kvm_proc.c revision 1.66 1 1.66 ad /* $NetBSD: kvm_proc.c,v 1.66 2007/02/09 22:08:48 ad Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft * 3. All advertising materials mentioning features or use of this software
19 1.26 mycroft * must display the following acknowledgement:
20 1.26 mycroft * This product includes software developed by the NetBSD
21 1.26 mycroft * Foundation, Inc. and its contributors.
22 1.26 mycroft * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.26 mycroft * contributors may be used to endorse or promote products derived
24 1.26 mycroft * from this software without specific prior written permission.
25 1.26 mycroft *
26 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
37 1.26 mycroft */
38 1.16 thorpej
39 1.1 cgd /*-
40 1.1 cgd * Copyright (c) 1989, 1992, 1993
41 1.1 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * This code is derived from software developed by the Computer Systems
44 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 1.1 cgd * BG 91-66 and contributed to Berkeley.
46 1.1 cgd *
47 1.1 cgd * Redistribution and use in source and binary forms, with or without
48 1.1 cgd * modification, are permitted provided that the following conditions
49 1.1 cgd * are met:
50 1.1 cgd * 1. Redistributions of source code must retain the above copyright
51 1.1 cgd * notice, this list of conditions and the following disclaimer.
52 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 cgd * notice, this list of conditions and the following disclaimer in the
54 1.1 cgd * documentation and/or other materials provided with the distribution.
55 1.54 agc * 3. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd */
71 1.1 cgd
72 1.19 mikel #include <sys/cdefs.h>
73 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
74 1.16 thorpej #if 0
75 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 1.16 thorpej #else
77 1.66 ad __RCSID("$NetBSD: kvm_proc.c,v 1.66 2007/02/09 22:08:48 ad Exp $");
78 1.16 thorpej #endif
79 1.1 cgd #endif /* LIBC_SCCS and not lint */
80 1.1 cgd
81 1.1 cgd /*
82 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 1.1 cgd * users of this code, so we've factored it out into a separate module.
84 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 1.1 cgd * most other applications are interested only in open/close/read/nlist).
86 1.1 cgd */
87 1.1 cgd
88 1.66 ad #define _KAUTH_PRIVATE
89 1.66 ad
90 1.1 cgd #include <sys/param.h>
91 1.1 cgd #include <sys/user.h>
92 1.46 thorpej #include <sys/lwp.h>
93 1.1 cgd #include <sys/proc.h>
94 1.1 cgd #include <sys/exec.h>
95 1.1 cgd #include <sys/stat.h>
96 1.1 cgd #include <sys/ioctl.h>
97 1.1 cgd #include <sys/tty.h>
98 1.62 yamt #include <sys/resourcevar.h>
99 1.66 ad #include <sys/kauth_impl.h>
100 1.66 ad
101 1.63 yamt #include <errno.h>
102 1.7 cgd #include <stdlib.h>
103 1.52 ross #include <stddef.h>
104 1.10 mycroft #include <string.h>
105 1.1 cgd #include <unistd.h>
106 1.1 cgd #include <nlist.h>
107 1.1 cgd #include <kvm.h>
108 1.1 cgd
109 1.23 chs #include <uvm/uvm_extern.h>
110 1.29 mrg #include <uvm/uvm_amap.h>
111 1.23 chs
112 1.1 cgd #include <sys/sysctl.h>
113 1.1 cgd
114 1.1 cgd #include <limits.h>
115 1.1 cgd #include <db.h>
116 1.1 cgd #include <paths.h>
117 1.1 cgd
118 1.1 cgd #include "kvm_private.h"
119 1.1 cgd
120 1.34 simonb /*
121 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
122 1.34 simonb */
123 1.34 simonb struct miniproc {
124 1.34 simonb struct vmspace *p_vmspace;
125 1.34 simonb char p_stat;
126 1.34 simonb struct proc *p_paddr;
127 1.34 simonb pid_t p_pid;
128 1.34 simonb };
129 1.34 simonb
130 1.34 simonb /*
131 1.34 simonb * Convert from struct proc and kinfo_proc{,2} to miniproc.
132 1.34 simonb */
133 1.34 simonb #define PTOMINI(kp, p) \
134 1.48 enami do { \
135 1.34 simonb (p)->p_stat = (kp)->p_stat; \
136 1.34 simonb (p)->p_pid = (kp)->p_pid; \
137 1.34 simonb (p)->p_paddr = NULL; \
138 1.34 simonb (p)->p_vmspace = (kp)->p_vmspace; \
139 1.34 simonb } while (/*CONSTCOND*/0);
140 1.34 simonb
141 1.34 simonb #define KPTOMINI(kp, p) \
142 1.48 enami do { \
143 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \
144 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \
145 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
146 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
147 1.34 simonb } while (/*CONSTCOND*/0);
148 1.34 simonb
149 1.34 simonb #define KP2TOMINI(kp, p) \
150 1.48 enami do { \
151 1.34 simonb (p)->p_stat = (kp)->p_stat; \
152 1.34 simonb (p)->p_pid = (kp)->p_pid; \
153 1.34 simonb (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
154 1.34 simonb (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
155 1.34 simonb } while (/*CONSTCOND*/0);
156 1.34 simonb
157 1.2 mycroft #define KREAD(kd, addr, obj) \
158 1.34 simonb (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
159 1.2 mycroft
160 1.34 simonb /* XXX: What uses these two functions? */
161 1.34 simonb char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
162 1.34 simonb u_long *));
163 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
164 1.15 cgd size_t));
165 1.15 cgd
166 1.34 simonb static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
167 1.34 simonb u_long *));
168 1.34 simonb static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 1.34 simonb char *, size_t));
170 1.34 simonb
171 1.34 simonb static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
172 1.15 cgd int));
173 1.53 christos static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
174 1.34 simonb static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
175 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
176 1.34 simonb static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
177 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
178 1.15 cgd struct kinfo_proc *, int));
179 1.34 simonb static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
180 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
181 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
182 1.2 mycroft
183 1.34 simonb
184 1.34 simonb static char *
185 1.34 simonb _kvm_ureadm(kd, p, va, cnt)
186 1.1 cgd kvm_t *kd;
187 1.34 simonb const struct miniproc *p;
188 1.1 cgd u_long va;
189 1.1 cgd u_long *cnt;
190 1.1 cgd {
191 1.28 christos int true = 1;
192 1.21 perry u_long addr, head;
193 1.21 perry u_long offset;
194 1.1 cgd struct vm_map_entry vme;
195 1.23 chs struct vm_amap amap;
196 1.23 chs struct vm_anon *anonp, anon;
197 1.23 chs struct vm_page pg;
198 1.28 christos u_long slot;
199 1.1 cgd
200 1.36 tron if (kd->swapspc == NULL) {
201 1.61 christos kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
202 1.36 tron if (kd->swapspc == NULL)
203 1.48 enami return (NULL);
204 1.5 deraadt }
205 1.8 mycroft
206 1.1 cgd /*
207 1.1 cgd * Look through the address map for the memory object
208 1.1 cgd * that corresponds to the given virtual address.
