kvm_proc.c revision 1.79 1 1.79 cegger /* $NetBSD: kvm_proc.c,v 1.79 2008/11/29 18:24:58 cegger Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft *
19 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
30 1.26 mycroft */
31 1.16 thorpej
32 1.1 cgd /*-
33 1.1 cgd * Copyright (c) 1989, 1992, 1993
34 1.1 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * This code is derived from software developed by the Computer Systems
37 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 1.1 cgd * BG 91-66 and contributed to Berkeley.
39 1.1 cgd *
40 1.1 cgd * Redistribution and use in source and binary forms, with or without
41 1.1 cgd * modification, are permitted provided that the following conditions
42 1.1 cgd * are met:
43 1.1 cgd * 1. Redistributions of source code must retain the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer.
45 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
46 1.1 cgd * notice, this list of conditions and the following disclaimer in the
47 1.1 cgd * documentation and/or other materials provided with the distribution.
48 1.54 agc * 3. Neither the name of the University nor the names of its contributors
49 1.1 cgd * may be used to endorse or promote products derived from this software
50 1.1 cgd * without specific prior written permission.
51 1.1 cgd *
52 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 1.1 cgd * SUCH DAMAGE.
63 1.1 cgd */
64 1.1 cgd
65 1.19 mikel #include <sys/cdefs.h>
66 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
67 1.16 thorpej #if 0
68 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 1.16 thorpej #else
70 1.79 cegger __RCSID("$NetBSD: kvm_proc.c,v 1.79 2008/11/29 18:24:58 cegger Exp $");
71 1.16 thorpej #endif
72 1.1 cgd #endif /* LIBC_SCCS and not lint */
73 1.1 cgd
74 1.1 cgd /*
75 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 1.1 cgd * users of this code, so we've factored it out into a separate module.
77 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 1.1 cgd * most other applications are interested only in open/close/read/nlist).
79 1.1 cgd */
80 1.1 cgd
81 1.1 cgd #include <sys/param.h>
82 1.1 cgd #include <sys/user.h>
83 1.46 thorpej #include <sys/lwp.h>
84 1.1 cgd #include <sys/proc.h>
85 1.1 cgd #include <sys/exec.h>
86 1.1 cgd #include <sys/stat.h>
87 1.1 cgd #include <sys/ioctl.h>
88 1.1 cgd #include <sys/tty.h>
89 1.62 yamt #include <sys/resourcevar.h>
90 1.68 christos #include <sys/mutex.h>
91 1.68 christos #include <sys/specificdata.h>
92 1.66 ad
93 1.63 yamt #include <errno.h>
94 1.7 cgd #include <stdlib.h>
95 1.52 ross #include <stddef.h>
96 1.10 mycroft #include <string.h>
97 1.1 cgd #include <unistd.h>
98 1.1 cgd #include <nlist.h>
99 1.1 cgd #include <kvm.h>
100 1.1 cgd
101 1.23 chs #include <uvm/uvm_extern.h>
102 1.29 mrg #include <uvm/uvm_amap.h>
103 1.23 chs
104 1.1 cgd #include <sys/sysctl.h>
105 1.1 cgd
106 1.1 cgd #include <limits.h>
107 1.1 cgd #include <db.h>
108 1.1 cgd #include <paths.h>
109 1.1 cgd
110 1.1 cgd #include "kvm_private.h"
111 1.1 cgd
112 1.34 simonb /*
113 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
114 1.34 simonb */
115 1.34 simonb struct miniproc {
116 1.34 simonb struct vmspace *p_vmspace;
117 1.34 simonb char p_stat;
118 1.34 simonb struct proc *p_paddr;
119 1.34 simonb pid_t p_pid;
120 1.34 simonb };
121 1.34 simonb
122 1.34 simonb /*
123 1.34 simonb * Convert from struct proc and kinfo_proc{,2} to miniproc.
124 1.34 simonb */
125 1.34 simonb #define PTOMINI(kp, p) \
126 1.48 enami do { \
127 1.34 simonb (p)->p_stat = (kp)->p_stat; \
128 1.34 simonb (p)->p_pid = (kp)->p_pid; \
129 1.34 simonb (p)->p_paddr = NULL; \
130 1.34 simonb (p)->p_vmspace = (kp)->p_vmspace; \
131 1.34 simonb } while (/*CONSTCOND*/0);
132 1.34 simonb
133 1.34 simonb #define KPTOMINI(kp, p) \
134 1.48 enami do { \
135 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \
136 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \
137 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
138 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
139 1.34 simonb } while (/*CONSTCOND*/0);
140 1.34 simonb
141 1.34 simonb #define KP2TOMINI(kp, p) \
142 1.48 enami do { \
143 1.34 simonb (p)->p_stat = (kp)->p_stat; \
144 1.34 simonb (p)->p_pid = (kp)->p_pid; \
145 1.34 simonb (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
146 1.34 simonb (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
147 1.34 simonb } while (/*CONSTCOND*/0);
148 1.34 simonb
149 1.68 christos /*
150 1.68 christos * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
151 1.68 christos * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
152 1.68 christos * kvm(3) so dumps can be read properly.
153 1.68 christos *
154 1.68 christos * Whenever NetBSD starts exporting credentials to userland consistently (using
155 1.68 christos * 'struct uucred', or something) this will have to be updated again.
156 1.68 christos */
157 1.68 christos struct kvm_kauth_cred {
158 1.68 christos u_int cr_refcnt; /* reference count */
159 1.77 elad uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
160 1.68 christos uid_t cr_uid; /* user id */
161 1.68 christos uid_t cr_euid; /* effective user id */
162 1.68 christos uid_t cr_svuid; /* saved effective user id */
163 1.68 christos gid_t cr_gid; /* group id */
164 1.68 christos gid_t cr_egid; /* effective group id */
165 1.68 christos gid_t cr_svgid; /* saved effective group id */
166 1.68 christos u_int cr_ngroups; /* number of groups */
167 1.68 christos gid_t cr_groups[NGROUPS]; /* group memberships */
168 1.68 christos specificdata_reference cr_sd; /* specific data */
169 1.68 christos };
170 1.68 christos
171 1.2 mycroft #define KREAD(kd, addr, obj) \
172 1.34 simonb (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
173 1.2 mycroft
174 1.34 simonb /* XXX: What uses these two functions? */
175 1.34 simonb char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
176 1.34 simonb u_long *));
177 1.15 cgd ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
178 1.15 cgd size_t));
179 1.15 cgd
180 1.34 simonb static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
181 1.34 simonb u_long *));
182 1.34 simonb static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
183 1.34 simonb char *, size_t));
184 1.34 simonb
185 1.34 simonb static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
186 1.15 cgd int));
187 1.53 christos static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
188 1.34 simonb static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
189 1.15 cgd void (*)(struct ps_strings *, u_long *, int *)));
190 1.34 simonb static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
191 1.15 cgd static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
192 1.15 cgd struct kinfo_proc *, int));
193 1.34 simonb static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
194 1.15 cgd static void ps_str_a __P((struct ps_strings *, u_long *, int *));
195 1.15 cgd static void ps_str_e __P((struct ps_strings *, u_long *, int *));
196 1.2 mycroft
197 1.34 simonb
198 1.34 simonb static char *
199 1.34 simonb _kvm_ureadm(kd, p, va, cnt)
200 1.1 cgd kvm_t *kd;
201 1.34 simonb const struct miniproc *p;
202 1.1 cgd u_long va;
203 1.1 cgd u_long *cnt;
204 1.1 cgd {
205 1.21 perry u_long addr, head;
206 1.21 perry u_long offset;
207 1.1 cgd struct vm_map_entry vme;
208 1.23 chs struct vm_amap amap;
209 1.23 chs struct vm_anon *anonp, anon;
210 1.23 chs struct vm_page pg;
211 1.28 christos u_long slot;
212 1.1 cgd
213 1.36 tron if (kd->swapspc == NULL) {
214 1.61 christos kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
215 1.36 tron if (kd->swapspc == NULL)
216 1.48 enami return (NULL);
217 1.5 deraadt }
218 1.8 mycroft
219 1.1 cgd /*
220 1.1 cgd * Look through the address map for the memory object
221 1.1 cgd * that corresponds to the given virtual address.
