kvm_proc.c revision 1.73 1 1.73 ad /* $NetBSD: kvm_proc.c,v 1.73 2007/07/09 22:28:13 ad Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft * 3. All advertising materials mentioning features or use of this software
19 1.26 mycroft * must display the following acknowledgement:
20 1.26 mycroft * This product includes software developed by the NetBSD
21 1.26 mycroft * Foundation, Inc. and its contributors.
22 1.26 mycroft * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.26 mycroft * contributors may be used to endorse or promote products derived
24 1.26 mycroft * from this software without specific prior written permission.
25 1.26 mycroft *
26 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
37 1.26 mycroft */
38 1.16 thorpej
39 1.1 cgd /*-
40 1.1 cgd * Copyright (c) 1989, 1992, 1993
41 1.1 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * This code is derived from software developed by the Computer Systems
44 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 1.1 cgd * BG 91-66 and contributed to Berkeley.
46 1.1 cgd *
47 1.1 cgd * Redistribution and use in source and binary forms, with or without
48 1.1 cgd * modification, are permitted provided that the following conditions
49 1.1 cgd * are met:
50 1.1 cgd * 1. Redistributions of source code must retain the above copyright
51 1.1 cgd * notice, this list of conditions and the following disclaimer.
52 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 cgd * notice, this list of conditions and the following disclaimer in the
54 1.1 cgd * documentation and/or other materials provided with the distribution.
55 1.54 agc * 3. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd */
71 1.1 cgd
72 1.19 mikel #include <sys/cdefs.h>
73 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
74 1.16 thorpej #if 0
75 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 1.16 thorpej #else
77 1.73 ad __RCSID("$NetBSD: kvm_proc.c,v 1.73 2007/07/09 22:28:13 ad Exp $");
78 1.16 thorpej #endif
79 1.1 cgd #endif /* LIBC_SCCS and not lint */
80 1.1 cgd
81 1.1 cgd /*
82 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 1.1 cgd * users of this code, so we've factored it out into a separate module.
84 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 1.1 cgd * most other applications are interested only in open/close/read/nlist).
86 1.1 cgd */
87 1.1 cgd
88 1.1 cgd #include <sys/param.h>
89 1.1 cgd #include <sys/user.h>
90 1.46 thorpej #include <sys/lwp.h>
91 1.1 cgd #include <sys/proc.h>
92 1.1 cgd #include <sys/exec.h>
93 1.1 cgd #include <sys/stat.h>
94 1.1 cgd #include <sys/ioctl.h>
95 1.1 cgd #include <sys/tty.h>
96 1.62 yamt #include <sys/resourcevar.h>
97 1.68 christos #include <sys/mutex.h>
98 1.68 christos #include <sys/specificdata.h>
99 1.66 ad
100 1.63 yamt #include <errno.h>
101 1.7 cgd #include <stdlib.h>
102 1.52 ross #include <stddef.h>
103 1.10 mycroft #include <string.h>
104 1.1 cgd #include <unistd.h>
105 1.1 cgd #include <nlist.h>
106 1.1 cgd #include <kvm.h>
107 1.1 cgd
108 1.23 chs #include <uvm/uvm_extern.h>
109 1.29 mrg #include <uvm/uvm_amap.h>
110 1.23 chs
111 1.1 cgd #include <sys/sysctl.h>
112 1.1 cgd
113 1.1 cgd #include <limits.h>
114 1.1 cgd #include <db.h>
115 1.1 cgd #include <paths.h>
116 1.1 cgd
117 1.1 cgd #include "kvm_private.h"
118 1.1 cgd
119 1.34 simonb /*
120 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
121 1.34 simonb */
122 1.34 simonb struct miniproc {
123 1.34 simonb struct vmspace *p_vmspace;
124 1.34 simonb char p_stat;
125 1.34 simonb struct proc *p_paddr;
126 1.34 simonb pid_t p_pid;
127 1.34 simonb };
128 1.34 simonb
129 1.34 simonb /*
130 1.34 simonb * Convert from struct proc and kinfo_proc{,2} to miniproc.
131 1.34 simonb */
132 1.34 simonb #define PTOMINI(kp, p) \
133 1.48 enami do { \
134 1.34 simonb (p)->p_stat = (kp)->p_stat; \
135 1.34 simonb (p)->p_pid = (kp)->p_pid; \
136 1.34 simonb (p)->p_paddr = NULL; \
137 1.34 simonb (p)->p_vmspace = (kp)->p_vmspace; \
138 1.34 simonb } while (/*CONSTCOND*/0);
139 1.34 simonb
140 1.34 simonb #define KPTOMINI(kp, p) \
141 1.48 enami do { \
142 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \
143 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \
144 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
145 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
146 1.34 simonb } while (/*CONSTCOND*/0);
147 1.34 simonb
148 1.34 simonb #define KP2TOMINI(kp, p) \
149 1.48 enami do { \
150 1.34 simonb (p)->p_stat = (kp)->p_stat; \
151 1.34 simonb (p)->p_pid = (kp)->p_pid; \
152 1.34 simonb (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
153 1.34 simonb (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
154 1.34 simonb } while (/*CONSTCOND*/0);
155 1.34 simonb
156 1.68 christos /*
157 1.68 christos * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
158 1.68 christos * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
159 1.68 christos * kvm(3) so dumps can be read properly.
160 1.68 christos *
161 1.68 christos * Whenever NetBSD starts exporting credentials to userland consistently (using
162 1.68 christos * 'struct uucred', or something) this will have to be updated again.