209 1.1 cgd * The header just has the entire valid range.
210 1.1 cgd */
211 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
212 1.1 cgd addr = head;
213 1.28 christos while (true) {
214 1.2 mycroft if (KREAD(kd, addr, &vme))
215 1.48 enami return (NULL);
216 1.1 cgd
217 1.23 chs if (va >= vme.start && va < vme.end &&
218 1.23 chs vme.aref.ar_amap != NULL)
219 1.23 chs break;
220 1.23 chs
221 1.1 cgd addr = (u_long)vme.next;
222 1.2 mycroft if (addr == head)
223 1.48 enami return (NULL);
224 1.1 cgd }
225 1.2 mycroft
226 1.1 cgd /*
227 1.23 chs * we found the map entry, now to find the object...
228 1.23 chs */
229 1.23 chs if (vme.aref.ar_amap == NULL)
230 1.48 enami return (NULL);
231 1.23 chs
232 1.23 chs addr = (u_long)vme.aref.ar_amap;
233 1.23 chs if (KREAD(kd, addr, &amap))
234 1.48 enami return (NULL);
235 1.23 chs
236 1.23 chs offset = va - vme.start;
237 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff;
238 1.23 chs /* sanity-check slot number */
239 1.48 enami if (slot > amap.am_nslot)
240 1.48 enami return (NULL);
241 1.23 chs
242 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
243 1.23 chs if (KREAD(kd, addr, &anonp))
244 1.48 enami return (NULL);
245 1.23 chs
246 1.23 chs addr = (u_long)anonp;
247 1.23 chs if (KREAD(kd, addr, &anon))
248 1.48 enami return (NULL);
249 1.23 chs
250 1.59 jmc addr = (u_long)anon.an_page;
251 1.23 chs if (addr) {
252 1.23 chs if (KREAD(kd, addr, &pg))
253 1.48 enami return (NULL);
254 1.23 chs
255 1.34 simonb if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
256 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
257 1.48 enami return (NULL);
258 1.48 enami } else {
259 1.60 yamt if (kd->swfd < 0 ||
260 1.60 yamt pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
261 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
262 1.48 enami return (NULL);
263 1.23 chs }
264 1.8 mycroft
265 1.2 mycroft /* Found the page. */
266 1.6 mycroft offset %= kd->nbpg;
267 1.6 mycroft *cnt = kd->nbpg - offset;
268 1.28 christos return (&kd->swapspc[(size_t)offset]);
269 1.2 mycroft }
270 1.1 cgd
271 1.34 simonb char *
272 1.34 simonb _kvm_uread(kd, p, va, cnt)
273 1.34 simonb kvm_t *kd;
274 1.34 simonb const struct proc *p;
275 1.34 simonb u_long va;
276 1.34 simonb u_long *cnt;
277 1.34 simonb {
278 1.34 simonb struct miniproc mp;
279 1.34 simonb
280 1.34 simonb PTOMINI(p, &mp);
281 1.34 simonb return (_kvm_ureadm(kd, &mp, va, cnt));
282 1.34 simonb }
283 1.34 simonb
284 1.1 cgd /*
285 1.65 elad * Convert credentials located in kernel space address 'cred' and store
286 1.65 elad * them in the appropriate members of 'eproc'.
287 1.65 elad */
288 1.65 elad static int
289 1.65 elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
290 1.65 elad {
291 1.66 ad struct kauth_cred kauthcred;
292 1.65 elad struct pcred *pc = &eproc->e_pcred;
293 1.65 elad struct ucred *uc = &eproc->e_ucred;
294 1.65 elad
295 1.65 elad if (KREAD(kd, cred, &kauthcred) != 0)
296 1.65 elad return (-1);
297 1.65 elad
298 1.65 elad /* inlined version of kauth_cred_to_pcred, see kauth(9). */
299 1.65 elad pc->p_ruid = kauthcred.cr_uid;
300 1.65 elad pc->p_svuid = kauthcred.cr_svuid;
301 1.65 elad pc->p_rgid = kauthcred.cr_gid;
302 1.65 elad pc->p_svgid = kauthcred.cr_svgid;
303 1.65 elad pc->p_refcnt = kauthcred.cr_refcnt;
304 1.65 elad pc->pc_ucred = (void *)cred;
305 1.65 elad
306 1.65 elad /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
307 1.65 elad uc->cr_ref = kauthcred.cr_refcnt;
308 1.65 elad uc->cr_uid = kauthcred.cr_euid;
309 1.65 elad uc->cr_gid = kauthcred.cr_egid;
310 1.65 elad uc->cr_ngroups = MIN(kauthcred.cr_ngroups,
311 1.65 elad sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
312 1.65 elad memcpy(uc->cr_groups, kauthcred.cr_groups,
313 1.65 elad uc->cr_ngroups * sizeof(uc->cr_groups[0]));
314 1.65 elad
315 1.65 elad return (0);
316 1.65 elad }
317 1.65 elad
318 1.65 elad /*
319 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
320 1.1 cgd * at most maxcnt procs.
