Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.85
      1  1.85       jym /*	$NetBSD: kvm_proc.c,v 1.85 2010/09/19 02:07:00 jym Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  *
     19  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     30  1.26   mycroft  */
     31  1.16   thorpej 
     32   1.1       cgd /*-
     33   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     34   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     35   1.1       cgd  *
     36   1.1       cgd  * This code is derived from software developed by the Computer Systems
     37   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     38   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     39   1.1       cgd  *
     40   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     41   1.1       cgd  * modification, are permitted provided that the following conditions
     42   1.1       cgd  * are met:
     43   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     44   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     45   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     46   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     47   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     48  1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     49   1.1       cgd  *    may be used to endorse or promote products derived from this software
     50   1.1       cgd  *    without specific prior written permission.
     51   1.1       cgd  *
     52   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62   1.1       cgd  * SUCH DAMAGE.
     63   1.1       cgd  */
     64   1.1       cgd 
     65  1.19     mikel #include <sys/cdefs.h>
     66   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     67  1.16   thorpej #if 0
     68   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     69  1.16   thorpej #else
     70  1.85       jym __RCSID("$NetBSD: kvm_proc.c,v 1.85 2010/09/19 02:07:00 jym Exp $");
     71  1.16   thorpej #endif
     72   1.1       cgd #endif /* LIBC_SCCS and not lint */
     73   1.1       cgd 
     74   1.1       cgd /*
     75   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     76   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     77   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     78   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     79   1.1       cgd  */
     80   1.1       cgd 
     81   1.1       cgd #include <sys/param.h>
     82   1.1       cgd #include <sys/user.h>
     83  1.46   thorpej #include <sys/lwp.h>
     84   1.1       cgd #include <sys/proc.h>
     85   1.1       cgd #include <sys/exec.h>
     86   1.1       cgd #include <sys/stat.h>
     87   1.1       cgd #include <sys/ioctl.h>
     88   1.1       cgd #include <sys/tty.h>
     89  1.62      yamt #include <sys/resourcevar.h>
     90  1.68  christos #include <sys/mutex.h>
     91  1.68  christos #include <sys/specificdata.h>
     92  1.66        ad 
     93  1.63      yamt #include <errno.h>
     94   1.7       cgd #include <stdlib.h>
     95  1.52      ross #include <stddef.h>
     96  1.10   mycroft #include <string.h>
     97   1.1       cgd #include <unistd.h>
     98   1.1       cgd #include <nlist.h>
     99   1.1       cgd #include <kvm.h>
    100   1.1       cgd 
    101  1.23       chs #include <uvm/uvm_extern.h>
    102  1.82       mrg #include <uvm/uvm_param.h>
    103  1.29       mrg #include <uvm/uvm_amap.h>
    104  1.23       chs 
    105   1.1       cgd #include <sys/sysctl.h>
    106   1.1       cgd 
    107   1.1       cgd #include <limits.h>
    108   1.1       cgd #include <db.h>
    109   1.1       cgd #include <paths.h>
    110   1.1       cgd 
    111   1.1       cgd #include "kvm_private.h"
    112   1.1       cgd 
    113  1.34    simonb /*
    114  1.34    simonb  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    115  1.34    simonb  */
    116  1.34    simonb struct miniproc {
    117  1.34    simonb 	struct	vmspace *p_vmspace;
    118  1.34    simonb 	char	p_stat;
    119  1.34    simonb 	struct	proc *p_paddr;
    120  1.34    simonb 	pid_t	p_pid;
    121  1.34    simonb };
    122  1.34    simonb 
    123  1.34    simonb /*
    124  1.34    simonb  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    125  1.34    simonb  */
    126  1.34    simonb #define PTOMINI(kp, p) \
    127  1.48     enami 	do { \
    128  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    129  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    130  1.34    simonb 		(p)->p_paddr = NULL; \
    131  1.34    simonb 		(p)->p_vmspace = (kp)->p_vmspace; \
    132  1.34    simonb 	} while (/*CONSTCOND*/0);
    133  1.34    simonb 
    134  1.34    simonb #define KPTOMINI(kp, p) \
    135  1.48     enami 	do { \
    136  1.34    simonb 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    137  1.34    simonb 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    138  1.34    simonb 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    139  1.34    simonb 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    140  1.34    simonb 	} while (/*CONSTCOND*/0);
    141  1.34    simonb 
    142  1.34    simonb #define KP2TOMINI(kp, p) \
    143  1.48     enami 	do { \
    144  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    145  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    146  1.34    simonb 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    147  1.34    simonb 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    148  1.34    simonb 	} while (/*CONSTCOND*/0);
    149  1.34    simonb 
    150  1.68  christos /*
    151  1.68  christos  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
    152  1.68  christos  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
    153  1.68  christos  * kvm(3) so dumps can be read properly.