163 1.68 christos */
164 1.68 christos struct kvm_kauth_cred {
165 1.68 christos kmutex_t cr_lock; /* lock on cr_refcnt */
166 1.68 christos u_int cr_refcnt; /* reference count */
167 1.68 christos uid_t cr_uid; /* user id */
168 1.68 christos uid_t cr_euid; /* effective user id */
169 1.68 christos uid_t cr_svuid; /* saved effective user id */
170 1.68 christos gid_t cr_gid; /* group id */
171 1.68 christos gid_t cr_egid; /* effective group id */
172 1.68 christos gid_t cr_svgid; /* saved effective group id */
173 1.68 christos u_int cr_ngroups; /* number of groups */
174 1.68 christos gid_t cr_groups[NGROUPS]; /* group memberships */
175 1.68 christos specificdata_reference cr_sd; /* specific data */
176 1.68 christos };
177 1.68 christos
178 1.2 mycroft #define KREAD(kd, addr, obj) \
179 1.34 simonb (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
180 1.2 mycroft
181 1.34 simonb /* XXX: What uses these two functions? */
182 1.34 simonb char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
183 1.34 simonb u_long *));
184 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
185 1.15 cgd size_t));
186 1.15 cgd
187 1.34 simonb static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
188 1.34 simonb u_long *));
189 1.34 simonb static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
190 1.34 simonb char *, size_t));
191 1.34 simonb
192 1.34 simonb static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
193 1.15 cgd int));
194 1.53 christos static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
195 1.34 simonb static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
196 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
197 1.34 simonb static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
198 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
199 1.15 cgd struct kinfo_proc *, int));
200 1.34 simonb static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
201 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
202 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
203 1.2 mycroft
204 1.34 simonb
205 1.34 simonb static char *
206 1.34 simonb _kvm_ureadm(kd, p, va, cnt)
207 1.1 cgd kvm_t *kd;
208 1.34 simonb const struct miniproc *p;
209 1.1 cgd u_long va;
210 1.1 cgd u_long *cnt;
211 1.1 cgd {
212 1.21 perry u_long addr, head;
213 1.21 perry u_long offset;
214 1.1 cgd struct vm_map_entry vme;
215 1.23 chs struct vm_amap amap;
216 1.23 chs struct vm_anon *anonp, anon;
217 1.23 chs struct vm_page pg;
218 1.28 christos u_long slot;
219 1.1 cgd
220 1.36 tron if (kd->swapspc == NULL) {
221 1.61 christos kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
222 1.36 tron if (kd->swapspc == NULL)
223 1.48 enami return (NULL);
224 1.5 deraadt }
225 1.8 mycroft
226 1.1 cgd /*
227 1.1 cgd * Look through the address map for the memory object
228 1.1 cgd * that corresponds to the given virtual address.
229 1.1 cgd * The header just has the entire valid range.
230 1.1 cgd */
231 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
232 1.1 cgd addr = head;
233 1.73 ad for (;;) {
234 1.2 mycroft if (KREAD(kd, addr, &vme))
235 1.48 enami return (NULL);
236 1.1 cgd
237 1.23 chs if (va >= vme.start && va < vme.end &&
238 1.23 chs vme.aref.ar_amap != NULL)
239 1.23 chs break;
240 1.23 chs
241 1.1 cgd addr = (u_long)vme.next;
242 1.2 mycroft if (addr == head)
243 1.48 enami return (NULL);
244 1.1 cgd }
245 1.2 mycroft
246 1.1 cgd /*
247 1.23 chs * we found the map entry, now to find the object...
248 1.23 chs */
249 1.23 chs if (vme.aref.ar_amap == NULL)
250 1.48 enami return (NULL);
251 1.23 chs
252 1.23 chs addr = (u_long)vme.aref.ar_amap;
253 1.23 chs if (KREAD(kd, addr, &amap))
254 1.48 enami return (NULL);
255 1.23 chs
256 1.23 chs offset = va - vme.start;
257 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff;
258 1.23 chs /* sanity-check slot number */
259 1.48 enami if (slot > amap.am_nslot)
260 1.48 enami return (NULL);
261 1.23 chs
262 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
263 1.23 chs if (KREAD(kd, addr, &anonp))
264 1.48 enami return (NULL);
265 1.23 chs
266 1.23 chs addr = (u_long)anonp;
267 1.23 chs if (KREAD(kd, addr, &anon))
268 1.48 enami return (NULL);
269 1.23 chs
270 1.59 jmc addr = (u_long)anon.an_page;
271 1.23 chs if (addr) {
272 1.23 chs if (KREAD(kd, addr, &pg))
273 1.48 enami return (NULL);
274 1.23 chs
275 1.34 simonb if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
276 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
277 1.48 enami return (NULL);
278 1.48 enami } else {
279 1.60 yamt if (kd->swfd < 0 ||
280 1.60 yamt pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
281 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
282 1.48 enami return (NULL);
283 1.23 chs }
284 1.8 mycroft
285 1.2 mycroft /* Found the page. */
286 1.6 mycroft offset %= kd->nbpg;
287 1.6 mycroft *cnt = kd->nbpg - offset;
288 1.28 christos return (&kd->swapspc[(size_t)offset]);
289 1.2 mycroft }
290 1.1 cgd
291 1.34 simonb char *
292 1.34 simonb _kvm_uread(kd, p, va, cnt)
293 1.34 simonb kvm_t *kd;
294 1.34 simonb const struct proc *p;
295 1.34 simonb u_long va;
296 1.34 simonb u_long *cnt;
297 1.34 simonb {
298 1.34 simonb struct miniproc mp;
299 1.34 simonb
300 1.34 simonb PTOMINI(p, &mp);
301 1.34 simonb return (_kvm_ureadm(kd, &mp, va, cnt));
302 1.34 simonb }
303 1.34 simonb
304 1.1 cgd /*
305 1.65 elad * Convert credentials located in kernel space address 'cred' and store
306 1.65 elad * them in the appropriate members of 'eproc'.
307 1.65 elad */
308 1.65 elad static int
309 1.65 elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
310 1.65 elad {
311 1.68 christos struct kvm_kauth_cred kauthcred;
312 1.67 dsl struct ki_pcred *pc = &eproc->e_pcred;
313 1.67 dsl struct ki_ucred *uc = &eproc->e_ucred;
314 1.65 elad
315 1.65 elad if (KREAD(kd, cred, &kauthcred) != 0)
316 1.65 elad return (-1);
317 1.65 elad
318 1.65 elad /* inlined version of kauth_cred_to_pcred, see kauth(9). */
319 1.65 elad pc->p_ruid = kauthcred.cr_uid;
320 1.65 elad pc->p_svuid = kauthcred.cr_svuid;
321 1.65 elad pc->p_rgid = kauthcred.cr_gid;
322 1.65 elad pc->p_svgid = kauthcred.cr_svgid;
323 1.65 elad pc->p_refcnt = kauthcred.cr_refcnt;
324 1.67 dsl pc->p_pad = NULL;
325 1.65 elad
326 1.65 elad /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
327 1.65 elad uc->cr_ref = kauthcred.cr_refcnt;
328 1.65 elad uc->cr_uid = kauthcred.cr_euid;
329 1.65 elad uc->cr_gid = kauthcred.cr_egid;
330 1.71 christos uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
331 1.65 elad sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
332 1.65 elad memcpy(uc->cr_groups, kauthcred.cr_groups,
333 1.65 elad uc->cr_ngroups * sizeof(uc->cr_groups[0]));
334 1.65 elad
335 1.65 elad return (0);
336 1.65 elad }
337 1.65 elad
338 1.65 elad /*
339 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
340 1.1 cgd * at most maxcnt procs.