321 1.1 cgd */
322 1.1 cgd static int
323 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
324 1.1 cgd kvm_t *kd;
325 1.1 cgd int what, arg;
326 1.1 cgd struct proc *p;
327 1.1 cgd struct kinfo_proc *bp;
328 1.1 cgd int maxcnt;
329 1.1 cgd {
330 1.21 perry int cnt = 0;
331 1.46 thorpej int nlwps;
332 1.46 thorpej struct kinfo_lwp *kl;
333 1.1 cgd struct eproc eproc;
334 1.1 cgd struct pgrp pgrp;
335 1.1 cgd struct session sess;
336 1.1 cgd struct tty tty;
337 1.1 cgd struct proc proc;
338 1.1 cgd
339 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
340 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
341 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p);
342 1.1 cgd return (-1);
343 1.1 cgd }
344 1.65 elad if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
345 1.65 elad _kvm_err(kd, kd->program,
346 1.65 elad "can't read proc credentials at %p", p);
347 1.65 elad return (-1);
348 1.65 elad }
349 1.1 cgd
350 1.48 enami switch (what) {
351 1.31 simonb
352 1.1 cgd case KERN_PROC_PID:
353 1.1 cgd if (proc.p_pid != (pid_t)arg)
354 1.1 cgd continue;
355 1.1 cgd break;
356 1.1 cgd
357 1.1 cgd case KERN_PROC_UID:
358 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
359 1.1 cgd continue;
360 1.1 cgd break;
361 1.1 cgd
362 1.1 cgd case KERN_PROC_RUID:
363 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
364 1.1 cgd continue;
365 1.1 cgd break;
366 1.1 cgd }
367 1.1 cgd /*
368 1.1 cgd * We're going to add another proc to the set. If this
369 1.1 cgd * will overflow the buffer, assume the reason is because
370 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
371 1.1 cgd */
372 1.1 cgd if (cnt >= maxcnt) {
373 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
374 1.1 cgd return (-1);
375 1.1 cgd }
376 1.1 cgd /*
377 1.1 cgd * gather eproc
378 1.1 cgd */
379 1.1 cgd eproc.e_paddr = p;
380 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
381 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p",
382 1.48 enami proc.p_pgrp);
383 1.1 cgd return (-1);
384 1.1 cgd }
385 1.1 cgd eproc.e_sess = pgrp.pg_session;
386 1.1 cgd eproc.e_pgid = pgrp.pg_id;
387 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
388 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
389 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p",
390 1.48 enami pgrp.pg_session);
391 1.1 cgd return (-1);
392 1.1 cgd }
393 1.66 ad if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
394 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
395 1.1 cgd _kvm_err(kd, kd->program,
396 1.48 enami "can't read tty at %p", sess.s_ttyp);
397 1.1 cgd return (-1);
398 1.1 cgd }
399 1.1 cgd eproc.e_tdev = tty.t_dev;
400 1.1 cgd eproc.e_tsess = tty.t_session;
401 1.1 cgd if (tty.t_pgrp != NULL) {
402 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
403 1.1 cgd _kvm_err(kd, kd->program,
404 1.48 enami "can't read tpgrp at %p",
405 1.48 enami tty.t_pgrp);
406 1.1 cgd return (-1);
407 1.1 cgd }
408 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
409 1.1 cgd } else
410 1.1 cgd eproc.e_tpgid = -1;
411 1.1 cgd } else
412 1.1 cgd eproc.e_tdev = NODEV;
413 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
414 1.33 simonb eproc.e_sid = sess.s_sid;
415 1.1 cgd if (sess.s_leader == p)
416 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
417 1.48 enami /*
418 1.48 enami * Fill in the old-style proc.p_wmesg by copying the wmesg
419 1.55 wiz * from the first available LWP.
420 1.46 thorpej */
421 1.47 christos kl = kvm_getlwps(kd, proc.p_pid,
422 1.57 atatat (u_long)PTRTOUINT64(eproc.e_paddr),
423 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
424 1.46 thorpej if (kl) {
425 1.46 thorpej if (nlwps > 0) {
426 1.46 thorpej strcpy(eproc.e_wmesg, kl[0].l_wmesg);
427 1.46 thorpej }
428 1.46 thorpej }
429 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
430 1.34 simonb sizeof(eproc.e_vm));
431 1.9 pk
432 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
433 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
434 1.1 cgd
435 1.1 cgd switch (what) {
436 1.1 cgd
437 1.1 cgd case KERN_PROC_PGRP:
438 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
439 1.1 cgd continue;
440 1.1 cgd break;
441 1.1 cgd
442 1.1 cgd case KERN_PROC_TTY:
443 1.66 ad if ((proc.p_lflag & PL_CONTROLT) == 0 ||
444 1.48 enami eproc.e_tdev != (dev_t)arg)
445 1.1 cgd continue;
446 1.1 cgd break;
447 1.1 cgd }
448 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
449 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
450 1.1 cgd ++bp;
451 1.1 cgd ++cnt;
452 1.1 cgd }
453 1.1 cgd return (cnt);
454 1.1 cgd }
455 1.1 cgd
456 1.1 cgd /*
457 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
458 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
459 1.1 cgd */
460 1.1 cgd static int
461 1.53 christos kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
462 1.1 cgd kvm_t *kd;
463 1.1 cgd int what, arg;
464 1.1 cgd u_long a_allproc;
465 1.1 cgd u_long a_zombproc;
466 1.1 cgd int maxcnt;
467 1.1 cgd {
468 1.21 perry struct kinfo_proc *bp = kd->procbase;
469 1.53 christos int acnt, zcnt;
470 1.1 cgd struct proc *p;
471 1.1 cgd
472 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
473 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
474 1.1 cgd return (-1);
475 1.1 cgd }
476 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
477 1.1 cgd if (acnt < 0)
478 1.1 cgd return (acnt);
479 1.1 cgd
480 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
481 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
482 1.1 cgd return (-1);
483 1.1 cgd }
484 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
485 1.53 christos maxcnt - acnt);
486 1.1 cgd if (zcnt < 0)
487 1.1 cgd zcnt = 0;
488 1.1 cgd
489 1.1 cgd return (acnt + zcnt);
490 1.1 cgd }
491 1.1 cgd
492 1.34 simonb struct kinfo_proc2 *
493 1.34 simonb kvm_getproc2(kd, op, arg, esize, cnt)
494 1.34 simonb kvm_t *kd;
495 1.34 simonb int op, arg;
496 1.34 simonb size_t esize;
497 1.34 simonb int *cnt;
498 1.34 simonb {
499 1.34 simonb size_t size;
500 1.34 simonb int mib[6], st, nprocs;
501 1.46 thorpej struct pstats pstats;
502 1.34 simonb
503 1.34 simonb if (ISSYSCTL(kd)) {
504 1.34 simonb size = 0;
505 1.34 simonb mib[0] = CTL_KERN;
506 1.34 simonb mib[1] = KERN_PROC2;
507 1.34 simonb mib[2] = op;
508 1.34 simonb mib[3] = arg;