222 1.1 cgd * The header just has the entire valid range.
223 1.1 cgd */
224 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
225 1.1 cgd addr = head;
226 1.73 ad for (;;) {
227 1.2 mycroft if (KREAD(kd, addr, &vme))
228 1.48 enami return (NULL);
229 1.1 cgd
230 1.23 chs if (va >= vme.start && va < vme.end &&
231 1.23 chs vme.aref.ar_amap != NULL)
232 1.23 chs break;
233 1.23 chs
234 1.1 cgd addr = (u_long)vme.next;
235 1.2 mycroft if (addr == head)
236 1.48 enami return (NULL);
237 1.1 cgd }
238 1.2 mycroft
239 1.1 cgd /*
240 1.23 chs * we found the map entry, now to find the object...
241 1.23 chs */
242 1.23 chs if (vme.aref.ar_amap == NULL)
243 1.48 enami return (NULL);
244 1.23 chs
245 1.23 chs addr = (u_long)vme.aref.ar_amap;
246 1.23 chs if (KREAD(kd, addr, &amap))
247 1.48 enami return (NULL);
248 1.23 chs
249 1.23 chs offset = va - vme.start;
250 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff;
251 1.23 chs /* sanity-check slot number */
252 1.48 enami if (slot > amap.am_nslot)
253 1.48 enami return (NULL);
254 1.23 chs
255 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
256 1.23 chs if (KREAD(kd, addr, &anonp))
257 1.48 enami return (NULL);
258 1.23 chs
259 1.23 chs addr = (u_long)anonp;
260 1.23 chs if (KREAD(kd, addr, &anon))
261 1.48 enami return (NULL);
262 1.23 chs
263 1.59 jmc addr = (u_long)anon.an_page;
264 1.23 chs if (addr) {
265 1.23 chs if (KREAD(kd, addr, &pg))
266 1.48 enami return (NULL);
267 1.23 chs
268 1.76 ad if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
269 1.24 thorpej (off_t)pg.phys_addr) != kd->nbpg)
270 1.48 enami return (NULL);
271 1.48 enami } else {
272 1.60 yamt if (kd->swfd < 0 ||
273 1.76 ad _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
274 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
275 1.48 enami return (NULL);
276 1.23 chs }
277 1.8 mycroft
278 1.2 mycroft /* Found the page. */
279 1.6 mycroft offset %= kd->nbpg;
280 1.6 mycroft *cnt = kd->nbpg - offset;
281 1.28 christos return (&kd->swapspc[(size_t)offset]);
282 1.2 mycroft }
283 1.1 cgd
284 1.34 simonb char *
285 1.34 simonb _kvm_uread(kd, p, va, cnt)
286 1.34 simonb kvm_t *kd;
287 1.34 simonb const struct proc *p;
288 1.34 simonb u_long va;
289 1.34 simonb u_long *cnt;
290 1.34 simonb {
291 1.34 simonb struct miniproc mp;
292 1.34 simonb
293 1.34 simonb PTOMINI(p, &mp);
294 1.34 simonb return (_kvm_ureadm(kd, &mp, va, cnt));
295 1.34 simonb }
296 1.34 simonb
297 1.1 cgd /*
298 1.65 elad * Convert credentials located in kernel space address 'cred' and store
299 1.65 elad * them in the appropriate members of 'eproc'.
300 1.65 elad */
301 1.65 elad static int
302 1.65 elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
303 1.65 elad {
304 1.68 christos struct kvm_kauth_cred kauthcred;
305 1.67 dsl struct ki_pcred *pc = &eproc->e_pcred;
306 1.67 dsl struct ki_ucred *uc = &eproc->e_ucred;
307 1.65 elad
308 1.65 elad if (KREAD(kd, cred, &kauthcred) != 0)
309 1.65 elad return (-1);
310 1.65 elad
311 1.65 elad /* inlined version of kauth_cred_to_pcred, see kauth(9). */
312 1.65 elad pc->p_ruid = kauthcred.cr_uid;
313 1.65 elad pc->p_svuid = kauthcred.cr_svuid;
314 1.65 elad pc->p_rgid = kauthcred.cr_gid;
315 1.65 elad pc->p_svgid = kauthcred.cr_svgid;
316 1.65 elad pc->p_refcnt = kauthcred.cr_refcnt;
317 1.67 dsl pc->p_pad = NULL;
318 1.65 elad
319 1.65 elad /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
320 1.65 elad uc->cr_ref = kauthcred.cr_refcnt;
321 1.65 elad uc->cr_uid = kauthcred.cr_euid;
322 1.65 elad uc->cr_gid = kauthcred.cr_egid;
323 1.71 christos uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
324 1.65 elad sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
325 1.65 elad memcpy(uc->cr_groups, kauthcred.cr_groups,
326 1.65 elad uc->cr_ngroups * sizeof(uc->cr_groups[0]));
327 1.65 elad
328 1.65 elad return (0);
329 1.65 elad }
330 1.65 elad
331 1.65 elad /*
332 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
333 1.1 cgd * at most maxcnt procs.