341 1.1 cgd */
342 1.1 cgd static int
343 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
344 1.1 cgd kvm_t *kd;
345 1.1 cgd int what, arg;
346 1.1 cgd struct proc *p;
347 1.1 cgd struct kinfo_proc *bp;
348 1.1 cgd int maxcnt;
349 1.1 cgd {
350 1.21 perry int cnt = 0;
351 1.46 thorpej int nlwps;
352 1.46 thorpej struct kinfo_lwp *kl;
353 1.1 cgd struct eproc eproc;
354 1.1 cgd struct pgrp pgrp;
355 1.1 cgd struct session sess;
356 1.1 cgd struct tty tty;
357 1.1 cgd struct proc proc;
358 1.1 cgd
359 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
360 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
361 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p);
362 1.1 cgd return (-1);
363 1.1 cgd }
364 1.65 elad if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
365 1.65 elad _kvm_err(kd, kd->program,
366 1.65 elad "can't read proc credentials at %p", p);
367 1.65 elad return (-1);
368 1.65 elad }
369 1.1 cgd
370 1.48 enami switch (what) {
371 1.31 simonb
372 1.1 cgd case KERN_PROC_PID:
373 1.1 cgd if (proc.p_pid != (pid_t)arg)
374 1.1 cgd continue;
375 1.1 cgd break;
376 1.1 cgd
377 1.1 cgd case KERN_PROC_UID:
378 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
379 1.1 cgd continue;
380 1.1 cgd break;
381 1.1 cgd
382 1.1 cgd case KERN_PROC_RUID:
383 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
384 1.1 cgd continue;
385 1.1 cgd break;
386 1.1 cgd }
387 1.1 cgd /*
388 1.1 cgd * We're going to add another proc to the set. If this
389 1.1 cgd * will overflow the buffer, assume the reason is because
390 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
391 1.1 cgd */
392 1.1 cgd if (cnt >= maxcnt) {
393 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
394 1.1 cgd return (-1);
395 1.1 cgd }
396 1.1 cgd /*
397 1.1 cgd * gather eproc
398 1.1 cgd */
399 1.1 cgd eproc.e_paddr = p;
400 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
401 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p",
402 1.48 enami proc.p_pgrp);
403 1.1 cgd return (-1);
404 1.1 cgd }
405 1.1 cgd eproc.e_sess = pgrp.pg_session;
406 1.1 cgd eproc.e_pgid = pgrp.pg_id;
407 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
408 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
409 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p",
410 1.48 enami pgrp.pg_session);
411 1.1 cgd return (-1);
412 1.1 cgd }
413 1.66 ad if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
414 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
415 1.1 cgd _kvm_err(kd, kd->program,
416 1.48 enami "can't read tty at %p", sess.s_ttyp);
417 1.1 cgd return (-1);
418 1.1 cgd }
419 1.1 cgd eproc.e_tdev = tty.t_dev;
420 1.1 cgd eproc.e_tsess = tty.t_session;
421 1.1 cgd if (tty.t_pgrp != NULL) {
422 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
423 1.1 cgd _kvm_err(kd, kd->program,
424 1.48 enami "can't read tpgrp at %p",
425 1.48 enami tty.t_pgrp);
426 1.1 cgd return (-1);
427 1.1 cgd }
428 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
429 1.1 cgd } else
430 1.1 cgd eproc.e_tpgid = -1;
431 1.1 cgd } else
432 1.1 cgd eproc.e_tdev = NODEV;
433 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
434 1.33 simonb eproc.e_sid = sess.s_sid;
435 1.1 cgd if (sess.s_leader == p)
436 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
437 1.48 enami /*
438 1.48 enami * Fill in the old-style proc.p_wmesg by copying the wmesg
439 1.55 wiz * from the first available LWP.
440 1.46 thorpej */
441 1.47 christos kl = kvm_getlwps(kd, proc.p_pid,
442 1.57 atatat (u_long)PTRTOUINT64(eproc.e_paddr),
443 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
444 1.46 thorpej if (kl) {
445 1.46 thorpej if (nlwps > 0) {
446 1.46 thorpej strcpy(eproc.e_wmesg, kl[0].l_wmesg);
447 1.46 thorpej }
448 1.46 thorpej }
449 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
450 1.34 simonb sizeof(eproc.e_vm));
451 1.9 pk
452 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
453 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
454 1.1 cgd
455 1.1 cgd switch (what) {
456 1.1 cgd
457 1.1 cgd case KERN_PROC_PGRP:
458 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
459 1.1 cgd continue;
460 1.1 cgd break;
461 1.1 cgd
462 1.1 cgd case KERN_PROC_TTY:
463 1.66 ad if ((proc.p_lflag & PL_CONTROLT) == 0 ||
464 1.48 enami eproc.e_tdev != (dev_t)arg)
465 1.1 cgd continue;
466 1.1 cgd break;
467 1.1 cgd }
468 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
469 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
470 1.1 cgd ++bp;
471 1.1 cgd ++cnt;
472 1.1 cgd }
473 1.1 cgd return (cnt);
474 1.1 cgd }
475 1.1 cgd
476 1.1 cgd /*
477 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
478 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
479 1.1 cgd */
480 1.1 cgd static int
481 1.53 christos kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
482 1.1 cgd kvm_t *kd;
483 1.1 cgd int what, arg;
484 1.1 cgd u_long a_allproc;
485 1.1 cgd u_long a_zombproc;
486 1.1 cgd int maxcnt;
487 1.1 cgd {
488 1.21 perry struct kinfo_proc *bp = kd->procbase;
489 1.53 christos int acnt, zcnt;
490 1.1 cgd struct proc *p;
491 1.1 cgd
492 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
493 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
494 1.1 cgd return (-1);
495 1.1 cgd }
496 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
497 1.1 cgd if (acnt < 0)
498 1.1 cgd return (acnt);
499 1.1 cgd
500 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
501 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
502 1.1 cgd return (-1);
503 1.1 cgd }
504 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
505 1.53 christos maxcnt - acnt);
506 1.1 cgd if (zcnt < 0)
507 1.1 cgd zcnt = 0;
508 1.1 cgd
509 1.1 cgd return (acnt + zcnt);
510 1.1 cgd }
511 1.1 cgd
512 1.34 simonb struct kinfo_proc2 *
513 1.34 simonb kvm_getproc2(kd, op, arg, esize, cnt)
514 1.34 simonb kvm_t *kd;
515 1.34 simonb int op, arg;
516 1.34 simonb size_t esize;
517 1.34 simonb int *cnt;
518 1.34 simonb {
519 1.34 simonb size_t size;
520 1.34 simonb int mib[6], st, nprocs;
521 1.46 thorpej struct pstats pstats;
522 1.34 simonb
523 1.34 simonb if (ISSYSCTL(kd)) {
524 1.34 simonb size = 0;
525 1.34 simonb mib[0] = CTL_KERN;
526 1.34 simonb mib[1] = KERN_PROC2;
527 1.34 simonb mib[2] = op;