    154  1.68  christos  *
    155  1.68  christos  * Whenever NetBSD starts exporting credentials to userland consistently (using
    156  1.68  christos  * 'struct uucred', or something) this will have to be updated again.
    157  1.68  christos  */
    158  1.68  christos struct kvm_kauth_cred {
    159  1.68  christos 	u_int cr_refcnt;		/* reference count */
    160  1.77      elad 	uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
    161  1.68  christos 	uid_t cr_uid;			/* user id */
    162  1.68  christos 	uid_t cr_euid;			/* effective user id */
    163  1.68  christos 	uid_t cr_svuid;			/* saved effective user id */
    164  1.68  christos 	gid_t cr_gid;			/* group id */
    165  1.68  christos 	gid_t cr_egid;			/* effective group id */
    166  1.68  christos 	gid_t cr_svgid;			/* saved effective group id */
    167  1.68  christos 	u_int cr_ngroups;		/* number of groups */
    168  1.68  christos 	gid_t cr_groups[NGROUPS];	/* group memberships */
    169  1.68  christos 	specificdata_reference cr_sd;	/* specific data */
    170  1.68  christos };
    171  1.68  christos 
    172   1.2   mycroft #define KREAD(kd, addr, obj) \
    173  1.34    simonb 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    174   1.2   mycroft 
    175  1.34    simonb /* XXX: What uses these two functions? */
    176  1.85       jym char		*_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
    177  1.85       jym ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *,
    178  1.85       jym 		    size_t);
    179  1.85       jym 
    180  1.85       jym static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    181  1.85       jym 		    u_long *);
    182  1.85       jym static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    183  1.85       jym 		    char *, size_t);
    184  1.85       jym 
    185  1.85       jym static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
    186  1.85       jym static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
    187  1.85       jym static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
    188  1.85       jym 		    void (*)(struct ps_strings *, u_long *, int *));
    189  1.85       jym static char	**kvm_doargv2(kvm_t *, pid_t, int, int);
    190  1.85       jym static int	kvm_proclist(kvm_t *, int, int, struct proc *,
    191  1.85       jym 		    struct kinfo_proc *, int);
    192  1.85       jym static int	proc_verify(kvm_t *, u_long, const struct miniproc *);
    193  1.85       jym static void	ps_str_a(struct ps_strings *, u_long *, int *);
    194  1.85       jym static void	ps_str_e(struct ps_strings *, u_long *, int *);
    195   1.2   mycroft 
    196  1.34    simonb 
    197  1.34    simonb static char *
    198  1.85       jym _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
    199   1.1       cgd {
    200  1.21     perry 	u_long addr, head;
    201  1.21     perry 	u_long offset;
    202   1.1       cgd 	struct vm_map_entry vme;
    203  1.23       chs 	struct vm_amap amap;
    204  1.23       chs 	struct vm_anon *anonp, anon;
    205  1.23       chs 	struct vm_page pg;
    206  1.28  christos 	u_long slot;
    207   1.1       cgd 
    208  1.36      tron 	if (kd->swapspc == NULL) {
    209  1.61  christos 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    210  1.36      tron 		if (kd->swapspc == NULL)
    211  1.48     enami 			return (NULL);
    212   1.5   deraadt 	}
    213   1.8   mycroft 
    214   1.1       cgd 	/*
    215   1.1       cgd 	 * Look through the address map for the memory object
    216   1.1       cgd 	 * that corresponds to the given virtual address.