334 1.1 cgd */
335 1.1 cgd static int
336 1.1 cgd kvm_proclist(kd, what, arg, p, bp, maxcnt)
337 1.1 cgd kvm_t *kd;
338 1.1 cgd int what, arg;
339 1.1 cgd struct proc *p;
340 1.1 cgd struct kinfo_proc *bp;
341 1.1 cgd int maxcnt;
342 1.1 cgd {
343 1.21 perry int cnt = 0;
344 1.46 thorpej int nlwps;
345 1.46 thorpej struct kinfo_lwp *kl;
346 1.1 cgd struct eproc eproc;
347 1.1 cgd struct pgrp pgrp;
348 1.1 cgd struct session sess;
349 1.1 cgd struct tty tty;
350 1.1 cgd struct proc proc;
351 1.1 cgd
352 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
353 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
354 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p);
355 1.1 cgd return (-1);
356 1.1 cgd }
357 1.65 elad if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
358 1.65 elad _kvm_err(kd, kd->program,
359 1.65 elad "can't read proc credentials at %p", p);
360 1.65 elad return (-1);
361 1.65 elad }
362 1.1 cgd
363 1.48 enami switch (what) {
364 1.31 simonb
365 1.1 cgd case KERN_PROC_PID:
366 1.1 cgd if (proc.p_pid != (pid_t)arg)
367 1.1 cgd continue;
368 1.1 cgd break;
369 1.1 cgd
370 1.1 cgd case KERN_PROC_UID:
371 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
372 1.1 cgd continue;
373 1.1 cgd break;
374 1.1 cgd
375 1.1 cgd case KERN_PROC_RUID:
376 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
377 1.1 cgd continue;
378 1.1 cgd break;
379 1.1 cgd }
380 1.1 cgd /*
381 1.1 cgd * We're going to add another proc to the set. If this
382 1.1 cgd * will overflow the buffer, assume the reason is because
383 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
384 1.1 cgd */
385 1.1 cgd if (cnt >= maxcnt) {
386 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
387 1.1 cgd return (-1);
388 1.1 cgd }
389 1.1 cgd /*
390 1.1 cgd * gather eproc
391 1.1 cgd */
392 1.1 cgd eproc.e_paddr = p;
393 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
394 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p",
395 1.48 enami proc.p_pgrp);
396 1.1 cgd return (-1);
397 1.1 cgd }
398 1.1 cgd eproc.e_sess = pgrp.pg_session;
399 1.1 cgd eproc.e_pgid = pgrp.pg_id;
400 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
401 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
402 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p",
403 1.48 enami pgrp.pg_session);
404 1.1 cgd return (-1);
405 1.1 cgd }
406 1.66 ad if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
407 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
408 1.1 cgd _kvm_err(kd, kd->program,
409 1.48 enami "can't read tty at %p", sess.s_ttyp);
410 1.1 cgd return (-1);
411 1.1 cgd }
412 1.1 cgd eproc.e_tdev = tty.t_dev;
413 1.1 cgd eproc.e_tsess = tty.t_session;
414 1.1 cgd if (tty.t_pgrp != NULL) {
415 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
416 1.1 cgd _kvm_err(kd, kd->program,
417 1.48 enami "can't read tpgrp at %p",
418 1.48 enami tty.t_pgrp);
419 1.1 cgd return (-1);
420 1.1 cgd }
421 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
422 1.1 cgd } else
423 1.1 cgd eproc.e_tpgid = -1;
424 1.1 cgd } else
425 1.1 cgd eproc.e_tdev = NODEV;
426 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
427 1.33 simonb eproc.e_sid = sess.s_sid;
428 1.1 cgd if (sess.s_leader == p)
429 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
430 1.48 enami /*
431 1.48 enami * Fill in the old-style proc.p_wmesg by copying the wmesg
432 1.55 wiz * from the first available LWP.
433 1.46 thorpej */
434 1.47 christos kl = kvm_getlwps(kd, proc.p_pid,
435 1.57 atatat (u_long)PTRTOUINT64(eproc.e_paddr),
436 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
437 1.46 thorpej if (kl) {
438 1.46 thorpej if (nlwps > 0) {
439 1.46 thorpej strcpy(eproc.e_wmesg, kl[0].l_wmesg);
440 1.46 thorpej }
441 1.46 thorpej }
442 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
443 1.34 simonb sizeof(eproc.e_vm));
444 1.9 pk
445 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
446 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
447 1.1 cgd
448 1.1 cgd switch (what) {
449 1.1 cgd
450 1.1 cgd case KERN_PROC_PGRP:
451 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
452 1.1 cgd continue;
453 1.1 cgd break;
454 1.1 cgd
455 1.1 cgd case KERN_PROC_TTY:
456 1.66 ad if ((proc.p_lflag & PL_CONTROLT) == 0 ||
457 1.48 enami eproc.e_tdev != (dev_t)arg)
458 1.1 cgd continue;
459 1.1 cgd break;
460 1.1 cgd }
461 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
462 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
463 1.1 cgd ++bp;
464 1.1 cgd ++cnt;
465 1.1 cgd }
466 1.1 cgd return (cnt);
467 1.1 cgd }
468 1.1 cgd
469 1.1 cgd /*
470 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
471 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
472 1.1 cgd */
473 1.1 cgd static int
474 1.53 christos kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
475 1.1 cgd kvm_t *kd;
476 1.1 cgd int what, arg;
477 1.1 cgd u_long a_allproc;
478 1.1 cgd u_long a_zombproc;
479 1.1 cgd int maxcnt;
480 1.1 cgd {
481 1.21 perry struct kinfo_proc *bp = kd->procbase;
482 1.53 christos int acnt, zcnt;
483 1.1 cgd struct proc *p;
484 1.1 cgd
485 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
486 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
487 1.1 cgd return (-1);
488 1.1 cgd }
489 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
490 1.1 cgd if (acnt < 0)
491 1.1 cgd return (acnt);
492 1.1 cgd
493 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
494 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
495 1.1 cgd return (-1);
496 1.1 cgd }
497 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
498 1.53 christos maxcnt - acnt);
499 1.1 cgd if (zcnt < 0)
500 1.1 cgd zcnt = 0;
501 1.1 cgd
502 1.1 cgd return (acnt + zcnt);
503 1.1 cgd }
504 1.1 cgd
505 1.34 simonb struct kinfo_proc2 *
506 1.34 simonb kvm_getproc2(kd, op, arg, esize, cnt)
507 1.34 simonb kvm_t *kd;
508 1.34 simonb int op, arg;
509 1.34 simonb size_t esize;
510 1.34 simonb int *cnt;
511 1.34 simonb {
512 1.34 simonb size_t size;
513 1.34 simonb int mib[6], st, nprocs;
514 1.46 thorpej struct pstats pstats;
515 1.34 simonb
516 1.34 simonb if (ISSYSCTL(kd)) {
517 1.34 simonb size = 0;
518 1.34 simonb mib[0] = CTL_KERN;
519 1.34 simonb mib[1] = KERN_PROC2;
520 1.34 simonb mib[2] = op;
521 1.34 simonb mib[3] = arg;
522 1.52 ross mib[4] = (int)esize;
523 1.63 yamt again:
524 1.34 simonb mib[5] = 0;
525 1.52 ross st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
526 1.34 simonb if (st == -1) {
527 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
528 1.48 enami return (NULL);
529 1.34 simonb }
530 1.34 simonb
531 1.52 ross mib[5] = (int) (size / esize);
532 1.61 christos KVM_ALLOC(kd, procbase2, size);
533 1.52 ross st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
534 1.34 simonb if (st == -1) {
535 1.63 yamt if (errno == ENOMEM) {
536 1.63 yamt goto again;
537 1.63 yamt }
538 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
539 1.48 enami return (NULL);
540 1.34 simonb }
541 1.52 ross nprocs = (int) (size / esize);
542 1.34 simonb } else {
543 1.34 simonb char *kp2c;
544 1.34 simonb struct kinfo_proc *kp;
545 1.34 simonb struct kinfo_proc2 kp2, *kp2p;
546 1.46 thorpej struct kinfo_lwp *kl;
547 1.46 thorpej int i, nlwps;
548 1.34 simonb
549 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs);
550 1.34 simonb if (kp == NULL)
551 1.48 enami return (NULL);
552 1.34 simonb
553 1.61 christos size = nprocs * esize;
554 1.61 christos KVM_ALLOC(kd, procbase2, size);
555 1.39 christos kp2c = (char *)(void *)kd->procbase2;
556 1.34 simonb kp2p = &kp2;
557 1.34 simonb for (i = 0; i < nprocs; i++, kp++) {
558 1.75 yamt struct timeval tv;
559 1.75 yamt
560 1.48 enami kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
561 1.57 atatat (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
562 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
563 1.64 chs
564 1.79 cegger if (kl == NULL) {
565 1.79 cegger _kvm_syserr(kd, NULL,
566 1.79 cegger "kvm_getlwps() failed on process %u\n",
567 1.79 cegger kp->kp_proc.p_pid);
568 1.79 cegger if (nlwps == 0)
569 1.79 cegger return NULL;
570 1.79 cegger else
571 1.79 cegger continue;
572 1.79 cegger }
573 1.79 cegger
574 1.46 thorpej /* We use kl[0] as the "representative" LWP */
575 1.34 simonb memset(kp2p, 0, sizeof(kp2));
576 1.46 thorpej kp2p->p_forw = kl[0].l_forw;
577 1.46 thorpej kp2p->p_back = kl[0].l_back;
578 1.57 atatat kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
579 1.46 thorpej kp2p->p_addr = kl[0].l_addr;
580 1.57 atatat kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
581 1.57 atatat kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
582 1.57 atatat kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
583 1.57 atatat kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
584 1.57 atatat kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
585 1.57 atatat kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
586 1.57 atatat kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
587 1.34 simonb kp2p->p_tsess = 0;
588 1.69 dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
589 1.69 dsl kp2p->p_ru = 0;
590 1.69 dsl #else
591 1.69 dsl kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
592 1.69 dsl #endif
593 1.34 simonb
594 1.34 simonb kp2p->p_eflag = 0;
595 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig;
596 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag;
597 1.34 simonb
598 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid;
599 1.34 simonb
600 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid;
601 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid;
602 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid;
603 1.34 simonb
604 1.51 dsl kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
605 1.34 simonb
606 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
607 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
608 1.50 atatat kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
609 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
610 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
611 1.50 atatat kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
612 1.34 simonb
613 1.39 christos /*CONSTCOND*/
614 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
615 1.48 enami MIN(sizeof(kp2p->p_groups),
616 1.48 enami sizeof(kp->kp_eproc.e_ucred.cr_groups)));
617 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
618 1.34 simonb
619 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc;
620 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev;
621 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
622 1.57 atatat kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
623 1.34 simonb
624 1.74 ad kp2p->p_estcpu = 0;
625 1.75 yamt bintime2timeval(&kp->kp_proc.p_rtime, &tv);
626 1.75 yamt kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
627 1.75 yamt kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
628 1.70 christos kp2p->p_cpticks = kl[0].l_cpticks;
629 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
630 1.46 thorpej kp2p->p_swtime = kl[0].l_swtime;
631 1.46 thorpej kp2p->p_slptime = kl[0].l_slptime;
632 1.35 thorpej #if 0 /* XXX thorpej */
633 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags;
634 1.35 thorpej #else
635 1.35 thorpej kp2p->p_schedflags = 0;
636 1.35 thorpej #endif
637 1.34 simonb
638 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks;
639 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks;
640 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks;
641 1.34 simonb
642 1.57 atatat kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
643 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag;
644 1.34 simonb
645 1.46 thorpej kp2p->p_holdcnt = kl[0].l_holdcnt;
646 1.34 simonb
647 1.48 enami memcpy(&kp2p->p_siglist,
648 1.66 ad &kp->kp_proc.p_sigpend.sp_set,
649 1.48 enami sizeof(ki_sigset_t));
650 1.66 ad memset(&kp2p->p_sigmask, 0,
651 1.48 enami sizeof(ki_sigset_t));
652 1.48 enami memcpy(&kp2p->p_sigignore,
653 1.48 enami &kp->kp_proc.p_sigctx.ps_sigignore,
654 1.48 enami sizeof(ki_sigset_t));
655 1.48 enami memcpy(&kp2p->p_sigcatch,
656 1.48 enami &kp->kp_proc.p_sigctx.ps_sigcatch,
657 1.48 enami sizeof(ki_sigset_t));
658 1.34 simonb
659 1.64 chs kp2p->p_stat = kl[0].l_stat;
660 1.46 thorpej kp2p->p_priority = kl[0].l_priority;
661 1.74 ad kp2p->p_usrpri = kl[0].l_priority;
662 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice;
663 1.34 simonb
664 1.34 simonb kp2p->p_xstat = kp->kp_proc.p_xstat;
665 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag;
666 1.34 simonb
667 1.39 christos /*CONSTCOND*/
668 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