528 1.34 simonb mib[3] = arg;
529 1.52 ross mib[4] = (int)esize;
530 1.63 yamt again:
531 1.34 simonb mib[5] = 0;
532 1.52 ross st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
533 1.34 simonb if (st == -1) {
534 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
535 1.48 enami return (NULL);
536 1.34 simonb }
537 1.34 simonb
538 1.52 ross mib[5] = (int) (size / esize);
539 1.61 christos KVM_ALLOC(kd, procbase2, size);
540 1.52 ross st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
541 1.34 simonb if (st == -1) {
542 1.63 yamt if (errno == ENOMEM) {
543 1.63 yamt goto again;
544 1.63 yamt }
545 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
546 1.48 enami return (NULL);
547 1.34 simonb }
548 1.52 ross nprocs = (int) (size / esize);
549 1.34 simonb } else {
550 1.34 simonb char *kp2c;
551 1.34 simonb struct kinfo_proc *kp;
552 1.34 simonb struct kinfo_proc2 kp2, *kp2p;
553 1.46 thorpej struct kinfo_lwp *kl;
554 1.46 thorpej int i, nlwps;
555 1.34 simonb
556 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs);
557 1.34 simonb if (kp == NULL)
558 1.48 enami return (NULL);
559 1.34 simonb
560 1.61 christos size = nprocs * esize;
561 1.61 christos KVM_ALLOC(kd, procbase2, size);
562 1.39 christos kp2c = (char *)(void *)kd->procbase2;
563 1.34 simonb kp2p = &kp2;
564 1.34 simonb for (i = 0; i < nprocs; i++, kp++) {
565 1.48 enami kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
566 1.57 atatat (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
567 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
568 1.64 chs
569 1.46 thorpej /* We use kl[0] as the "representative" LWP */
570 1.34 simonb memset(kp2p, 0, sizeof(kp2));
571 1.46 thorpej kp2p->p_forw = kl[0].l_forw;
572 1.46 thorpej kp2p->p_back = kl[0].l_back;
573 1.57 atatat kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
574 1.46 thorpej kp2p->p_addr = kl[0].l_addr;
575 1.57 atatat kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
576 1.57 atatat kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
577 1.57 atatat kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
578 1.57 atatat kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
579 1.57 atatat kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
580 1.57 atatat kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
581 1.57 atatat kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
582 1.34 simonb kp2p->p_tsess = 0;
583 1.69 dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
584 1.69 dsl kp2p->p_ru = 0;
585 1.69 dsl #else
586 1.69 dsl kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
587 1.69 dsl #endif
588 1.34 simonb
589 1.34 simonb kp2p->p_eflag = 0;
590 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig;
591 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag;
592 1.34 simonb
593 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid;
594 1.34 simonb
595 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid;
596 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid;
597 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid;
598 1.34 simonb
599 1.51 dsl kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
600 1.34 simonb
601 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
602 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
603 1.50 atatat kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
604 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
605 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
606 1.50 atatat kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
607 1.34 simonb
608 1.39 christos /*CONSTCOND*/
609 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
610 1.48 enami MIN(sizeof(kp2p->p_groups),
611 1.48 enami sizeof(kp->kp_eproc.e_ucred.cr_groups)));
612 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
613 1.34 simonb
614 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc;
615 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev;
616 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
617 1.57 atatat kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
618 1.34 simonb
619 1.34 simonb kp2p->p_estcpu = kp->kp_proc.p_estcpu;
620 1.71 christos kp2p->p_rtime_sec =
621 1.71 christos (uint32_t)kp->kp_proc.p_rtime.tv_sec;
622 1.71 christos kp2p->p_rtime_usec =
623 1.71 christos (uint32_t)kp->kp_proc.p_rtime.tv_usec;
624 1.70 christos kp2p->p_cpticks = kl[0].l_cpticks;
625 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
626 1.46 thorpej kp2p->p_swtime = kl[0].l_swtime;
627 1.46 thorpej kp2p->p_slptime = kl[0].l_slptime;
628 1.35 thorpej #if 0 /* XXX thorpej */
629 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags;
630 1.35 thorpej #else
631 1.35 thorpej kp2p->p_schedflags = 0;
632 1.35 thorpej #endif
633 1.34 simonb
634 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks;
635 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks;
636 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks;
637 1.34 simonb
638 1.57 atatat kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
639 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag;
640 1.34 simonb
641 1.46 thorpej kp2p->p_holdcnt = kl[0].l_holdcnt;
642 1.34 simonb
643 1.48 enami memcpy(&kp2p->p_siglist,
644 1.66 ad &kp->kp_proc.p_sigpend.sp_set,
645 1.48 enami sizeof(ki_sigset_t));
646 1.66 ad memset(&kp2p->p_sigmask, 0,
647 1.48 enami sizeof(ki_sigset_t));
648 1.48 enami memcpy(&kp2p->p_sigignore,
649 1.48 enami &kp->kp_proc.p_sigctx.ps_sigignore,
650 1.48 enami sizeof(ki_sigset_t));
651 1.48 enami memcpy(&kp2p->p_sigcatch,
652 1.48 enami &kp->kp_proc.p_sigctx.ps_sigcatch,
653 1.48 enami sizeof(ki_sigset_t));
654 1.34 simonb
655 1.64 chs kp2p->p_stat = kl[0].l_stat;
656 1.46 thorpej kp2p->p_priority = kl[0].l_priority;
657 1.46 thorpej kp2p->p_usrpri = kl[0].l_usrpri;
658 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice;
659 1.34 simonb
660 1.34 simonb kp2p->p_xstat = kp->kp_proc.p_xstat;
661 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag;
662 1.34 simonb
663 1.39 christos /*CONSTCOND*/
664 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
665 1.48 enami MIN(sizeof(kp2p->p_comm),
666 1.48 enami sizeof(kp->kp_proc.p_comm)));
667 1.34 simonb
668 1.48 enami strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