509 1.52 ross mib[4] = (int)esize;
510 1.63 yamt again:
511 1.34 simonb mib[5] = 0;
512 1.52 ross st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
513 1.34 simonb if (st == -1) {
514 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
515 1.48 enami return (NULL);
516 1.34 simonb }
517 1.34 simonb
518 1.52 ross mib[5] = (int) (size / esize);
519 1.61 christos KVM_ALLOC(kd, procbase2, size);
520 1.52 ross st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
521 1.34 simonb if (st == -1) {
522 1.63 yamt if (errno == ENOMEM) {
523 1.63 yamt goto again;
524 1.63 yamt }
525 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
526 1.48 enami return (NULL);
527 1.34 simonb }
528 1.52 ross nprocs = (int) (size / esize);
529 1.34 simonb } else {
530 1.34 simonb char *kp2c;
531 1.34 simonb struct kinfo_proc *kp;
532 1.34 simonb struct kinfo_proc2 kp2, *kp2p;
533 1.46 thorpej struct kinfo_lwp *kl;
534 1.46 thorpej int i, nlwps;
535 1.34 simonb
536 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs);
537 1.34 simonb if (kp == NULL)
538 1.48 enami return (NULL);
539 1.34 simonb
540 1.61 christos size = nprocs * esize;
541 1.61 christos KVM_ALLOC(kd, procbase2, size);
542 1.39 christos kp2c = (char *)(void *)kd->procbase2;
543 1.34 simonb kp2p = &kp2;
544 1.34 simonb for (i = 0; i < nprocs; i++, kp++) {
545 1.48 enami kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
546 1.57 atatat (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
547 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
548 1.64 chs
549 1.46 thorpej /* We use kl[0] as the "representative" LWP */
550 1.34 simonb memset(kp2p, 0, sizeof(kp2));
551 1.46 thorpej kp2p->p_forw = kl[0].l_forw;
552 1.46 thorpej kp2p->p_back = kl[0].l_back;
553 1.57 atatat kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
554 1.46 thorpej kp2p->p_addr = kl[0].l_addr;
555 1.57 atatat kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
556 1.57 atatat kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
557 1.57 atatat kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
558 1.57 atatat kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
559 1.57 atatat kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
560 1.57 atatat kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
561 1.57 atatat kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
562 1.34 simonb kp2p->p_tsess = 0;
563 1.57 atatat kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
564 1.34 simonb
565 1.34 simonb kp2p->p_eflag = 0;
566 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig;
567 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag;
568 1.34 simonb
569 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid;
570 1.34 simonb
571 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid;
572 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid;
573 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid;
574 1.34 simonb
575 1.51 dsl kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
576 1.34 simonb
577 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
578 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
579 1.50 atatat kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
580 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
581 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
582 1.50 atatat kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
583 1.34 simonb
584 1.39 christos /*CONSTCOND*/
585 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
586 1.48 enami MIN(sizeof(kp2p->p_groups),
587 1.48 enami sizeof(kp->kp_eproc.e_ucred.cr_groups)));
588 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
589 1.34 simonb
590 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc;
591 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev;
592 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
593 1.57 atatat kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
594 1.34 simonb
595 1.34 simonb kp2p->p_estcpu = kp->kp_proc.p_estcpu;
596 1.66 ad kp2p->p_rtime_sec = kp->kp_proc.p_rtime.tv_sec;
597 1.66 ad kp2p->p_rtime_usec = kp->kp_proc.p_rtime.tv_usec;
598 1.34 simonb kp2p->p_cpticks = kp->kp_proc.p_cpticks;
599 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
600 1.46 thorpej kp2p->p_swtime = kl[0].l_swtime;
601 1.46 thorpej kp2p->p_slptime = kl[0].l_slptime;
602 1.35 thorpej #if 0 /* XXX thorpej */
603 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags;
604 1.35 thorpej #else
605 1.35 thorpej kp2p->p_schedflags = 0;
606 1.35 thorpej #endif
607 1.34 simonb
608 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks;
609 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks;
610 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks;
611 1.34 simonb
612 1.57 atatat kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
613 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag;
614 1.34 simonb
615 1.46 thorpej kp2p->p_holdcnt = kl[0].l_holdcnt;
616 1.34 simonb
617 1.48 enami memcpy(&kp2p->p_siglist,
618 1.66 ad &kp->kp_proc.p_sigpend.sp_set,
619 1.48 enami sizeof(ki_sigset_t));
620 1.66 ad memset(&kp2p->p_sigmask, 0,
621 1.48 enami sizeof(ki_sigset_t));
622 1.48 enami memcpy(&kp2p->p_sigignore,
623 1.48 enami &kp->kp_proc.p_sigctx.ps_sigignore,
624 1.48 enami sizeof(ki_sigset_t));
625 1.48 enami memcpy(&kp2p->p_sigcatch,
626 1.48 enami &kp->kp_proc.p_sigctx.ps_sigcatch,
627 1.48 enami sizeof(ki_sigset_t));
628 1.34 simonb
629 1.64 chs kp2p->p_stat = kl[0].l_stat;
630 1.46 thorpej kp2p->p_priority = kl[0].l_priority;
631 1.46 thorpej kp2p->p_usrpri = kl[0].l_usrpri;
632 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice;
633 1.34 simonb
634 1.34 simonb kp2p->p_xstat = kp->kp_proc.p_xstat;
635 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag;
636 1.34 simonb
637 1.39 christos /*CONSTCOND*/
638 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
639 1.48 enami MIN(sizeof(kp2p->p_comm),
640 1.48 enami sizeof(kp->kp_proc.p_comm)));
641 1.34 simonb
642 1.48 enami strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
643 1.48 enami sizeof(kp2p->p_wmesg));
644 1.46 thorpej kp2p->p_wchan = kl[0].l_wchan;
645 1.48 enami strncpy(kp2p->p_login, kp->kp_eproc.e_login,
646 1.48 enami sizeof(kp2p->p_login));
647 1.34 simonb
648 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