669 1.48 enami MIN(sizeof(kp2p->p_comm),
670 1.48 enami sizeof(kp->kp_proc.p_comm)));
671 1.34 simonb
672 1.48 enami strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
673 1.48 enami sizeof(kp2p->p_wmesg));
674 1.46 thorpej kp2p->p_wchan = kl[0].l_wchan;
675 1.48 enami strncpy(kp2p->p_login, kp->kp_eproc.e_login,
676 1.48 enami sizeof(kp2p->p_login));
677 1.34 simonb
678 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
679 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
680 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
681 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
682 1.34 simonb
683 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
684 1.34 simonb
685 1.46 thorpej kp2p->p_realflag = kp->kp_proc.p_flag;
686 1.46 thorpej kp2p->p_nlwps = kp->kp_proc.p_nlwps;
687 1.46 thorpej kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
688 1.46 thorpej kp2p->p_realstat = kp->kp_proc.p_stat;
689 1.46 thorpej
690 1.48 enami if (P_ZOMBIE(&kp->kp_proc) ||
691 1.46 thorpej kp->kp_proc.p_stats == NULL ||
692 1.48 enami KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
693 1.34 simonb kp2p->p_uvalid = 0;
694 1.34 simonb } else {
695 1.34 simonb kp2p->p_uvalid = 1;
696 1.34 simonb
697 1.39 christos kp2p->p_ustart_sec = (u_int32_t)
698 1.46 thorpej pstats.p_start.tv_sec;
699 1.39 christos kp2p->p_ustart_usec = (u_int32_t)
700 1.46 thorpej pstats.p_start.tv_usec;
701 1.39 christos
702 1.39 christos kp2p->p_uutime_sec = (u_int32_t)
703 1.46 thorpej pstats.p_ru.ru_utime.tv_sec;
704 1.39 christos kp2p->p_uutime_usec = (u_int32_t)
705 1.46 thorpej pstats.p_ru.ru_utime.tv_usec;
706 1.39 christos kp2p->p_ustime_sec = (u_int32_t)
707 1.46 thorpej pstats.p_ru.ru_stime.tv_sec;
708 1.39 christos kp2p->p_ustime_usec = (u_int32_t)
709 1.46 thorpej pstats.p_ru.ru_stime.tv_usec;
710 1.34 simonb
711 1.46 thorpej kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
712 1.46 thorpej kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
713 1.46 thorpej kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
714 1.46 thorpej kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
715 1.46 thorpej kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
716 1.46 thorpej kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
717 1.46 thorpej kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
718 1.46 thorpej kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
719 1.46 thorpej kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
720 1.46 thorpej kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
721 1.46 thorpej kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
722 1.46 thorpej kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
723 1.46 thorpej kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
724 1.46 thorpej kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
725 1.34 simonb
726 1.39 christos kp2p->p_uctime_sec = (u_int32_t)
727 1.46 thorpej (pstats.p_cru.ru_utime.tv_sec +
728 1.46 thorpej pstats.p_cru.ru_stime.tv_sec);
729 1.39 christos kp2p->p_uctime_usec = (u_int32_t)
730 1.46 thorpej (pstats.p_cru.ru_utime.tv_usec +
731 1.46 thorpej pstats.p_cru.ru_stime.tv_usec);
732 1.34 simonb }
733 1.34 simonb
734 1.34 simonb memcpy(kp2c, &kp2, esize);
735 1.34 simonb kp2c += esize;
736 1.34 simonb }
737 1.34 simonb }
738 1.34 simonb *cnt = nprocs;
739 1.34 simonb return (kd->procbase2);
740 1.46 thorpej }
741 1.46 thorpej
742 1.46 thorpej struct kinfo_lwp *
743 1.46 thorpej kvm_getlwps(kd, pid, paddr, esize, cnt)
744 1.46 thorpej kvm_t *kd;
745 1.46 thorpej int pid;
746 1.46 thorpej u_long paddr;
747 1.46 thorpej size_t esize;
748 1.46 thorpej int *cnt;
749 1.46 thorpej {
750 1.46 thorpej size_t size;
751 1.52 ross int mib[5], nlwps;
752 1.52 ross ssize_t st;
753 1.46 thorpej struct kinfo_lwp *kl;
754 1.46 thorpej
755 1.46 thorpej if (ISSYSCTL(kd)) {
756 1.46 thorpej size = 0;
757 1.46 thorpej mib[0] = CTL_KERN;
758 1.46 thorpej mib[1] = KERN_LWP;
759 1.46 thorpej mib[2] = pid;
760 1.52 ross mib[3] = (int)esize;
761 1.46 thorpej mib[4] = 0;
762 1.71 christos again:
763 1.52 ross st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
764 1.46 thorpej if (st == -1) {
765 1.71 christos switch (errno) {
766 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */
767 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps");
768 1.71 christos return NULL;
769 1.71 christos default:
770 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
771 1.71 christos return NULL;
772 1.71 christos }
773 1.46 thorpej }
774 1.52 ross mib[4] = (int) (size / esize);
775 1.61 christos KVM_ALLOC(kd, lwpbase, size);
776 1.52 ross st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
777 1.46 thorpej if (st == -1) {
778 1.71 christos switch (errno) {
779 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */
780 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps");
781 1.71 christos return NULL;
782 1.71 christos case ENOMEM:
783 1.71 christos goto again;
784 1.71 christos default:
785 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
786 1.71 christos return NULL;
787 1.71 christos }
788 1.46 thorpej }
789 1.52 ross nlwps = (int) (size / esize);
790 1.46 thorpej } else {
791 1.46 thorpej /* grovel through the memory image */
792 1.46 thorpej struct proc p;
793 1.46 thorpej struct lwp l;
794 1.46 thorpej u_long laddr;
795 1.70 christos void *back;
796 1.46 thorpej int i;
797 1.46 thorpej
798 1.46 thorpej st = kvm_read(kd, paddr, &p, sizeof(p));
799 1.46 thorpej if (st == -1) {
800 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
801 1.48 enami return (NULL);
802 1.46 thorpej }
803 1.46 thorpej
804 1.46 thorpej nlwps = p.p_nlwps;
805 1.61 christos size = nlwps * sizeof(*kd->lwpbase);
806 1.61 christos KVM_ALLOC(kd, lwpbase, size);
807 1.57 atatat laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
808 1.46 thorpej for (i = 0; (i < nlwps) && (laddr != 0); i++) {
809 1.46 thorpej st = kvm_read(kd, laddr, &l, sizeof(l));
810 1.46 thorpej if (st == -1) {
811 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
812 1.48 enami return (NULL);
813 1.46 thorpej }
814 1.46 thorpej kl = &kd->lwpbase[i];
815 1.46 thorpej kl->l_laddr = laddr;
816 1.70 christos kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
817 1.70 christos laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
818 1.70 christos st = kvm_read(kd, laddr, &back, sizeof(back));