669 1.48 enami sizeof(kp2p->p_wmesg));
670 1.46 thorpej kp2p->p_wchan = kl[0].l_wchan;
671 1.48 enami strncpy(kp2p->p_login, kp->kp_eproc.e_login,
672 1.48 enami sizeof(kp2p->p_login));
673 1.34 simonb
674 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
675 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
676 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
677 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
678 1.34 simonb
679 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
680 1.34 simonb
681 1.46 thorpej kp2p->p_realflag = kp->kp_proc.p_flag;
682 1.46 thorpej kp2p->p_nlwps = kp->kp_proc.p_nlwps;
683 1.46 thorpej kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
684 1.46 thorpej kp2p->p_realstat = kp->kp_proc.p_stat;
685 1.46 thorpej
686 1.48 enami if (P_ZOMBIE(&kp->kp_proc) ||
687 1.46 thorpej kp->kp_proc.p_stats == NULL ||
688 1.48 enami KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
689 1.34 simonb kp2p->p_uvalid = 0;
690 1.34 simonb } else {
691 1.34 simonb kp2p->p_uvalid = 1;
692 1.34 simonb
693 1.39 christos kp2p->p_ustart_sec = (u_int32_t)
694 1.46 thorpej pstats.p_start.tv_sec;
695 1.39 christos kp2p->p_ustart_usec = (u_int32_t)
696 1.46 thorpej pstats.p_start.tv_usec;
697 1.39 christos
698 1.39 christos kp2p->p_uutime_sec = (u_int32_t)
699 1.46 thorpej pstats.p_ru.ru_utime.tv_sec;
700 1.39 christos kp2p->p_uutime_usec = (u_int32_t)
701 1.46 thorpej pstats.p_ru.ru_utime.tv_usec;
702 1.39 christos kp2p->p_ustime_sec = (u_int32_t)
703 1.46 thorpej pstats.p_ru.ru_stime.tv_sec;
704 1.39 christos kp2p->p_ustime_usec = (u_int32_t)
705 1.46 thorpej pstats.p_ru.ru_stime.tv_usec;
706 1.34 simonb
707 1.46 thorpej kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
708 1.46 thorpej kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
709 1.46 thorpej kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
710 1.46 thorpej kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
711 1.46 thorpej kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
712 1.46 thorpej kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
713 1.46 thorpej kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
714 1.46 thorpej kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
715 1.46 thorpej kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
716 1.46 thorpej kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
717 1.46 thorpej kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
718 1.46 thorpej kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
719 1.46 thorpej kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
720 1.46 thorpej kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
721 1.34 simonb
722 1.39 christos kp2p->p_uctime_sec = (u_int32_t)
723 1.46 thorpej (pstats.p_cru.ru_utime.tv_sec +
724 1.46 thorpej pstats.p_cru.ru_stime.tv_sec);
725 1.39 christos kp2p->p_uctime_usec = (u_int32_t)
726 1.46 thorpej (pstats.p_cru.ru_utime.tv_usec +
727 1.46 thorpej pstats.p_cru.ru_stime.tv_usec);
728 1.34 simonb }
729 1.34 simonb
730 1.34 simonb memcpy(kp2c, &kp2, esize);
731 1.34 simonb kp2c += esize;
732 1.34 simonb }
733 1.34 simonb }
734 1.34 simonb *cnt = nprocs;
735 1.34 simonb return (kd->procbase2);
736 1.46 thorpej }
737 1.46 thorpej
738 1.46 thorpej struct kinfo_lwp *
739 1.46 thorpej kvm_getlwps(kd, pid, paddr, esize, cnt)
740 1.46 thorpej kvm_t *kd;
741 1.46 thorpej int pid;
742 1.46 thorpej u_long paddr;
743 1.46 thorpej size_t esize;
744 1.46 thorpej int *cnt;
745 1.46 thorpej {
746 1.46 thorpej size_t size;
747 1.52 ross int mib[5], nlwps;
748 1.52 ross ssize_t st;
749 1.46 thorpej struct kinfo_lwp *kl;
750 1.46 thorpej
751 1.46 thorpej if (ISSYSCTL(kd)) {
752 1.46 thorpej size = 0;
753 1.46 thorpej mib[0] = CTL_KERN;
754 1.46 thorpej mib[1] = KERN_LWP;
755 1.46 thorpej mib[2] = pid;
756 1.52 ross mib[3] = (int)esize;
757 1.46 thorpej mib[4] = 0;
758 1.71 christos again:
759 1.52 ross st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
760 1.46 thorpej if (st == -1) {
761 1.71 christos switch (errno) {
762 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */
763 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps");
764 1.71 christos return NULL;
765 1.71 christos default:
766 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
767 1.71 christos return NULL;
768 1.71 christos }
769 1.46 thorpej }
770 1.52 ross mib[4] = (int) (size / esize);
771 1.61 christos KVM_ALLOC(kd, lwpbase, size);
772 1.52 ross st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
773 1.46 thorpej if (st == -1) {
774 1.71 christos switch (errno) {
775 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */
776 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps");
777 1.71 christos return NULL;
778 1.71 christos case ENOMEM:
779 1.71 christos goto again;
780 1.71 christos default:
781 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
782 1.71 christos return NULL;
783 1.71 christos }
784 1.46 thorpej }
785 1.52 ross nlwps = (int) (size / esize);
786 1.46 thorpej } else {
787 1.46 thorpej /* grovel through the memory image */
788 1.46 thorpej struct proc p;
789 1.46 thorpej struct lwp l;
790 1.46 thorpej u_long laddr;
791 1.70 christos void *back;
792 1.46 thorpej int i;
793 1.46 thorpej
794 1.46 thorpej st = kvm_read(kd, paddr, &p, sizeof(p));
795 1.46 thorpej if (st == -1) {
796 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
797 1.48 enami return (NULL);
798 1.46 thorpej }
799 1.46 thorpej
800 1.46 thorpej nlwps = p.p_nlwps;
801 1.61 christos size = nlwps * sizeof(*kd->lwpbase);
802 1.61 christos KVM_ALLOC(kd, lwpbase, size);
803 1.57 atatat laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
804 1.46 thorpej for (i = 0; (i < nlwps) && (laddr != 0); i++) {
805 1.46 thorpej st = kvm_read(kd, laddr, &l, sizeof(l));
806 1.46 thorpej if (st == -1) {
807 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
808 1.48 enami return (NULL);
809 1.46 thorpej }
810 1.46 thorpej kl = &kd->lwpbase[i];
811 1.46 thorpej kl->l_laddr = laddr;
812 1.70 christos kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
813 1.70 christos laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
814 1.70 christos st = kvm_read(kd, laddr, &back, sizeof(back));
815 1.70 christos if (st == -1) {
816 1.70 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