649 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
650 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
651 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
652 1.34 simonb
653 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
654 1.34 simonb
655 1.46 thorpej kp2p->p_realflag = kp->kp_proc.p_flag;
656 1.46 thorpej kp2p->p_nlwps = kp->kp_proc.p_nlwps;
657 1.46 thorpej kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
658 1.46 thorpej kp2p->p_realstat = kp->kp_proc.p_stat;
659 1.46 thorpej
660 1.48 enami if (P_ZOMBIE(&kp->kp_proc) ||
661 1.46 thorpej kp->kp_proc.p_stats == NULL ||
662 1.48 enami KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
663 1.34 simonb kp2p->p_uvalid = 0;
664 1.34 simonb } else {
665 1.34 simonb kp2p->p_uvalid = 1;
666 1.34 simonb
667 1.39 christos kp2p->p_ustart_sec = (u_int32_t)
668 1.46 thorpej pstats.p_start.tv_sec;
669 1.39 christos kp2p->p_ustart_usec = (u_int32_t)
670 1.46 thorpej pstats.p_start.tv_usec;
671 1.39 christos
672 1.39 christos kp2p->p_uutime_sec = (u_int32_t)
673 1.46 thorpej pstats.p_ru.ru_utime.tv_sec;
674 1.39 christos kp2p->p_uutime_usec = (u_int32_t)
675 1.46 thorpej pstats.p_ru.ru_utime.tv_usec;
676 1.39 christos kp2p->p_ustime_sec = (u_int32_t)
677 1.46 thorpej pstats.p_ru.ru_stime.tv_sec;
678 1.39 christos kp2p->p_ustime_usec = (u_int32_t)
679 1.46 thorpej pstats.p_ru.ru_stime.tv_usec;
680 1.34 simonb
681 1.46 thorpej kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
682 1.46 thorpej kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
683 1.46 thorpej kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
684 1.46 thorpej kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
685 1.46 thorpej kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
686 1.46 thorpej kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
687 1.46 thorpej kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
688 1.46 thorpej kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
689 1.46 thorpej kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
690 1.46 thorpej kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
691 1.46 thorpej kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
692 1.46 thorpej kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
693 1.46 thorpej kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
694 1.46 thorpej kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
695 1.34 simonb
696 1.39 christos kp2p->p_uctime_sec = (u_int32_t)
697 1.46 thorpej (pstats.p_cru.ru_utime.tv_sec +
698 1.46 thorpej pstats.p_cru.ru_stime.tv_sec);
699 1.39 christos kp2p->p_uctime_usec = (u_int32_t)
700 1.46 thorpej (pstats.p_cru.ru_utime.tv_usec +
701 1.46 thorpej pstats.p_cru.ru_stime.tv_usec);
702 1.34 simonb }
703 1.34 simonb
704 1.34 simonb memcpy(kp2c, &kp2, esize);
705 1.34 simonb kp2c += esize;
706 1.34 simonb }
707 1.34 simonb }
708 1.34 simonb *cnt = nprocs;
709 1.34 simonb return (kd->procbase2);
710 1.46 thorpej }
711 1.46 thorpej
712 1.46 thorpej struct kinfo_lwp *
713 1.46 thorpej kvm_getlwps(kd, pid, paddr, esize, cnt)
714 1.46 thorpej kvm_t *kd;
715 1.46 thorpej int pid;
716 1.46 thorpej u_long paddr;
717 1.46 thorpej size_t esize;
718 1.46 thorpej int *cnt;
719 1.46 thorpej {
720 1.46 thorpej size_t size;
721 1.52 ross int mib[5], nlwps;
722 1.52 ross ssize_t st;
723 1.46 thorpej struct kinfo_lwp *kl;
724 1.46 thorpej
725 1.46 thorpej if (ISSYSCTL(kd)) {
726 1.46 thorpej size = 0;
727 1.46 thorpej mib[0] = CTL_KERN;
728 1.46 thorpej mib[1] = KERN_LWP;
729 1.46 thorpej mib[2] = pid;
730 1.52 ross mib[3] = (int)esize;
731 1.46 thorpej mib[4] = 0;
732 1.52 ross st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
733 1.46 thorpej if (st == -1) {
734 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
735 1.48 enami return (NULL);
736 1.46 thorpej }
737 1.46 thorpej
738 1.52 ross mib[4] = (int) (size / esize);
739 1.61 christos KVM_ALLOC(kd, lwpbase, size);
740 1.52 ross st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
741 1.46 thorpej if (st == -1) {
742 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
743 1.48 enami return (NULL);
744 1.46 thorpej }
745 1.52 ross nlwps = (int) (size / esize);
746 1.46 thorpej } else {
747 1.46 thorpej /* grovel through the memory image */
748 1.46 thorpej struct proc p;
749 1.46 thorpej struct lwp l;
750 1.46 thorpej u_long laddr;
751 1.46 thorpej int i;
752 1.46 thorpej
753 1.46 thorpej st = kvm_read(kd, paddr, &p, sizeof(p));
754 1.46 thorpej if (st == -1) {
755 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
756 1.48 enami return (NULL);
757 1.46 thorpej }
758 1.46 thorpej
759 1.46 thorpej nlwps = p.p_nlwps;
760 1.61 christos size = nlwps * sizeof(*kd->lwpbase);
761 1.61 christos KVM_ALLOC(kd, lwpbase, size);
762 1.57 atatat laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
763 1.46 thorpej for (i = 0; (i < nlwps) && (laddr != 0); i++) {
764 1.46 thorpej st = kvm_read(kd, laddr, &l, sizeof(l));
765 1.46 thorpej if (st == -1) {
766 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
767 1.48 enami return (NULL);
768 1.46 thorpej }
769 1.46 thorpej kl = &kd->lwpbase[i];
770 1.46 thorpej kl->l_laddr = laddr;
771 1.57 atatat kl->l_forw = PTRTOUINT64(l.l_forw);
772 1.57 atatat kl->l_back = PTRTOUINT64(l.l_back);
773 1.57 atatat kl->l_addr = PTRTOUINT64(l.l_addr);
774 1.46 thorpej kl->l_lid = l.l_lid;
775 1.46 thorpej kl->l_flag = l.l_flag;
776 1.46 thorpej kl->l_swtime = l.l_swtime;
777 1.46 thorpej kl->l_slptime = l.l_slptime;
778 1.46 thorpej kl->l_schedflags = 0; /* XXX */
779 1.46 thorpej kl->l_holdcnt = l.l_holdcnt;
780 1.46 thorpej kl->l_priority = l.l_priority;
781 1.46 thorpej kl->l_usrpri = l.l_usrpri;
782 1.46 thorpej kl->l_stat = l.l_stat;
783 1.57 atatat kl->l_wchan = PTRTOUINT64(l.l_wchan);
784 1.46 thorpej if (l.l_wmesg)
785 1.46 thorpej (void)kvm_read(kd, (u_long)l.l_wmesg,
786 1.52 ross kl->l_wmesg, (size_t)WMESGLEN);
787 1.46 thorpej kl->l_cpuid = KI_NOCPU;
788 1.57 atatat laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
789 1.46 thorpej }
790 1.46 thorpej }
791 1.46 thorpej
792 1.46 thorpej *cnt = nlwps;
793 1.48 enami return (kd->lwpbase);
794 1.34 simonb }
795 1.34 simonb
796 1.1 cgd struct kinfo_proc *
797 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
798 1.1 cgd kvm_t *kd;
799 1.1 cgd int op, arg;