819 1.70 christos if (st == -1) {
820 1.70 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
821 1.70 christos return (NULL);
822 1.70 christos }
823 1.70 christos kl->l_back = PTRTOUINT64(back);
824 1.57 atatat kl->l_addr = PTRTOUINT64(l.l_addr);
825 1.46 thorpej kl->l_lid = l.l_lid;
826 1.46 thorpej kl->l_flag = l.l_flag;
827 1.46 thorpej kl->l_swtime = l.l_swtime;
828 1.46 thorpej kl->l_slptime = l.l_slptime;
829 1.46 thorpej kl->l_schedflags = 0; /* XXX */
830 1.46 thorpej kl->l_holdcnt = l.l_holdcnt;
831 1.46 thorpej kl->l_priority = l.l_priority;
832 1.74 ad kl->l_usrpri = l.l_priority;
833 1.46 thorpej kl->l_stat = l.l_stat;
834 1.57 atatat kl->l_wchan = PTRTOUINT64(l.l_wchan);
835 1.46 thorpej if (l.l_wmesg)
836 1.46 thorpej (void)kvm_read(kd, (u_long)l.l_wmesg,
837 1.52 ross kl->l_wmesg, (size_t)WMESGLEN);
838 1.46 thorpej kl->l_cpuid = KI_NOCPU;
839 1.57 atatat laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
840 1.46 thorpej }
841 1.46 thorpej }
842 1.46 thorpej
843 1.46 thorpej *cnt = nlwps;
844 1.48 enami return (kd->lwpbase);
845 1.34 simonb }
846 1.34 simonb
847 1.1 cgd struct kinfo_proc *
848 1.1 cgd kvm_getprocs(kd, op, arg, cnt)
849 1.1 cgd kvm_t *kd;
850 1.1 cgd int op, arg;
851 1.1 cgd int *cnt;
852 1.1 cgd {
853 1.7 cgd size_t size;
854 1.7 cgd int mib[4], st, nprocs;
855 1.1 cgd
856 1.34 simonb if (ISKMEM(kd)) {
857 1.1 cgd size = 0;
858 1.1 cgd mib[0] = CTL_KERN;
859 1.1 cgd mib[1] = KERN_PROC;
860 1.1 cgd mib[2] = op;
861 1.1 cgd mib[3] = arg;
862 1.52 ross st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
863 1.1 cgd if (st == -1) {
864 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
865 1.48 enami return (NULL);
866 1.1 cgd }
867 1.61 christos KVM_ALLOC(kd, procbase, size);
868 1.52 ross st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
869 1.1 cgd if (st == -1) {
870 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
871 1.48 enami return (NULL);
872 1.1 cgd }
873 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
874 1.1 cgd _kvm_err(kd, kd->program,
875 1.42 enami "proc size mismatch (%lu total, %lu chunks)",
876 1.42 enami (u_long)size, (u_long)sizeof(struct kinfo_proc));
877 1.48 enami return (NULL);
878 1.1 cgd }
879 1.52 ross nprocs = (int) (size / sizeof(struct kinfo_proc));
880 1.34 simonb } else if (ISSYSCTL(kd)) {
881 1.34 simonb _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
882 1.34 simonb "can't use kvm_getprocs");
883 1.48 enami return (NULL);
884 1.1 cgd } else {
885 1.53 christos struct nlist nl[4], *p;
886 1.1 cgd
887 1.56 christos (void)memset(nl, 0, sizeof(nl));
888 1.1 cgd nl[0].n_name = "_nprocs";
889 1.1 cgd nl[1].n_name = "_allproc";
890 1.53 christos nl[2].n_name = "_zombproc";
891 1.53 christos nl[3].n_name = NULL;
892 1.1 cgd
893 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
894 1.1 cgd for (p = nl; p->n_type != 0; ++p)
895 1.48 enami continue;
896 1.1 cgd _kvm_err(kd, kd->program,
897 1.48 enami "%s: no such symbol", p->n_name);
898 1.48 enami return (NULL);
899 1.1 cgd }
900 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
901 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
902 1.48 enami return (NULL);
903 1.1 cgd }
904 1.61 christos size = nprocs * sizeof(*kd->procbase);
905 1.61 christos KVM_ALLOC(kd, procbase, size);
906 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
907 1.53 christos nl[2].n_value, nprocs);
908 1.32 chs if (nprocs < 0)
909 1.48 enami return (NULL);
910 1.1 cgd #ifdef notdef
911 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
912 1.1 cgd (void)realloc(kd->procbase, size);
913 1.1 cgd #endif
914 1.1 cgd }
915 1.1 cgd *cnt = nprocs;
916 1.1 cgd return (kd->procbase);
917 1.1 cgd }
918 1.1 cgd
919 1.1 cgd void *
920 1.1 cgd _kvm_realloc(kd, p, n)
921 1.1 cgd kvm_t *kd;
922 1.1 cgd void *p;
923 1.1 cgd size_t n;
924 1.1 cgd {
925 1.34 simonb void *np = realloc(p, n);
926 1.1 cgd
927 1.36 tron if (np == NULL)
928 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
929 1.1 cgd return (np);
930 1.1 cgd }
931 1.1 cgd
932 1.1 cgd /*
933 1.1 cgd * Read in an argument vector from the user address space of process p.
934 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous
935 1.1 cgd * strings. This is used to read in both the command arguments and
936 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
937 1.1 cgd */
938 1.1 cgd static char **
939 1.1 cgd kvm_argv(kd, p, addr, narg, maxcnt)
940 1.1 cgd kvm_t *kd;
941 1.34 simonb const struct miniproc *p;
942 1.21 perry u_long addr;
943 1.21 perry int narg;
944 1.21 perry int maxcnt;
945 1.21 perry {
946 1.21 perry char *np, *cp, *ep, *ap;
947 1.28 christos u_long oaddr = (u_long)~0L;
948 1.28 christos u_long len;
949 1.28 christos size_t cc;
950 1.21 perry char **argv;
951 1.1 cgd
952 1.1 cgd /*
953 1.58 toshii * Check that there aren't an unreasonable number of arguments,
954 1.1 cgd * and that the address is in user space.
955 1.1 cgd */
956 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
957 1.48 enami return (NULL);
958 1.1 cgd
959 1.36 tron if (kd->argv == NULL) {
960 1.1 cgd /*
961 1.1 cgd * Try to avoid reallocs.
962 1.1 cgd */
963 1.1 cgd kd->argc = MAX(narg + 1, 32);
964 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
965 1.36 tron if (kd->argv == NULL)
966 1.48 enami return (NULL);
967 1.1 cgd } else if (narg + 1 > kd->argc) {
968 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
969 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
970 1.48 enami sizeof(*kd->argv));
971 1.36 tron if (kd->argv == NULL)
972 1.48 enami return (NULL);
973 1.1 cgd }
974 1.36 tron if (kd->argspc == NULL) {
975 1.61 christos kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
976 1.36 tron if (kd->argspc == NULL)
977 1.48 enami return (NULL);
978 1.61 christos kd->argspc_len = kd->nbpg;
979 1.1 cgd }
980 1.36 tron if (kd->argbuf == NULL) {
981 1.61 christos kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
982 1.36 tron if (kd->argbuf == NULL)
983 1.48 enami return (NULL);
984 1.10 mycroft }
985 1.10 mycroft cc = sizeof(char *) * narg;
986 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
987 1.48 enami return (NULL);
988 1.10 mycroft ap = np = kd->argspc;
989 1.1 cgd argv = kd->argv;
990 1.1 cgd len = 0;
991 1.1 cgd /*
992 1.1 cgd * Loop over pages, filling in the argument vector.