    217   1.1       cgd 	 * The header just has the entire valid range.
    218   1.1       cgd 	 */
    219   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    220   1.1       cgd 	addr = head;
    221  1.73        ad 	for (;;) {
    222   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    223  1.48     enami 			return (NULL);
    224   1.1       cgd 
    225  1.23       chs 		if (va >= vme.start && va < vme.end &&
    226  1.23       chs 		    vme.aref.ar_amap != NULL)
    227  1.23       chs 			break;
    228  1.23       chs 
    229   1.1       cgd 		addr = (u_long)vme.next;
    230   1.2   mycroft 		if (addr == head)
    231  1.48     enami 			return (NULL);
    232   1.1       cgd 	}
    233   1.2   mycroft 
    234   1.1       cgd 	/*
    235  1.23       chs 	 * we found the map entry, now to find the object...
    236  1.23       chs 	 */
    237  1.23       chs 	if (vme.aref.ar_amap == NULL)
    238  1.48     enami 		return (NULL);
    239  1.23       chs 
    240  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    241  1.23       chs 	if (KREAD(kd, addr, &amap))
    242  1.48     enami 		return (NULL);
    243  1.23       chs 
    244  1.23       chs 	offset = va - vme.start;
    245  1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    246  1.23       chs 	/* sanity-check slot number */
    247  1.48     enami 	if (slot > amap.am_nslot)
    248  1.48     enami 		return (NULL);
    249  1.23       chs 
    250  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    251  1.23       chs 	if (KREAD(kd, addr, &anonp))
    252  1.48     enami 		return (NULL);
    253  1.23       chs 
    254  1.23       chs 	addr = (u_long)anonp;
    255  1.23       chs 	if (KREAD(kd, addr, &anon))
    256  1.48     enami 		return (NULL);
    257  1.23       chs 
    258  1.59       jmc 	addr = (u_long)anon.an_page;
    259  1.23       chs 	if (addr) {
    260  1.23       chs 		if (KREAD(kd, addr, &pg))
    261  1.48     enami 			return (NULL);
    262  1.23       chs 
    263  1.76        ad 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    264  1.24   thorpej 		    (off_t)pg.phys_addr) != kd->nbpg)
    265  1.48     enami 			return (NULL);
    266  1.48     enami 	} else {
    267  1.60      yamt 		if (kd->swfd < 0 ||
    268  1.76        ad 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    269  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    270  1.48     enami 			return (NULL);
    271  1.23       chs 	}
    272   1.8   mycroft 
    273   1.2   mycroft 	/* Found the page. */
    274   1.6   mycroft 	offset %= kd->nbpg;
    275   1.6   mycroft 	*cnt = kd->nbpg - offset;
    276  1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    277   1.2   mycroft }
    278   1.1       cgd 
    279  1.34    simonb char *
    280  1.85       jym _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
    281  1.34    simonb {
    282  1.34    simonb 	struct miniproc mp;
    283  1.34    simonb 
    284  1.34    simonb 	PTOMINI(p, &mp);
    285  1.34    simonb 	return (_kvm_ureadm(kd, &mp, va, cnt));
    286  1.34    simonb }
    287  1.34    simonb 
    288   1.1       cgd /*
    289  1.65      elad  * Convert credentials located in kernel space address 'cred' and store
    290  1.65      elad  * them in the appropriate members of 'eproc'.