800 1.1 cgd int *cnt;
801 1.1 cgd {
802 1.7 cgd size_t size;
803 1.7 cgd int mib[4], st, nprocs;
804 1.1 cgd
805 1.34 simonb if (ISKMEM(kd)) {
806 1.1 cgd size = 0;
807 1.1 cgd mib[0] = CTL_KERN;
808 1.1 cgd mib[1] = KERN_PROC;
809 1.1 cgd mib[2] = op;
810 1.1 cgd mib[3] = arg;
811 1.52 ross st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
812 1.1 cgd if (st == -1) {
813 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
814 1.48 enami return (NULL);
815 1.1 cgd }
816 1.61 christos KVM_ALLOC(kd, procbase, size);
817 1.52 ross st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
818 1.1 cgd if (st == -1) {
819 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
820 1.48 enami return (NULL);
821 1.1 cgd }
822 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
823 1.1 cgd _kvm_err(kd, kd->program,
824 1.42 enami "proc size mismatch (%lu total, %lu chunks)",
825 1.42 enami (u_long)size, (u_long)sizeof(struct kinfo_proc));
826 1.48 enami return (NULL);
827 1.1 cgd }
828 1.52 ross nprocs = (int) (size / sizeof(struct kinfo_proc));
829 1.34 simonb } else if (ISSYSCTL(kd)) {
830 1.34 simonb _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
831 1.34 simonb "can't use kvm_getprocs");
832 1.48 enami return (NULL);
833 1.1 cgd } else {
834 1.53 christos struct nlist nl[4], *p;
835 1.1 cgd
836 1.56 christos (void)memset(nl, 0, sizeof(nl));
837 1.1 cgd nl[0].n_name = "_nprocs";
838 1.1 cgd nl[1].n_name = "_allproc";
839 1.53 christos nl[2].n_name = "_zombproc";
840 1.53 christos nl[3].n_name = NULL;
841 1.1 cgd
842 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
843 1.1 cgd for (p = nl; p->n_type != 0; ++p)
844 1.48 enami continue;
845 1.1 cgd _kvm_err(kd, kd->program,
846 1.48 enami "%s: no such symbol", p->n_name);
847 1.48 enami return (NULL);
848 1.1 cgd }
849 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
850 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
851 1.48 enami return (NULL);
852 1.1 cgd }
853 1.61 christos size = nprocs * sizeof(*kd->procbase);
854 1.61 christos KVM_ALLOC(kd, procbase, size);
855 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
856 1.53 christos nl[2].n_value, nprocs);
857 1.32 chs if (nprocs < 0)
858 1.48 enami return (NULL);
859 1.1 cgd #ifdef notdef
860 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
861 1.1 cgd (void)realloc(kd->procbase, size);
862 1.1 cgd #endif
863 1.1 cgd }
864 1.1 cgd *cnt = nprocs;
865 1.1 cgd return (kd->procbase);
866 1.1 cgd }
867 1.1 cgd
868 1.1 cgd void *
869 1.1 cgd _kvm_realloc(kd, p, n)
870 1.1 cgd kvm_t *kd;
871 1.1 cgd void *p;
872 1.1 cgd size_t n;
873 1.1 cgd {
874 1.34 simonb void *np = realloc(p, n);
875 1.1 cgd
876 1.36 tron if (np == NULL)
877 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
878 1.1 cgd return (np);
879 1.1 cgd }
880 1.1 cgd
881 1.1 cgd /*
882 1.1 cgd * Read in an argument vector from the user address space of process p.
883 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous
884 1.1 cgd * strings. This is used to read in both the command arguments and
885 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
886 1.1 cgd */
887 1.1 cgd static char **
888 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
889 1.1 cgd kvm_t *kd;
890 1.34 simonb const struct miniproc *p;
891 1.21 perry u_long addr;
892 1.21 perry int narg;
893 1.21 perry int maxcnt;
894 1.21 perry {
895 1.21 perry char *np, *cp, *ep, *ap;
896 1.28 christos u_long oaddr = (u_long)~0L;
897 1.28 christos u_long len;
898 1.28 christos size_t cc;
899 1.21 perry char **argv;
900 1.1 cgd
901 1.1 cgd /*
902 1.58 toshii * Check that there aren't an unreasonable number of arguments,
903 1.1 cgd * and that the address is in user space.
904 1.1 cgd */
905 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
906 1.48 enami return (NULL);
907 1.1 cgd
908 1.36 tron if (kd->argv == NULL) {
909 1.1 cgd /*
910 1.1 cgd * Try to avoid reallocs.
911 1.1 cgd */
912 1.1 cgd kd->argc = MAX(narg + 1, 32);
913 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
914 1.36 tron if (kd->argv == NULL)
915 1.48 enami return (NULL);
916 1.1 cgd } else if (narg + 1 > kd->argc) {
917 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
918 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
919 1.48 enami sizeof(*kd->argv));
920 1.36 tron if (kd->argv == NULL)
921 1.48 enami return (NULL);
922 1.1 cgd }
923 1.36 tron if (kd->argspc == NULL) {
924 1.61 christos kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
925 1.36 tron if (kd->argspc == NULL)
926 1.48 enami return (NULL);
927 1.61 christos kd->argspc_len = kd->nbpg;
928 1.1 cgd }
929 1.36 tron if (kd->argbuf == NULL) {
930 1.61 christos kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
931 1.36 tron if (kd->argbuf == NULL)
932 1.48 enami return (NULL);
933 1.10 mycroft }
934 1.10 mycroft cc = sizeof(char *) * narg;
935 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
936 1.48 enami return (NULL);
937 1.10 mycroft ap = np = kd->argspc;
938 1.1 cgd argv = kd->argv;
939 1.1 cgd len = 0;
940 1.1 cgd /*
941 1.1 cgd * Loop over pages, filling in the argument vector.
942 1.1 cgd */
943 1.36 tron while (argv < kd->argv + narg && *argv != NULL) {
944 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
945 1.10 mycroft if (addr != oaddr) {
946 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf,
947 1.28 christos (size_t)kd->nbpg) != kd->nbpg)
948 1.48 enami return (NULL);
949 1.10 mycroft oaddr = addr;
950 1.10 mycroft }
951 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
952 1.28 christos cp = kd->argbuf + (size_t)addr;
953 1.28 christos cc = kd->nbpg - (size_t)addr;
954 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
955 1.28 christos cc = (size_t)(maxcnt - len);
956 1.10 mycroft ep = memchr(cp, '\0', cc);
957 1.36 tron if (ep != NULL)
958 1.10 mycroft cc = ep - cp + 1;
959 1.61 christos if (len + cc > kd->argspc_len) {
960 1.52 ross ptrdiff_t off;
961 1.21 perry char **pp;
962 1.21 perry char *op = kd->argspc;
963 1.1 cgd
964 1.61 christos kd->argspc_len *= 2;
965 1.61 christos kd->argspc = _kvm_realloc(kd, kd->argspc,
966 1.61 christos kd->argspc_len);
967 1.36 tron if (kd->argspc == NULL)
968 1.48 enami return (NULL);
969 1.1 cgd /*
970 1.1 cgd * Adjust argv pointers in case realloc moved
971 1.1 cgd * the string space.