817 1.70 christos return (NULL);
818 1.70 christos }
819 1.70 christos kl->l_back = PTRTOUINT64(back);
820 1.57 atatat kl->l_addr = PTRTOUINT64(l.l_addr);
821 1.46 thorpej kl->l_lid = l.l_lid;
822 1.46 thorpej kl->l_flag = l.l_flag;
823 1.46 thorpej kl->l_swtime = l.l_swtime;
824 1.46 thorpej kl->l_slptime = l.l_slptime;
825 1.46 thorpej kl->l_schedflags = 0; /* XXX */
826 1.46 thorpej kl->l_holdcnt = l.l_holdcnt;
827 1.46 thorpej kl->l_priority = l.l_priority;
828 1.46 thorpej kl->l_usrpri = l.l_usrpri;
829 1.46 thorpej kl->l_stat = l.l_stat;
830 1.57 atatat kl->l_wchan = PTRTOUINT64(l.l_wchan);
831 1.46 thorpej if (l.l_wmesg)
832 1.46 thorpej (void)kvm_read(kd, (u_long)l.l_wmesg,
833 1.52 ross kl->l_wmesg, (size_t)WMESGLEN);
834 1.46 thorpej kl->l_cpuid = KI_NOCPU;
835 1.57 atatat laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
836 1.46 thorpej }
837 1.46 thorpej }
838 1.46 thorpej
839 1.46 thorpej *cnt = nlwps;
840 1.48 enami return (kd->lwpbase);
841 1.34 simonb }
842 1.34 simonb
843 1.1 cgd struct kinfo_proc *
844 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
845 1.1 cgd kvm_t *kd;
846 1.1 cgd int op, arg;
847 1.1 cgd int *cnt;
848 1.1 cgd {
849 1.7 cgd size_t size;
850 1.7 cgd int mib[4], st, nprocs;
851 1.1 cgd
852 1.34 simonb if (ISKMEM(kd)) {
853 1.1 cgd size = 0;
854 1.1 cgd mib[0] = CTL_KERN;
855 1.1 cgd mib[1] = KERN_PROC;
856 1.1 cgd mib[2] = op;
857 1.1 cgd mib[3] = arg;
858 1.52 ross st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
859 1.1 cgd if (st == -1) {
860 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
861 1.48 enami return (NULL);
862 1.1 cgd }
863 1.61 christos KVM_ALLOC(kd, procbase, size);
864 1.52 ross st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
865 1.1 cgd if (st == -1) {
866 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
867 1.48 enami return (NULL);
868 1.1 cgd }
869 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
870 1.1 cgd _kvm_err(kd, kd->program,
871 1.42 enami "proc size mismatch (%lu total, %lu chunks)",
872 1.42 enami (u_long)size, (u_long)sizeof(struct kinfo_proc));
873 1.48 enami return (NULL);
874 1.1 cgd }
875 1.52 ross nprocs = (int) (size / sizeof(struct kinfo_proc));
876 1.34 simonb } else if (ISSYSCTL(kd)) {
877 1.34 simonb _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
878 1.34 simonb "can't use kvm_getprocs");
879 1.48 enami return (NULL);
880 1.1 cgd } else {
881 1.53 christos struct nlist nl[4], *p;
882 1.1 cgd
883 1.56 christos (void)memset(nl, 0, sizeof(nl));
884 1.1 cgd nl[0].n_name = "_nprocs";
885 1.1 cgd nl[1].n_name = "_allproc";
886 1.53 christos nl[2].n_name = "_zombproc";
887 1.53 christos nl[3].n_name = NULL;
888 1.1 cgd
889 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
890 1.1 cgd for (p = nl; p->n_type != 0; ++p)
891 1.48 enami continue;
892 1.1 cgd _kvm_err(kd, kd->program,
893 1.48 enami "%s: no such symbol", p->n_name);
894 1.48 enami return (NULL);
895 1.1 cgd }
896 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
897 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
898 1.48 enami return (NULL);
899 1.1 cgd }
900 1.61 christos size = nprocs * sizeof(*kd->procbase);
901 1.61 christos KVM_ALLOC(kd, procbase, size);
902 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
903 1.53 christos nl[2].n_value, nprocs);
904 1.32 chs if (nprocs < 0)
905 1.48 enami return (NULL);
906 1.1 cgd #ifdef notdef
907 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
908 1.1 cgd (void)realloc(kd->procbase, size);
909 1.1 cgd #endif
910 1.1 cgd }
911 1.1 cgd *cnt = nprocs;
912 1.1 cgd return (kd->procbase);
913 1.1 cgd }
914 1.1 cgd
915 1.1 cgd void *
916 1.1 cgd _kvm_realloc(kd, p, n)
917 1.1 cgd kvm_t *kd;
918 1.1 cgd void *p;
919 1.1 cgd size_t n;
920 1.1 cgd {
921 1.34 simonb void *np = realloc(p, n);
922 1.1 cgd
923 1.36 tron if (np == NULL)
924 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
925 1.1 cgd return (np);
926 1.1 cgd }
927 1.1 cgd
928 1.1 cgd /*
929 1.1 cgd * Read in an argument vector from the user address space of process p.
930 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous
931 1.1 cgd * strings. This is used to read in both the command arguments and
932 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
933 1.1 cgd */
934 1.1 cgd static char **
935 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
936 1.1 cgd kvm_t *kd;
937 1.34 simonb const struct miniproc *p;
938 1.21 perry u_long addr;
939 1.21 perry int narg;
940 1.21 perry int maxcnt;
941 1.21 perry {
942 1.21 perry char *np, *cp, *ep, *ap;
943 1.28 christos u_long oaddr = (u_long)~0L;
944 1.28 christos u_long len;
945 1.28 christos size_t cc;
946 1.21 perry char **argv;
947 1.1 cgd
948 1.1 cgd /*
949 1.58 toshii * Check that there aren't an unreasonable number of arguments,
950 1.1 cgd * and that the address is in user space.
951 1.1 cgd */
952 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
953 1.48 enami return (NULL);
954 1.1 cgd
955 1.36 tron if (kd->argv == NULL) {
956 1.1 cgd /*
957 1.1 cgd * Try to avoid reallocs.
958 1.1 cgd */
959 1.1 cgd kd->argc = MAX(narg + 1, 32);
960 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
961 1.36 tron if (kd->argv == NULL)
962 1.48 enami return (NULL);
963 1.1 cgd } else if (narg + 1 > kd->argc) {
964 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
965 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
966 1.48 enami sizeof(*kd->argv));
967 1.36 tron if (kd->argv == NULL)
968 1.48 enami return (NULL);
969 1.1 cgd }
970 1.36 tron if (kd->argspc == NULL) {
971 1.61 christos kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
972 1.36 tron if (kd->argspc == NULL)
973 1.48 enami return (NULL);
974 1.61 christos kd->argspc_len = kd->nbpg;
975 1.1 cgd }
976 1.36 tron if (kd->argbuf == NULL) {
977 1.61 christos kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
978 1.36 tron if (kd->argbuf == NULL)
979 1.48 enami return (NULL);
980 1.10 mycroft }
981 1.10 mycroft cc = sizeof(char *) * narg;
982 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
983 1.48 enami return (NULL);
984 1.10 mycroft ap = np = kd->argspc;
985 1.1 cgd argv = kd->argv;
986 1.1 cgd len = 0;
987 1.1 cgd /*
988 1.1 cgd * Loop over pages, filling in the argument vector.