    291  1.65      elad  */
    292  1.65      elad static int
    293  1.65      elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
    294  1.65      elad {
    295  1.68  christos 	struct kvm_kauth_cred kauthcred;
    296  1.67       dsl 	struct ki_pcred *pc = &eproc->e_pcred;
    297  1.67       dsl 	struct ki_ucred *uc = &eproc->e_ucred;
    298  1.65      elad 
    299  1.65      elad 	if (KREAD(kd, cred, &kauthcred) != 0)
    300  1.65      elad 		return (-1);
    301  1.65      elad 
    302  1.65      elad 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
    303  1.65      elad 	pc->p_ruid = kauthcred.cr_uid;
    304  1.65      elad 	pc->p_svuid = kauthcred.cr_svuid;
    305  1.65      elad 	pc->p_rgid = kauthcred.cr_gid;
    306  1.65      elad 	pc->p_svgid = kauthcred.cr_svgid;
    307  1.65      elad 	pc->p_refcnt = kauthcred.cr_refcnt;
    308  1.67       dsl 	pc->p_pad = NULL;
    309  1.65      elad 
    310  1.65      elad 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
    311  1.65      elad 	uc->cr_ref = kauthcred.cr_refcnt;
    312  1.65      elad 	uc->cr_uid = kauthcred.cr_euid;
    313  1.65      elad 	uc->cr_gid = kauthcred.cr_egid;
    314  1.71  christos 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
    315  1.65      elad 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
    316  1.65      elad 	memcpy(uc->cr_groups, kauthcred.cr_groups,
    317  1.65      elad 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
    318  1.65      elad 
    319  1.65      elad 	return (0);
    320  1.65      elad }
    321  1.65      elad 
    322  1.65      elad /*
    323   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    324   1.1       cgd  * at most maxcnt procs.
    325   1.1       cgd  */
    326   1.1       cgd static int
    327  1.85       jym kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
    328  1.85       jym 	     struct kinfo_proc *bp, int maxcnt)
    329   1.1       cgd {
    330  1.21     perry 	int cnt = 0;
    331  1.46   thorpej 	int nlwps;
    332  1.46   thorpej 	struct kinfo_lwp *kl;
    333   1.1       cgd 	struct eproc eproc;
    334   1.1       cgd 	struct pgrp pgrp;
    335   1.1       cgd 	struct session sess;
    336   1.1       cgd 	struct tty tty;
    337   1.1       cgd 	struct proc proc;
    338   1.1       cgd 
    339   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    340   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    341  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    342   1.1       cgd 			return (-1);
    343   1.1       cgd 		}
    344  1.65      elad 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
    345  1.65      elad 			_kvm_err(kd, kd->program,
    346  1.65      elad 			    "can't read proc credentials at %p", p);
    347  1.65      elad 			return (-1);
    348  1.65      elad 		}
    349   1.1       cgd 
    350  1.48     enami 		switch (what) {
    351  1.31    simonb 
    352   1.1       cgd 		case KERN_PROC_PID:
    353   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    354   1.1       cgd 				continue;
    355   1.1       cgd 			break;
    356   1.1       cgd 
    357   1.1       cgd 		case KERN_PROC_UID:
    358   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    359   1.1       cgd 				continue;
    360   1.1       cgd 			break;
    361   1.1       cgd 
    362   1.1       cgd 		case KERN_PROC_RUID:
    363   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    364   1.1       cgd 				continue;
    365   1.1       cgd 			break;
    366   1.1       cgd 		}
    367   1.1       cgd 		/*
    368   1.1       cgd 		 * We're going to add another proc to the set.  If this
    369   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    370   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    371   1.1       cgd 		 */
    372   1.1       cgd 		if (cnt >= maxcnt) {
    373   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    374   1.1       cgd 			return (-1);
    375   1.1       cgd 		}
    376   1.1       cgd 		/*
    377   1.1       cgd 		 * gather eproc
    378   1.1       cgd 		 */
    379   1.1       cgd 		eproc.e_paddr = p;
    380   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    381  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    382  1.48     enami 			    proc.p_pgrp);
    383   1.1       cgd 			return (-1);
    384   1.1       cgd 		}
    385   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    386   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    387   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    388   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    389  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read session at %p",
    390  1.48     enami 			    pgrp.pg_session);
    391   1.1       cgd 			return (-1);
    392   1.1       cgd 		}
    393  1.66        ad 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
    394   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    395   1.1       cgd 				_kvm_err(kd, kd->program,
    396  1.48     enami 				    "can't read tty at %p", sess.s_ttyp);
    397   1.1       cgd 				return (-1);
    398   1.1       cgd 			}
    399  1.81  christos 			eproc.e_tdev = (uint32_t)tty.t_dev;
    400   1.1       cgd 			eproc.e_tsess = tty.t_session;
    401   1.1       cgd 			if (tty.t_pgrp != NULL) {
    402   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    403   1.1       cgd 					_kvm_err(kd, kd->program,
    404  1.48     enami 					    "can't read tpgrp at %p",
    405  1.48     enami 					    tty.t_pgrp);
    406   1.1       cgd 					return (-1);
    407   1.1       cgd 				}
    408   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    409   1.1       cgd 			} else
    410   1.1       cgd 				eproc.e_tpgid = -1;
    411   1.1       cgd 		} else
    412  1.81  christos 			eproc.e_tdev = (uint32_t)NODEV;
    413   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    414  1.33    simonb 		eproc.e_sid = sess.s_sid;
    415   1.1       cgd 		if (sess.s_leader == p)
    416   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    417  1.48     enami 		/*
    418  1.48     enami 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    419  1.55       wiz 		 * from the first available LWP.