972 1.1 cgd */
973 1.1 cgd off = kd->argspc - op;
974 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
975 1.1 cgd *pp += off;
976 1.12 mycroft ap += off;
977 1.12 mycroft np += off;
978 1.1 cgd }
979 1.10 mycroft memcpy(np, cp, cc);
980 1.10 mycroft np += cc;
981 1.1 cgd len += cc;
982 1.36 tron if (ep != NULL) {
983 1.10 mycroft *argv++ = ap;
984 1.10 mycroft ap = np;
985 1.10 mycroft } else
986 1.10 mycroft *argv += cc;
987 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
988 1.1 cgd /*
989 1.1 cgd * We're stopping prematurely. Terminate the
990 1.10 mycroft * current string.
991 1.1 cgd */
992 1.36 tron if (ep == NULL) {
993 1.10 mycroft *np = '\0';
994 1.14 mycroft *argv++ = ap;
995 1.10 mycroft }
996 1.10 mycroft break;
997 1.1 cgd }
998 1.1 cgd }
999 1.10 mycroft /* Make sure argv is terminated. */
1000 1.36 tron *argv = NULL;
1001 1.10 mycroft return (kd->argv);
1002 1.1 cgd }
1003 1.1 cgd
1004 1.1 cgd static void
1005 1.1 cgd ps_str_a(p, addr, n)
1006 1.1 cgd struct ps_strings *p;
1007 1.1 cgd u_long *addr;
1008 1.1 cgd int *n;
1009 1.1 cgd {
1010 1.48 enami
1011 1.1 cgd *addr = (u_long)p->ps_argvstr;
1012 1.1 cgd *n = p->ps_nargvstr;
1013 1.1 cgd }
1014 1.1 cgd
1015 1.1 cgd static void
1016 1.1 cgd ps_str_e(p, addr, n)
1017 1.1 cgd struct ps_strings *p;
1018 1.1 cgd u_long *addr;
1019 1.1 cgd int *n;
1020 1.1 cgd {
1021 1.48 enami
1022 1.1 cgd *addr = (u_long)p->ps_envstr;
1023 1.1 cgd *n = p->ps_nenvstr;
1024 1.1 cgd }
1025 1.1 cgd
1026 1.1 cgd /*
1027 1.1 cgd * Determine if the proc indicated by p is still active.
1028 1.1 cgd * This test is not 100% foolproof in theory, but chances of
1029 1.1 cgd * being wrong are very low.
1030 1.1 cgd */
1031 1.1 cgd static int
1032 1.1 cgd proc_verify(kd, kernp, p)
1033 1.1 cgd kvm_t *kd;
1034 1.1 cgd u_long kernp;
1035 1.34 simonb const struct miniproc *p;
1036 1.1 cgd {
1037 1.1 cgd struct proc kernproc;
1038 1.1 cgd
1039 1.1 cgd /*
1040 1.1 cgd * Just read in the whole proc. It's not that big relative
1041 1.1 cgd * to the cost of the read system call.
1042 1.1 cgd */
1043 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1044 1.1 cgd sizeof(kernproc))
1045 1.48 enami return (0);
1046 1.1 cgd return (p->p_pid == kernproc.p_pid &&
1047 1.48 enami (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1048 1.1 cgd }
1049 1.1 cgd
1050 1.1 cgd static char **
1051 1.34 simonb kvm_doargv(kd, p, nchr, info)
1052 1.1 cgd kvm_t *kd;
1053 1.34 simonb const struct miniproc *p;
1054 1.1 cgd int nchr;
1055 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
1056 1.1 cgd {
1057 1.21 perry char **ap;
1058 1.1 cgd u_long addr;
1059 1.1 cgd int cnt;
1060 1.1 cgd struct ps_strings arginfo;
1061 1.1 cgd
1062 1.1 cgd /*
1063 1.1 cgd * Pointers are stored at the top of the user stack.
1064 1.1 cgd */
1065 1.18 gwr if (p->p_stat == SZOMB)
1066 1.48 enami return (NULL);
1067 1.52 ross cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1068 1.28 christos (void *)&arginfo, sizeof(arginfo));
1069 1.18 gwr if (cnt != sizeof(arginfo))
1070 1.48 enami return (NULL);
1071 1.1 cgd
1072 1.1 cgd (*info)(&arginfo, &addr, &cnt);
1073 1.3 mycroft if (cnt == 0)
1074 1.48 enami return (NULL);
1075 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
1076 1.1 cgd /*
1077 1.1 cgd * For live kernels, make sure this process didn't go away.
1078 1.1 cgd */
1079 1.36 tron if (ap != NULL && ISALIVE(kd) &&
1080 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p))
1081 1.36 tron ap = NULL;
1082 1.1 cgd return (ap);
1083 1.1 cgd }
1084 1.1 cgd
1085 1.1 cgd /*
1086 1.1 cgd * Get the command args. This code is now machine independent.
1087 1.1 cgd */
1088 1.1 cgd char **
1089 1.1 cgd kvm_getargv(kd, kp, nchr)
1090 1.1 cgd kvm_t *kd;
1091 1.1 cgd const struct kinfo_proc *kp;
1092 1.1 cgd int nchr;
1093 1.1 cgd {
1094 1.34 simonb struct miniproc p;
1095 1.34 simonb
1096 1.34 simonb KPTOMINI(kp, &p);
1097 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a));
1098 1.1 cgd }
1099 1.1 cgd
1100 1.1 cgd char **
1101 1.1 cgd kvm_getenvv(kd, kp, nchr)
1102 1.1 cgd kvm_t *kd;
1103 1.1 cgd const struct kinfo_proc *kp;
1104 1.1 cgd int nchr;
1105 1.1 cgd {
1106 1.34 simonb struct miniproc p;
1107 1.34 simonb
1108 1.34 simonb KPTOMINI(kp, &p);
1109 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e));
1110 1.34 simonb }
1111 1.34 simonb
1112 1.34 simonb static char **
1113 1.34 simonb kvm_doargv2(kd, pid, type, nchr)
1114 1.34 simonb kvm_t *kd;
1115 1.34 simonb pid_t pid;
1116 1.34 simonb int type;
1117 1.34 simonb int nchr;
1118 1.34 simonb {
1119 1.34 simonb size_t bufs;
1120 1.39 christos int narg, mib[4];
1121 1.61 christos size_t newargspc_len;
1122 1.34 simonb char **ap, *bp, *endp;
1123 1.34 simonb
1124 1.34 simonb /*
1125 1.58 toshii * Check that there aren't an unreasonable number of arguments.