993 1.1 cgd */
994 1.36 tron while (argv < kd->argv + narg && *argv != NULL) {
995 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
996 1.10 mycroft if (addr != oaddr) {
997 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf,
998 1.28 christos (size_t)kd->nbpg) != kd->nbpg)
999 1.48 enami return (NULL);
1000 1.10 mycroft oaddr = addr;
1001 1.10 mycroft }
1002 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
1003 1.28 christos cp = kd->argbuf + (size_t)addr;
1004 1.28 christos cc = kd->nbpg - (size_t)addr;
1005 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
1006 1.28 christos cc = (size_t)(maxcnt - len);
1007 1.10 mycroft ep = memchr(cp, '\0', cc);
1008 1.36 tron if (ep != NULL)
1009 1.10 mycroft cc = ep - cp + 1;
1010 1.61 christos if (len + cc > kd->argspc_len) {
1011 1.52 ross ptrdiff_t off;
1012 1.21 perry char **pp;
1013 1.21 perry char *op = kd->argspc;
1014 1.1 cgd
1015 1.61 christos kd->argspc_len *= 2;
1016 1.61 christos kd->argspc = _kvm_realloc(kd, kd->argspc,
1017 1.61 christos kd->argspc_len);
1018 1.36 tron if (kd->argspc == NULL)
1019 1.48 enami return (NULL);
1020 1.1 cgd /*
1021 1.1 cgd * Adjust argv pointers in case realloc moved
1022 1.1 cgd * the string space.
1023 1.1 cgd */
1024 1.1 cgd off = kd->argspc - op;
1025 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
1026 1.1 cgd *pp += off;
1027 1.12 mycroft ap += off;
1028 1.12 mycroft np += off;
1029 1.1 cgd }
1030 1.10 mycroft memcpy(np, cp, cc);
1031 1.10 mycroft np += cc;
1032 1.1 cgd len += cc;
1033 1.36 tron if (ep != NULL) {
1034 1.10 mycroft *argv++ = ap;
1035 1.10 mycroft ap = np;
1036 1.10 mycroft } else
1037 1.10 mycroft *argv += cc;
1038 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
1039 1.1 cgd /*
1040 1.1 cgd * We're stopping prematurely. Terminate the
1041 1.10 mycroft * current string.
1042 1.1 cgd */
1043 1.36 tron if (ep == NULL) {
1044 1.10 mycroft *np = '\0';
1045 1.14 mycroft *argv++ = ap;
1046 1.10 mycroft }
1047 1.10 mycroft break;
1048 1.1 cgd }
1049 1.1 cgd }
1050 1.10 mycroft /* Make sure argv is terminated. */
1051 1.36 tron *argv = NULL;
1052 1.10 mycroft return (kd->argv);
1053 1.1 cgd }
1054 1.1 cgd
1055 1.1 cgd static void
1056 1.1 cgd ps_str_a(p, addr, n)
1057 1.1 cgd struct ps_strings *p;
1058 1.1 cgd u_long *addr;
1059 1.1 cgd int *n;
1060 1.1 cgd {
1061 1.48 enami
1062 1.1 cgd *addr = (u_long)p->ps_argvstr;
1063 1.1 cgd *n = p->ps_nargvstr;
1064 1.1 cgd }
1065 1.1 cgd
1066 1.1 cgd static void
1067 1.1 cgd ps_str_e(p, addr, n)
1068 1.1 cgd struct ps_strings *p;
1069 1.1 cgd u_long *addr;
1070 1.1 cgd int *n;
1071 1.1 cgd {
1072 1.48 enami
1073 1.1 cgd *addr = (u_long)p->ps_envstr;
1074 1.1 cgd *n = p->ps_nenvstr;
1075 1.1 cgd }
1076 1.1 cgd
1077 1.1 cgd /*
1078 1.1 cgd * Determine if the proc indicated by p is still active.
1079 1.1 cgd * This test is not 100% foolproof in theory, but chances of
1080 1.1 cgd * being wrong are very low.
1081 1.1 cgd */
1082 1.1 cgd static int
1083 1.1 cgd proc_verify(kd, kernp, p)
1084 1.1 cgd kvm_t *kd;
1085 1.1 cgd u_long kernp;
1086 1.34 simonb const struct miniproc *p;
1087 1.1 cgd {
1088 1.1 cgd struct proc kernproc;
1089 1.1 cgd
1090 1.1 cgd /*
1091 1.1 cgd * Just read in the whole proc. It's not that big relative
1092 1.1 cgd * to the cost of the read system call.
1093 1.1 cgd */
1094 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1095 1.1 cgd sizeof(kernproc))
1096 1.48 enami return (0);
1097 1.1 cgd return (p->p_pid == kernproc.p_pid &&
1098 1.48 enami (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1099 1.1 cgd }
1100 1.1 cgd
1101 1.1 cgd static char **
1102 1.34 simonb kvm_doargv(kd, p, nchr, info)
1103 1.1 cgd kvm_t *kd;
1104 1.34 simonb const struct miniproc *p;
1105 1.1 cgd int nchr;
1106 1.10 mycroft void (*info)(struct ps_strings *, u_long *, int *);
1107 1.1 cgd {
1108 1.21 perry char **ap;
1109 1.1 cgd u_long addr;
1110 1.1 cgd int cnt;
1111 1.1 cgd struct ps_strings arginfo;
1112 1.1 cgd
1113 1.1 cgd /*
1114 1.1 cgd * Pointers are stored at the top of the user stack.
1115 1.1 cgd */
1116 1.18 gwr if (p->p_stat == SZOMB)
1117 1.48 enami return (NULL);
1118 1.52 ross cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1119 1.28 christos (void *)&arginfo, sizeof(arginfo));
1120 1.18 gwr if (cnt != sizeof(arginfo))
1121 1.48 enami return (NULL);
1122 1.1 cgd
1123 1.1 cgd (*info)(&arginfo, &addr, &cnt);
1124 1.3 mycroft if (cnt == 0)
1125 1.48 enami return (NULL);
1126 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
1127 1.1 cgd /*
1128 1.1 cgd * For live kernels, make sure this process didn't go away.
1129 1.1 cgd */
1130 1.36 tron if (ap != NULL && ISALIVE(kd) &&
1131 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p))
1132 1.36 tron ap = NULL;
1133 1.1 cgd return (ap);
1134 1.1 cgd }
1135 1.1 cgd
1136 1.1 cgd /*
1137 1.1 cgd * Get the command args. This code is now machine independent.