    420  1.46   thorpej 		 */
    421  1.47  christos 		kl = kvm_getlwps(kd, proc.p_pid,
    422  1.57    atatat 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    423  1.46   thorpej 		    sizeof(struct kinfo_lwp), &nlwps);
    424  1.46   thorpej 		if (kl) {
    425  1.46   thorpej 			if (nlwps > 0) {
    426  1.46   thorpej 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    427  1.46   thorpej 			}
    428  1.46   thorpej 		}
    429  1.34    simonb 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    430  1.34    simonb 		    sizeof(eproc.e_vm));
    431   1.9        pk 
    432   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    433   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    434   1.1       cgd 
    435   1.1       cgd 		switch (what) {
    436   1.1       cgd 
    437   1.1       cgd 		case KERN_PROC_PGRP:
    438   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    439   1.1       cgd 				continue;
    440   1.1       cgd 			break;
    441   1.1       cgd 
    442   1.1       cgd 		case KERN_PROC_TTY:
    443  1.66        ad 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
    444  1.48     enami 			    eproc.e_tdev != (dev_t)arg)
    445   1.1       cgd 				continue;
    446   1.1       cgd 			break;
    447   1.1       cgd 		}
    448  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    449  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    450   1.1       cgd 		++bp;
    451   1.1       cgd 		++cnt;
    452   1.1       cgd 	}
    453   1.1       cgd 	return (cnt);
    454   1.1       cgd }
    455   1.1       cgd 
    456   1.1       cgd /*
    457   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    458   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    459   1.1       cgd  */
    460   1.1       cgd static int
    461  1.85       jym kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
    462  1.85       jym 	      u_long a_zombproc, int maxcnt)
    463   1.1       cgd {
    464  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    465  1.53  christos 	int acnt, zcnt;
    466   1.1       cgd 	struct proc *p;
    467   1.1       cgd 
    468   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    469   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    470   1.1       cgd 		return (-1);
    471   1.1       cgd 	}
    472   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    473   1.1       cgd 	if (acnt < 0)
    474   1.1       cgd 		return (acnt);
    475   1.1       cgd 
    476   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    477   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    478   1.1       cgd 		return (-1);
    479   1.1       cgd 	}
    480  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    481  1.53  christos 	    maxcnt - acnt);
    482   1.1       cgd 	if (zcnt < 0)
    483   1.1       cgd 		zcnt = 0;
    484   1.1       cgd 
    485   1.1       cgd 	return (acnt + zcnt);
    486   1.1       cgd }
    487   1.1       cgd 
    488  1.34    simonb struct kinfo_proc2 *
    489  1.85       jym kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
    490  1.34    simonb {
    491  1.34    simonb 	size_t size;
    492  1.34    simonb 	int mib[6], st, nprocs;
    493  1.46   thorpej 	struct pstats pstats;
    494  1.34    simonb 
    495  1.34    simonb 	if (ISSYSCTL(kd)) {
    496  1.34    simonb 		size = 0;
    497  1.34    simonb 		mib[0] = CTL_KERN;
    498  1.34    simonb 		mib[1] = KERN_PROC2;
    499  1.34    simonb 		mib[2] = op;
    500  1.34    simonb 		mib[3] = arg;
    501  1.52      ross 		mib[4] = (int)esize;
    502  1.63      yamt again:
    503  1.34    simonb 		mib[5] = 0;
    504  1.52      ross 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    505  1.34    simonb 		if (st == -1) {
    506  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    507  1.48     enami 			return (NULL);
    508  1.34    simonb 		}
    509  1.34    simonb 
    510  1.52      ross 		mib[5] = (int) (size / esize);
    511  1.61  christos 		KVM_ALLOC(kd, procbase2, size);
    512  1.52      ross 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    513  1.34    simonb 		if (st == -1) {