989 1.1 cgd */
990 1.36 tron while (argv < kd->argv + narg && *argv != NULL) {
991 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
992 1.10 mycroft if (addr != oaddr) {
993 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf,
994 1.28 christos (size_t)kd->nbpg) != kd->nbpg)
995 1.48 enami return (NULL);
996 1.10 mycroft oaddr = addr;
997 1.10 mycroft }
998 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
999 1.28 christos cp = kd->argbuf + (size_t)addr;
1000 1.28 christos cc = kd->nbpg - (size_t)addr;
1001 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
1002 1.28 christos cc = (size_t)(maxcnt - len);
1003 1.10 mycroft ep = memchr(cp, '\0', cc);
1004 1.36 tron if (ep != NULL)
1005 1.10 mycroft cc = ep - cp + 1;
1006 1.61 christos if (len + cc > kd->argspc_len) {
1007 1.52 ross ptrdiff_t off;
1008 1.21 perry char **pp;
1009 1.21 perry char *op = kd->argspc;
1010 1.1 cgd
1011 1.61 christos kd->argspc_len *= 2;
1012 1.61 christos kd->argspc = _kvm_realloc(kd, kd->argspc,
1013 1.61 christos kd->argspc_len);
1014 1.36 tron if (kd->argspc == NULL)
1015 1.48 enami return (NULL);
1016 1.1 cgd /*
1017 1.1 cgd * Adjust argv pointers in case realloc moved
1018 1.1 cgd * the string space.
1019 1.1 cgd */
1020 1.1 cgd off = kd->argspc - op;
1021 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
1022 1.1 cgd *pp += off;
1023 1.12 mycroft ap += off;
1024 1.12 mycroft np += off;
1025 1.1 cgd }
1026 1.10 mycroft memcpy(np, cp, cc);
1027 1.10 mycroft np += cc;
1028 1.1 cgd len += cc;
1029 1.36 tron if (ep != NULL) {
1030 1.10 mycroft *argv++ = ap;
1031 1.10 mycroft ap = np;
1032 1.10 mycroft } else
1033 1.10 mycroft *argv += cc;
1034 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
1035 1.1 cgd /*
1036 1.1 cgd * We're stopping prematurely. Terminate the
1037 1.10 mycroft * current string.
1038 1.1 cgd */
1039 1.36 tron if (ep == NULL) {
1040 1.10 mycroft *np = '\0';
1041 1.14 mycroft *argv++ = ap;
1042 1.10 mycroft }
1043 1.10 mycroft break;
1044 1.1 cgd }
1045 1.1 cgd }
1046 1.10 mycroft /* Make sure argv is terminated. */
1047 1.36 tron *argv = NULL;
1048 1.10 mycroft return (kd->argv);
1049 1.1 cgd }
1050 1.1 cgd
1051 1.1 cgd static void
1052 1.1 cgd ps_str_a(p, addr, n)
1053 1.1 cgd struct ps_strings *p;
1054 1.1 cgd u_long *addr;
1055 1.1 cgd int *n;
1056 1.1 cgd {
1057 1.48 enami
1058 1.1 cgd *addr = (u_long)p->ps_argvstr;
1059 1.1 cgd *n = p->ps_nargvstr;
1060 1.1 cgd }
1061 1.1 cgd
1062 1.1 cgd static void
1063 1.1 cgd ps_str_e(p, addr, n)
1064 1.1 cgd struct ps_strings *p;
1065 1.1 cgd u_long *addr;
1066 1.1 cgd int *n;
1067 1.1 cgd {
1068 1.48 enami
1069 1.1 cgd *addr = (u_long)p->ps_envstr;
1070 1.1 cgd *n = p->ps_nenvstr;
1071 1.1 cgd }
1072 1.1 cgd
1073 1.1 cgd /*
1074 1.1 cgd * Determine if the proc indicated by p is still active.
1075 1.1 cgd * This test is not 100% foolproof in theory, but chances of
1076 1.1 cgd * being wrong are very low.
1077 1.1 cgd */
1078 1.1 cgd static int
1079 1.1 cgd proc_verify(kd, kernp, p)
1080 1.1 cgd kvm_t *kd;
1081 1.1 cgd u_long kernp;
1082 1.34 simonb const struct miniproc *p;
1083 1.1 cgd {
1084 1.1 cgd struct proc kernproc;
1085 1.1 cgd
1086 1.1 cgd /*
1087 1.1 cgd * Just read in the whole proc. It's not that big relative
1088 1.1 cgd * to the cost of the read system call.
1089 1.1 cgd */
1090 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1091 1.1 cgd sizeof(kernproc))
1092 1.48 enami return (0);
1093 1.1 cgd return (p->p_pid == kernproc.p_pid &&
1094 1.48 enami (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1095 1.1 cgd }
1096 1.1 cgd
1097 1.1 cgd static char **
1098 1.34 simonb kvm_doargv(kd, p, nchr, info)
1099 1.1 cgd kvm_t *kd;
1100 1.34 simonb const struct miniproc *p;
1101 1.1 cgd int nchr;
1102 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
1103 1.1 cgd {
1104 1.21 perry char **ap;
1105 1.1 cgd u_long addr;
1106 1.1 cgd int cnt;
1107 1.1 cgd struct ps_strings arginfo;
1108 1.1 cgd
1109 1.1 cgd /*
1110 1.1 cgd * Pointers are stored at the top of the user stack.
1111 1.1 cgd */
1112 1.18 gwr if (p->p_stat == SZOMB)
1113 1.48 enami return (NULL);
1114 1.52 ross cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1115 1.28 christos (void *)&arginfo, sizeof(arginfo));
1116 1.18 gwr if (cnt != sizeof(arginfo))
1117 1.48 enami return (NULL);
1118 1.1 cgd
1119 1.1 cgd (*info)(&arginfo, &addr, &cnt);
1120 1.3 mycroft if (cnt == 0)
1121 1.48 enami return (NULL);
1122 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
1123 1.1 cgd /*
1124 1.1 cgd * For live kernels, make sure this process didn't go away.
1125 1.1 cgd */
1126 1.36 tron if (ap != NULL && ISALIVE(kd) &&
1127 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p))
1128 1.36 tron ap = NULL;
1129 1.1 cgd return (ap);
1130 1.1 cgd }
1131 1.1 cgd
1132 1.1 cgd /*
1133 1.1 cgd * Get the command args. This code is now machine independent.
