd }
1012 1.1 cgd
1013 1.1 cgd static void
1014 1.1 cgd ps_str_a(p, addr, n)
1015 1.1 cgd struct ps_strings *p;
1016 1.1 cgd u_long *addr;
1017 1.1 cgd int *n;
1018 1.1 cgd {
1019 1.48 enami
1020 1.1 cgd *addr = (u_long)p->ps_argvstr;
1021 1.1 cgd *n = p->ps_nargvstr;
1022 1.1 cgd }
1023 1.1 cgd
1024 1.1 cgd static void
1025 1.1 cgd ps_str_e(p, addr, n)
1026 1.1 cgd struct ps_strings *p;
1027 1.1 cgd u_long *addr;
1028 1.1 cgd int *n;
1029 1.1 cgd {
1030 1.48 enami
1031 1.1 cgd *addr = (u_long)p->ps_envstr;
1032 1.1 cgd *n = p->ps_nenvstr;
1033 1.1 cgd }
1034 1.1 cgd
1035 1.1 cgd /*
1036 1.1 cgd * Determine if the proc indicated by p is still active.
1037 1.1 cgd * This test is not 100% foolproof in theory, but chances of
1038 1.1 cgd * being wrong are very low.
1039 1.1 cgd */
1040 1.1 cgd static int
1041 1.1 cgd proc_verify(kd, kernp, p)
1042 1.1 cgd kvm_t *kd;
1043 1.1 cgd u_long kernp;
1044 1.34 simonb const struct miniproc *p;
1045 1.1 cgd {
1046 1.1 cgd struct proc kernproc;
1047 1.1 cgd
1048 1.1 cgd /*
1049 1.1 cgd * Just read in the whole proc. It's not that big relative
1050 1.1 cgd * to the cost of the read system call.
1051 1.1 cgd */
1052 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1053 1.1 cgd sizeof(kernproc))
1054 1.48 enami return (0);
1055 1.1 cgd return (p->p_pid == kernproc.p_pid &&
1056 1.48 enami (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1057 1.1 cgd }
1058 1.1 cgd
1059 1.1 cgd static char **
1060 1.34 simonb kvm_doargv(kd, p, nchr, info)
1061 1.1 cgd kvm_t *kd;
1062 1.34 simonb const struct miniproc *p;
1063 1.1 cgd int nchr;
1064 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
1065 1.1 cgd {
1066 1.21 perry char **ap;
1067 1.1 cgd u_long addr;
1068 1.1 cgd int cnt;
1069 1.1 cgd struct ps_strings arginfo;
1070 1.1 cgd
1071 1.1 cgd /*
1072 1.1 cgd * Pointers are stored at the top of the user stack.
1073 1.1 cgd */
1074 1.18 gwr if (p->p_stat == SZOMB)
1075 1.48 enami return (NULL);
1076 1.52 ross cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1077 1.28 christos (void *)&arginfo, sizeof(arginfo));
1078 1.18 gwr if (cnt != sizeof(arginfo))
1079 1.48 enami return (NULL);
1080 1.1 cgd
1081 1.1 cgd (*info)(&arginfo, &addr, &cnt);
1082 1.3 mycroft if (cnt == 0)
1083 1.48 enami return (NULL);
1084 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
1085 1.1 cgd /*
1086 1.1 cgd * For live kernels, make sure this process didn't go away.
1087 1.1 cgd */
1088 1.36 tron if (ap != NULL && ISALIVE(kd) &&
1089 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p))
1090 1.36 tron ap = NULL;
1091 1.1 cgd return (ap);
1092 1.1 cgd }
1093 1.1 cgd
1094 1.1 cgd /*
1095 1.1 cgd * Get the command args. This code is now machine independent.