    514  1.63      yamt 			if (errno == ENOMEM) {
    515  1.63      yamt 				goto again;
    516  1.63      yamt 			}
    517  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    518  1.48     enami 			return (NULL);
    519  1.34    simonb 		}
    520  1.52      ross 		nprocs = (int) (size / esize);
    521  1.34    simonb 	} else {
    522  1.34    simonb 		char *kp2c;
    523  1.34    simonb 		struct kinfo_proc *kp;
    524  1.34    simonb 		struct kinfo_proc2 kp2, *kp2p;
    525  1.46   thorpej 		struct kinfo_lwp *kl;
    526  1.46   thorpej 		int i, nlwps;
    527  1.34    simonb 
    528  1.34    simonb 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    529  1.34    simonb 		if (kp == NULL)
    530  1.48     enami 			return (NULL);
    531  1.34    simonb 
    532  1.61  christos 		size = nprocs * esize;
    533  1.61  christos 		KVM_ALLOC(kd, procbase2, size);
    534  1.39  christos 		kp2c = (char *)(void *)kd->procbase2;
    535  1.34    simonb 		kp2p = &kp2;
    536  1.34    simonb 		for (i = 0; i < nprocs; i++, kp++) {
    537  1.75      yamt 			struct timeval tv;
    538  1.75      yamt 
    539  1.48     enami 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    540  1.57    atatat 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    541  1.46   thorpej 			    sizeof(struct kinfo_lwp), &nlwps);
    542  1.64       chs 
    543  1.79    cegger 			if (kl == NULL) {
    544  1.79    cegger 				_kvm_syserr(kd, NULL,
    545  1.79    cegger 					"kvm_getlwps() failed on process %u\n",
    546  1.79    cegger 					kp->kp_proc.p_pid);
    547  1.79    cegger 				if (nlwps == 0)
    548  1.79    cegger 					return NULL;
    549  1.79    cegger 				else
    550  1.79    cegger 					continue;
    551  1.79    cegger 			}
    552  1.79    cegger 
    553  1.46   thorpej 			/* We use kl[0] as the "representative" LWP */
    554  1.34    simonb 			memset(kp2p, 0, sizeof(kp2));
    555  1.46   thorpej 			kp2p->p_forw = kl[0].l_forw;
    556  1.46   thorpej 			kp2p->p_back = kl[0].l_back;
    557  1.57    atatat 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    558  1.46   thorpej 			kp2p->p_addr = kl[0].l_addr;
    559  1.57    atatat 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    560  1.57    atatat 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    561  1.57    atatat 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    562  1.57    atatat 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    563  1.57    atatat 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    564  1.57    atatat 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    565  1.57    atatat 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    566  1.34    simonb 			kp2p->p_tsess = 0;
    567  1.69       dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
    568  1.69       dsl 			kp2p->p_ru = 0;
    569  1.69       dsl #else
    570  1.69       dsl 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
    571  1.69       dsl #endif
    572  1.34    simonb 
    573  1.34    simonb 			kp2p->p_eflag = 0;
    574  1.34    simonb 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    575  1.34    simonb 			kp2p->p_flag = kp->kp_proc.p_flag;
    576  1.34    simonb 
    577  1.34    simonb 			kp2p->p_pid = kp->kp_proc.p_pid;
    578  1.34    simonb 
    579  1.34    simonb 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    580  1.34    simonb 			kp2p->p_sid = kp->kp_eproc.e_sid;
    581  1.34    simonb 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    582  1.34    simonb 
    583  1.51       dsl 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    584  1.34    simonb 
    585  1.34    simonb 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    586  1.34    simonb 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    587  1.50    atatat 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    588  1.34    simonb 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    589  1.34    simonb 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    590  1.50    atatat 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    591  1.34    simonb 
    592  1.39  christos 			/*CONSTCOND*/