1138 1.1 cgd */
1139 1.1 cgd char **
1140 1.1 cgd kvm_getargv(kd, kp, nchr)
1141 1.1 cgd kvm_t *kd;
1142 1.1 cgd const struct kinfo_proc *kp;
1143 1.1 cgd int nchr;
1144 1.1 cgd {
1145 1.34 simonb struct miniproc p;
1146 1.34 simonb
1147 1.34 simonb KPTOMINI(kp, &p);
1148 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a));
1149 1.1 cgd }
1150 1.1 cgd
1151 1.1 cgd char **
1152 1.1 cgd kvm_getenvv(kd, kp, nchr)
1153 1.1 cgd kvm_t *kd;
1154 1.1 cgd const struct kinfo_proc *kp;
1155 1.1 cgd int nchr;
1156 1.1 cgd {
1157 1.34 simonb struct miniproc p;
1158 1.34 simonb
1159 1.34 simonb KPTOMINI(kp, &p);
1160 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e));
1161 1.34 simonb }
1162 1.34 simonb
1163 1.34 simonb static char **
1164 1.34 simonb kvm_doargv2(kd, pid, type, nchr)
1165 1.34 simonb kvm_t *kd;
1166 1.34 simonb pid_t pid;
1167 1.34 simonb int type;
1168 1.34 simonb int nchr;
1169 1.34 simonb {
1170 1.34 simonb size_t bufs;
1171 1.39 christos int narg, mib[4];
1172 1.61 christos size_t newargspc_len;
1173 1.34 simonb char **ap, *bp, *endp;
1174 1.34 simonb
1175 1.34 simonb /*
1176 1.58 toshii * Check that there aren't an unreasonable number of arguments.
1177 1.34 simonb */
1178 1.34 simonb if (nchr > ARG_MAX)
1179 1.48 enami return (NULL);
1180 1.34 simonb
1181 1.34 simonb if (nchr == 0)
1182 1.34 simonb nchr = ARG_MAX;
1183 1.34 simonb
1184 1.34 simonb /* Get number of strings in argv */
1185 1.34 simonb mib[0] = CTL_KERN;
1186 1.34 simonb mib[1] = KERN_PROC_ARGS;
1187 1.34 simonb mib[2] = pid;
1188 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1189 1.34 simonb bufs = sizeof(narg);
1190 1.52 ross if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1191 1.48 enami return (NULL);
1192 1.34 simonb
1193 1.36 tron if (kd->argv == NULL) {
1194 1.34 simonb /*
1195 1.34 simonb * Try to avoid reallocs.
1196 1.34 simonb */
1197 1.34 simonb kd->argc = MAX(narg + 1, 32);
1198 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1199 1.36 tron if (kd->argv == NULL)
1200 1.48 enami return (NULL);
1201 1.34 simonb } else if (narg + 1 > kd->argc) {
1202 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1);
1203 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1204 1.48 enami sizeof(*kd->argv));
1205 1.36 tron if (kd->argv == NULL)
1206 1.48 enami return (NULL);
1207 1.34 simonb }
1208 1.34 simonb
1209 1.61 christos newargspc_len = MIN(nchr, ARG_MAX);
1210 1.61 christos KVM_ALLOC(kd, argspc, newargspc_len);
1211 1.61 christos memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1212 1.34 simonb
1213 1.34 simonb mib[0] = CTL_KERN;
1214 1.34 simonb mib[1] = KERN_PROC_ARGS;
1215 1.34 simonb mib[2] = pid;
1216 1.34 simonb mib[3] = type;
1217 1.61 christos bufs = kd->argspc_len;
1218 1.52 ross if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1219 1.48 enami return (NULL);
1220 1.34 simonb
1221 1.34 simonb bp = kd->argspc;
1222 1.61 christos bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1223 1.34 simonb ap = kd->argv;
1224 1.34 simonb endp = bp + MIN(nchr, bufs);
1225 1.34 simonb
1226 1.34 simonb while (bp < endp) {
1227 1.34 simonb *ap++ = bp;
1228 1.48 enami /*
1229 1.48 enami * XXX: don't need following anymore, or stick check
1230 1.48 enami * for max argc in above while loop?
1231 1.48 enami */
1232 1.34 simonb if (ap >= kd->argv + kd->argc) {
1233 1.34 simonb kd->argc *= 2;
1234 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv,
1235 1.34 simonb kd->argc * sizeof(*kd->argv));
1236 1.44 jdolecek ap = kd->argv;
1237 1.34 simonb }
1238 1.34 simonb bp += strlen(bp) + 1;
1239 1.34 simonb }
1240 1.34 simonb *ap = NULL;
1241 1.48 enami
1242 1.34 simonb return (kd->argv);
1243 1.34 simonb }
1244 1.34 simonb
1245 1.34 simonb char **
1246 1.34 simonb kvm_getargv2(kd, kp, nchr)
1247 1.34 simonb kvm_t *kd;
1248 1.34 simonb const struct kinfo_proc2 *kp;
1249 1.34 simonb int nchr;
1250 1.34 simonb {
1251 1.48 enami
1252 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1253 1.34 simonb }
1254 1.34 simonb
1255 1.34 simonb char **
1256 1.34 simonb kvm_getenvv2(kd, kp, nchr)
1257 1.34 simonb kvm_t *kd;
1258 1.34 simonb const struct kinfo_proc2 *kp;
1259 1.34 simonb int nchr;
1260 1.34 simonb {
1261 1.48 enami
1262 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1263 1.1 cgd }
1264 1.1 cgd
1265 1.1 cgd /*
1266 1.1 cgd * Read from user space. The user context is given by p.
1267 1.1 cgd */
1268 1.34 simonb static ssize_t
1269 1.34 simonb kvm_ureadm(kd, p, uva, buf, len)
1270 1.1 cgd kvm_t *kd;
1271 1.34 simonb const struct miniproc *p;
1272 1.21 perry u_long uva;
1273 1.21 perry char *buf;
1274 1.21 perry size_t len;
1275 1.1 cgd {
1276 1.21 perry char *cp;
1277 1.1 cgd
1278 1.1 cgd cp = buf;
1279 1.1 cgd while (len > 0) {
1280 1.28 christos size_t cc;
1281 1.21 perry char *dp;
1282 1.15 cgd u_long cnt;
1283 1.8 mycroft
1284 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt);
1285 1.36 tron if (dp == NULL) {
1286 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva);
1287 1.48 enami return (0);
1288 1.8 mycroft }
1289 1.28 christos cc = (size_t)MIN(cnt, len);
1290 1.25 perry memcpy(cp, dp, cc);
1291 1.1 cgd cp += cc;
1292 1.1 cgd uva += cc;
1293 1.1 cgd len -= cc;
1294 1.1 cgd }
1295 1.1 cgd return (ssize_t)(cp - buf);
1296 1.34 simonb }
1297 1.34 simonb
1298 1.34 simonb ssize_t
1299 1.34 simonb kvm_uread(kd, p, uva, buf, len)
1300 1.34 simonb kvm_t *kd;
1301 1.34 simonb const struct proc *p;
1302 1.48 enami u_long uva;
1303 1.34 simonb char *buf;
1304 1.34 simonb size_t len;
1305 1.34 simonb {
1306 1.34 simonb struct miniproc mp;
1307 1.34 simonb
1308 1.34 simonb PTOMINI(p, &mp);
1309 1.34 simonb return (kvm_ureadm(kd, &mp, uva, buf, len));
1310 1.1 cgd }
1311