1096 1.1 cgd */
1097 1.1 cgd char **
1098 1.1 cgd kvm_getargv(kd, kp, nchr)
1099 1.1 cgd kvm_t *kd;
1100 1.1 cgd const struct kinfo_proc *kp;
1101 1.1 cgd int nchr;
1102 1.1 cgd {
1103 1.34 simonb struct miniproc p;
1104 1.34 simonb
1105 1.34 simonb KPTOMINI(kp, &p);
1106 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a));
1107 1.1 cgd }
1108 1.1 cgd
1109 1.1 cgd char **
1110 1.1 cgd kvm_getenvv(kd, kp, nchr)
1111 1.1 cgd kvm_t *kd;
1112 1.1 cgd const struct kinfo_proc *kp;
1113 1.1 cgd int nchr;
1114 1.1 cgd {
1115 1.34 simonb struct miniproc p;
1116 1.34 simonb
1117 1.34 simonb KPTOMINI(kp, &p);
1118 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e));
1119 1.34 simonb }
1120 1.34 simonb
1121 1.34 simonb static char **
1122 1.34 simonb kvm_doargv2(kd, pid, type, nchr)
1123 1.34 simonb kvm_t *kd;
1124 1.34 simonb pid_t pid;
1125 1.34 simonb int type;
1126 1.34 simonb int nchr;
1127 1.34 simonb {
1128 1.34 simonb size_t bufs;
1129 1.39 christos int narg, mib[4];
1130 1.39 christos size_t newarglen;
1131 1.34 simonb char **ap, *bp, *endp;
1132 1.34 simonb
1133 1.34 simonb /*
1134 1.58 toshii * Check that there aren't an unreasonable number of arguments.
1135 1.34 simonb */
1136 1.34 simonb if (nchr > ARG_MAX)
1137 1.48 enami return (NULL);
1138 1.34 simonb
1139 1.34 simonb if (nchr == 0)
1140 1.34 simonb nchr = ARG_MAX;
1141 1.34 simonb
1142 1.34 simonb /* Get number of strings in argv */
1143 1.34 simonb mib[0] = CTL_KERN;
1144 1.34 simonb mib[1] = KERN_PROC_ARGS;
1145 1.34 simonb mib[2] = pid;
1146 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1147 1.34 simonb bufs = sizeof(narg);
1148 1.52 ross if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1149 1.48 enami return (NULL);
1150 1.34 simonb
1151 1.36 tron if (kd->argv == NULL) {
1152 1.34 simonb /*
1153 1.34 simonb * Try to avoid reallocs.
1154 1.34 simonb */
1155 1.34 simonb kd->argc = MAX(narg + 1, 32);
1156 1.34 simonb kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1157 1.48 enami sizeof(*kd->argv));
1158 1.36 tron if (kd->argv == NULL)
1159 1.48 enami return (NULL);
1160 1.34 simonb } else if (narg + 1 > kd->argc) {
1161 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1);
1162 1.34 simonb kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1163 1.48 enami sizeof(*kd->argv));
1164 1.36 tron if (kd->argv == NULL)
1165 1.48 enami return (NULL);
1166 1.34 simonb }
1167 1.34 simonb
1168 1.34 simonb newarglen = MIN(nchr, ARG_MAX);
1169 1.34 simonb if (kd->arglen < newarglen) {
1170 1.34 simonb if (kd->arglen == 0)
1171 1.34 simonb kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1172 1.34 simonb else
1173 1.34 simonb kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1174 1.34 simonb newarglen);
1175 1.36 tron if (kd->argspc == NULL)
1176 1.48 enami return (NULL);
1177 1.52 ross if (newarglen > INT_MAX)
1178 1.52 ross return NULL;
1179 1.52 ross kd->arglen = (int)newarglen;
1180 1.34 simonb }
1181 1.39 christos memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1182 1.34 simonb
1183 1.34 simonb mib[0] = CTL_KERN;
1184 1.34 simonb mib[1] = KERN_PROC_ARGS;
1185 1.34 simonb mib[2] = pid;
1186 1.34 simonb mib[3] = type;
1187 1.34 simonb bufs = kd->arglen;
1188 1.52 ross if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1189 1.48 enami return (NULL);
1190 1.34 simonb
1191 1.34 simonb bp = kd->argspc;
1192 1.45 jdolecek bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1193 1.34 simonb ap = kd->argv;
1194 1.34 simonb endp = bp + MIN(nchr, bufs);
1195 1.34 simonb
1196 1.34 simonb while (bp < endp) {
1197 1.34 simonb *ap++ = bp;
1198 1.48 enami /*
1199 1.48 enami * XXX: don't need following anymore, or stick check
1200 1.48 enami * for max argc in above while loop?