1126 1.34 simonb */
1127 1.34 simonb if (nchr > ARG_MAX)
1128 1.48 enami return (NULL);
1129 1.34 simonb
1130 1.34 simonb if (nchr == 0)
1131 1.34 simonb nchr = ARG_MAX;
1132 1.34 simonb
1133 1.34 simonb /* Get number of strings in argv */
1134 1.34 simonb mib[0] = CTL_KERN;
1135 1.34 simonb mib[1] = KERN_PROC_ARGS;
1136 1.34 simonb mib[2] = pid;
1137 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1138 1.34 simonb bufs = sizeof(narg);
1139 1.52 ross if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1140 1.48 enami return (NULL);
1141 1.34 simonb
1142 1.36 tron if (kd->argv == NULL) {
1143 1.34 simonb /*
1144 1.34 simonb * Try to avoid reallocs.
1145 1.34 simonb */
1146 1.34 simonb kd->argc = MAX(narg + 1, 32);
1147 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1148 1.36 tron if (kd->argv == NULL)
1149 1.48 enami return (NULL);
1150 1.34 simonb } else if (narg + 1 > kd->argc) {
1151 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1);
1152 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1153 1.48 enami sizeof(*kd->argv));
1154 1.36 tron if (kd->argv == NULL)
1155 1.48 enami return (NULL);
1156 1.34 simonb }
1157 1.34 simonb
1158 1.61 christos newargspc_len = MIN(nchr, ARG_MAX);
1159 1.61 christos KVM_ALLOC(kd, argspc, newargspc_len);
1160 1.61 christos memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1161 1.34 simonb
1162 1.34 simonb mib[0] = CTL_KERN;
1163 1.34 simonb mib[1] = KERN_PROC_ARGS;
1164 1.34 simonb mib[2] = pid;
1165 1.34 simonb mib[3] = type;
1166 1.61 christos bufs = kd->argspc_len;
1167 1.52 ross if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1168 1.48 enami return (NULL);
1169 1.34 simonb
1170 1.34 simonb bp = kd->argspc;
1171 1.61 christos bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1172 1.34 simonb ap = kd->argv;
1173 1.34 simonb endp = bp + MIN(nchr, bufs);
1174 1.34 simonb
1175 1.34 simonb while (bp < endp) {
1176 1.34 simonb *ap++ = bp;
1177 1.48 enami /*
1178 1.48 enami * XXX: don't need following anymore, or stick check
1179 1.48 enami * for max argc in above while loop?
1180 1.48 enami */
1181 1.34 simonb if (ap >= kd->argv + kd->argc) {
1182 1.34 simonb kd->argc *= 2;
1183 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv,
1184 1.34 simonb kd->argc * sizeof(*kd->argv));
1185 1.44 jdolecek ap = kd->argv;
1186 1.34 simonb }
1187 1.34 simonb bp += strlen(bp) + 1;
1188 1.34 simonb }
1189 1.34 simonb *ap = NULL;
1190 1.48 enami
1191 1.34 simonb return (kd->argv);
1192 1.34 simonb }
1193 1.34 simonb
1194 1.34 simonb char **
1195 1.34 simonb kvm_getargv2(kd, kp, nchr)
1196 1.34 simonb kvm_t *kd;
1197 1.34 simonb const struct kinfo_proc2 *kp;
1198 1.34 simonb int nchr;
1199 1.34 simonb {
1200 1.48 enami
1201 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1202 1.34 simonb }
1203 1.34 simonb
1204 1.34 simonb char **
1205 1.34 simonb kvm_getenvv2(kd, kp, nchr)
1206 1.34 simonb kvm_t *kd;
1207 1.34 simonb const struct kinfo_proc2 *kp;
1208 1.34 simonb int nchr;
1209 1.34 simonb {
1210 1.48 enami
1211 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1212 1.1 cgd }
1213 1.1 cgd
1214 1.1 cgd /*
1215 1.1 cgd * Read from user space. The user context is given by p.
1216 1.1 cgd */
1217 1.34 simonb static ssize_t
1218 1.34 simonb kvm_ureadm(kd, p, uva, buf, len)
1219 1.1 cgd kvm_t *kd;
1220 1.34 simonb const struct miniproc *p;
1221 1.21 perry u_long uva;
1222 1.21 perry char *buf;
1223 1.21 perry size_t len;
1224 1.1 cgd {
1225 1.21 perry char *cp;
1226 1.1 cgd
1227 1.1 cgd cp = buf;
1228 1.1 cgd while (len > 0) {
1229 1.28 christos size_t cc;
1230 1.21 perry char *dp;
1231 1.15 cgd u_long cnt;
1232 1.8 mycroft
1233 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt);
1234 1.36 tron if (dp == NULL) {
1235 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva);
1236 1.48 enami return (0);
1237 1.8 mycroft }
1238 1.28 christos cc = (size_t)MIN(cnt, len);
1239 1.25 perry memcpy(cp, dp, cc);
1240 1.1 cgd cp += cc;
1241 1.1 cgd uva += cc;
1242 1.1 cgd len -= cc;
1243 1.1 cgd }
1244 1.1 cgd return (ssize_t)(cp - buf);
1245 1.34 simonb }
1246 1.34 simonb
1247 1.34 simonb ssize_t
1248 1.34 simonb kvm_uread(kd, p, uva, buf, len)
1249 1.34 simonb kvm_t *kd;
1250 1.34 simonb const struct proc *p;
1251 1.48 enami u_long uva;
1252 1.34 simonb char *buf;
1253 1.34 simonb size_t len;
1254 1.34 simonb {
1255 1.34 simonb struct miniproc mp;
1256 1.34 simonb
1257 1.34 simonb PTOMINI(p, &mp);
1258 1.34 simonb return (kvm_ureadm(kd, &mp, uva, buf, len));
1259 1.1 cgd }
1260