1134 1.1 cgd */
1135 1.1 cgd char **
1136 1.1 cgd kvm_getargv(kd, kp, nchr)
1137 1.1 cgd kvm_t *kd;
1138 1.1 cgd const struct kinfo_proc *kp;
1139 1.1 cgd int nchr;
1140 1.1 cgd {
1141 1.34 simonb struct miniproc p;
1142 1.34 simonb
1143 1.34 simonb KPTOMINI(kp, &p);
1144 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a));
1145 1.1 cgd }
1146 1.1 cgd
1147 1.1 cgd char **
1148 1.1 cgd kvm_getenvv(kd, kp, nchr)
1149 1.1 cgd kvm_t *kd;
1150 1.1 cgd const struct kinfo_proc *kp;
1151 1.1 cgd int nchr;
1152 1.1 cgd {
1153 1.34 simonb struct miniproc p;
1154 1.34 simonb
1155 1.34 simonb KPTOMINI(kp, &p);
1156 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e));
1157 1.34 simonb }
1158 1.34 simonb
1159 1.34 simonb static char **
1160 1.34 simonb kvm_doargv2(kd, pid, type, nchr)
1161 1.34 simonb kvm_t *kd;
1162 1.34 simonb pid_t pid;
1163 1.34 simonb int type;
1164 1.34 simonb int nchr;
1165 1.34 simonb {
1166 1.34 simonb size_t bufs;
1167 1.39 christos int narg, mib[4];
1168 1.61 christos size_t newargspc_len;
1169 1.34 simonb char **ap, *bp, *endp;
1170 1.34 simonb
1171 1.34 simonb /*
1172 1.58 toshii * Check that there aren't an unreasonable number of arguments.
1173 1.34 simonb */
1174 1.34 simonb if (nchr > ARG_MAX)
1175 1.48 enami return (NULL);
1176 1.34 simonb
1177 1.34 simonb if (nchr == 0)
1178 1.34 simonb nchr = ARG_MAX;
1179 1.34 simonb
1180 1.34 simonb /* Get number of strings in argv */
1181 1.34 simonb mib[0] = CTL_KERN;
1182 1.34 simonb mib[1] = KERN_PROC_ARGS;
1183 1.34 simonb mib[2] = pid;
1184 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1185 1.34 simonb bufs = sizeof(narg);
1186 1.52 ross if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1187 1.48 enami return (NULL);
1188 1.34 simonb
1189 1.36 tron if (kd->argv == NULL) {
1190 1.34 simonb /*
1191 1.34 simonb * Try to avoid reallocs.
1192 1.34 simonb */
1193 1.34 simonb kd->argc = MAX(narg + 1, 32);
1194 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1195 1.36 tron if (kd->argv == NULL)
1196 1.48 enami return (NULL);
1197 1.34 simonb } else if (narg + 1 > kd->argc) {
1198 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1);
1199 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1200 1.48 enami sizeof(*kd->argv));
1201 1.36 tron if (kd->argv == NULL)
1202 1.48 enami return (NULL);
1203 1.34 simonb }
1204 1.34 simonb
1205 1.61 christos newargspc_len = MIN(nchr, ARG_MAX);
1206 1.61 christos KVM_ALLOC(kd, argspc, newargspc_len);
1207 1.61 christos memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1208 1.34 simonb
1209 1.34 simonb mib[0] = CTL_KERN;
1210 1.34 simonb mib[1] = KERN_PROC_ARGS;
1211 1.34 simonb mib[2] = pid;
1212 1.34 simonb mib[3] = type;
1213 1.61 christos bufs = kd->argspc_len;
1214 1.52 ross if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1215 1.48 enami return (NULL);
1216 1.34 simonb
1217 1.34 simonb bp = kd->argspc;
1218 1.61 christos bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1219 1.34 simonb ap = kd->argv;
1220 1.34 simonb endp = bp + MIN(nchr, bufs);
1221 1.34 simonb
1222 1.34 simonb while (bp < endp) {
1223 1.34 simonb *ap++ = bp;
1224 1.48 enami /*
1225 1.48 enami * XXX: don't need following anymore, or stick check
1226 1.48 enami * for max argc in above while loop?
1227 1.48 enami */
1228 1.34 simonb if (ap >= kd->argv + kd->argc) {
1229 1.34 simonb kd->argc *= 2;
1230 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv,
1231 1.34 simonb kd->argc * sizeof(*kd->argv));
1232 1.44 jdolecek ap = kd->argv;
1233 1.34 simonb }
1234 1.34 simonb bp += strlen(bp) + 1;
1235 1.34 simonb }
1236 1.34 simonb *ap = NULL;
1237 1.48 enami
1238 1.34 simonb return (kd->argv);
1239 1.34 simonb }
1240 1.34 simonb
1241 1.34 simonb char **
1242 1.34 simonb kvm_getargv2(kd, kp, nchr)
1243 1.34 simonb kvm_t *kd;
1244 1.34 simonb const struct kinfo_proc2 *kp;
1245 1.34 simonb int nchr;
1246 1.34 simonb {
1247 1.48 enami
1248 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1249 1.34 simonb }
1250 1.34 simonb
1251 1.34 simonb char **
1252 1.34 simonb kvm_getenvv2(kd, kp, nchr)
1253 1.34 simonb kvm_t *kd;
1254 1.34 simonb const struct kinfo_proc2 *kp;
1255 1.34 simonb int nchr;
1256 1.34 simonb {
1257 1.48 enami
1258 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1259 1.1 cgd }
1260 1.1 cgd
1261 1.1 cgd /*
1262 1.1 cgd * Read from user space. The user context is given by p.
1263 1.1 cgd */
1264 1.34 simonb static ssize_t
1265 1.34 simonb kvm_ureadm(kd, p, uva, buf, len)
1266 1.1 cgd kvm_t *kd;
1267 1.34 simonb const struct miniproc *p;
1268 1.21 perry u_long uva;
1269 1.21 perry char *buf;
1270 1.21 perry size_t len;
1271 1.1 cgd {
1272 1.21 perry char *cp;
1273 1.1 cgd
1274 1.1 cgd cp = buf;
1275 1.1 cgd while (len > 0) {
1276 1.28 christos size_t cc;
1277 1.21 perry char *dp;
1278 1.15 cgd u_long cnt;
1279 1.8 mycroft
1280 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt);
1281 1.36 tron if (dp == NULL) {
1282 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva);
1283 1.48 enami return (0);
1284 1.8 mycroft }
1285 1.28 christos cc = (size_t)MIN(cnt, len);
1286 1.25 perry memcpy(cp, dp, cc);
1287 1.1 cgd cp += cc;
1288 1.1 cgd uva += cc;
1289 1.1 cgd len -= cc;
1290 1.1 cgd }
1291 1.1 cgd return (ssize_t)(cp - buf);
1292 1.34 simonb }
1293 1.34 simonb
1294 1.34 simonb ssize_t
1295 1.34 simonb kvm_uread(kd, p, uva, buf, len)
1296 1.34 simonb kvm_t *kd;
1297 1.34 simonb const struct proc *p;
1298 1.48 enami u_long uva;
1299 1.34 simonb char *buf;
1300 1.34 simonb size_t len;
1301 1.34 simonb {
1302 1.34 simonb struct miniproc mp;
1303 1.34 simonb
1304 1.34 simonb PTOMINI(p, &mp);
1305 1.34 simonb return (kvm_ureadm(kd, &mp, uva, buf, len));
1306 1.1 cgd }
1307