1201 1.48 enami */
1202 1.34 simonb if (ap >= kd->argv + kd->argc) {
1203 1.34 simonb kd->argc *= 2;
1204 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv,
1205 1.34 simonb kd->argc * sizeof(*kd->argv));
1206 1.44 jdolecek ap = kd->argv;
1207 1.34 simonb }
1208 1.34 simonb bp += strlen(bp) + 1;
1209 1.34 simonb }
1210 1.34 simonb *ap = NULL;
1211 1.48 enami
1212 1.34 simonb return (kd->argv);
1213 1.34 simonb }
1214 1.34 simonb
1215 1.34 simonb char **
1216 1.34 simonb kvm_getargv2(kd, kp, nchr)
1217 1.34 simonb kvm_t *kd;
1218 1.34 simonb const struct kinfo_proc2 *kp;
1219 1.34 simonb int nchr;
1220 1.34 simonb {
1221 1.48 enami
1222 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1223 1.34 simonb }
1224 1.34 simonb
1225 1.34 simonb char **
1226 1.34 simonb kvm_getenvv2(kd, kp, nchr)
1227 1.34 simonb kvm_t *kd;
1228 1.34 simonb const struct kinfo_proc2 *kp;
1229 1.34 simonb int nchr;
1230 1.34 simonb {
1231 1.48 enami
1232 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1233 1.1 cgd }
1234 1.1 cgd
1235 1.1 cgd /*
1236 1.1 cgd * Read from user space. The user context is given by p.
1237 1.1 cgd */
1238 1.34 simonb static ssize_t
1239 1.34 simonb kvm_ureadm(kd, p, uva, buf, len)
1240 1.1 cgd kvm_t *kd;
1241 1.34 simonb const struct miniproc *p;
1242 1.21 perry u_long uva;
1243 1.21 perry char *buf;
1244 1.21 perry size_t len;
1245 1.1 cgd {
1246 1.21 perry char *cp;
1247 1.1 cgd
1248 1.1 cgd cp = buf;
1249 1.1 cgd while (len > 0) {
1250 1.28 christos size_t cc;
1251 1.21 perry char *dp;
1252 1.15 cgd u_long cnt;
1253 1.8 mycroft
1254 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt);
1255 1.36 tron if (dp == NULL) {
1256 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva);
1257 1.48 enami return (0);
1258 1.8 mycroft }
1259 1.28 christos cc = (size_t)MIN(cnt, len);
1260 1.25 perry memcpy(cp, dp, cc);
1261 1.1 cgd cp += cc;
1262 1.1 cgd uva += cc;
1263 1.1 cgd len -= cc;
1264 1.1 cgd }
1265 1.1 cgd return (ssize_t)(cp - buf);
1266 1.34 simonb }
1267 1.34 simonb
1268 1.34 simonb ssize_t
1269 1.34 simonb kvm_uread(kd, p, uva, buf, len)
1270 1.34 simonb kvm_t *kd;
1271 1.34 simonb const struct proc *p;
1272 1.48 enami u_long uva;
1273 1.34 simonb char *buf;
1274 1.34 simonb size_t len;
1275 1.34 simonb {
1276 1.34 simonb struct miniproc mp;
1277 1.34 simonb
1278 1.34 simonb PTOMINI(p, &mp);
1279 1.34 simonb return (kvm_ureadm(kd, &mp, uva, buf, len));
1280 1.1 cgd }
1281