    593  1.34    simonb 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    594  1.48     enami 			    MIN(sizeof(kp2p->p_groups),
    595  1.48     enami 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    596  1.34    simonb 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    597  1.34    simonb 
    598  1.34    simonb 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    599  1.34    simonb 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    600  1.34    simonb 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    601  1.57    atatat 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    602  1.34    simonb 
    603  1.74        ad 			kp2p->p_estcpu = 0;
    604  1.75      yamt 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
    605  1.75      yamt 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
    606  1.75      yamt 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
    607  1.70  christos 			kp2p->p_cpticks = kl[0].l_cpticks;
    608  1.34    simonb 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    609  1.46   thorpej 			kp2p->p_swtime = kl[0].l_swtime;
    610  1.46   thorpej 			kp2p->p_slptime = kl[0].l_slptime;
    611  1.35   thorpej #if 0 /* XXX thorpej */
    612  1.34    simonb 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    613  1.35   thorpej #else
    614  1.35   thorpej 			kp2p->p_schedflags = 0;
    615  1.35   thorpej #endif
    616  1.34    simonb 
    617  1.34    simonb 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    618  1.34    simonb 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    619  1.34    simonb 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    620  1.34    simonb 
    621  1.57    atatat 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    622  1.34    simonb 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    623  1.34    simonb 
    624  1.46   thorpej 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    625  1.34    simonb 
    626  1.48     enami 			memcpy(&kp2p->p_siglist,
    627  1.66        ad 			    &kp->kp_proc.p_sigpend.sp_set,
    628  1.48     enami 			    sizeof(ki_sigset_t));
    629  1.66        ad 			memset(&kp2p->p_sigmask, 0,
    630  1.48     enami 			    sizeof(ki_sigset_t));
    631  1.48     enami 			memcpy(&kp2p->p_sigignore,
    632  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    633  1.48     enami 			    sizeof(ki_sigset_t));
    634  1.48     enami 			memcpy(&kp2p->p_sigcatch,
    635  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    636  1.48     enami 			    sizeof(ki_sigset_t));
    637  1.34    simonb 
    638  1.64       chs 			kp2p->p_stat = kl[0].l_stat;
    639  1.46   thorpej 			kp2p->p_priority = kl[0].l_priority;
    640  1.74        ad 			kp2p->p_usrpri = kl[0].l_priority;
    641  1.34    simonb 			kp2p->p_nice = kp->kp_proc.p_nice;
    642  1.34    simonb 
    643  1.34    simonb 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    644  1.34    simonb 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    645  1.34    simonb 
    646  1.39  christos 			/*CONSTCOND*/
    647  1.34    simonb 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    648  1.48     enami 			    MIN(sizeof(kp2p->p_comm),
    649  1.48     enami 			    sizeof(kp->kp_proc.p_comm)));
    650  1.34    simonb 
    651  1.48     enami 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    652  1.48     enami 			    sizeof(kp2p->p_wmesg));
    653  1.46   thorpej 			kp2p->p_wchan = kl[0].l_wchan;
    654  1.48     enami 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    655  1.48     enami 			    sizeof(kp2p->p_login));
    656  1.34    simonb 
    657  1.34    simonb 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    658  1.34    simonb 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    659  1.34    simonb 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    660  1.34    simonb 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    661  1.82       mrg 			kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size;
    662  1.82       mrg 			/* Adjust mapped size */
    663  1.82       mrg 			kp2p->p_vm_msize =
    664  1.82       mrg 			    (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
    665  1.82       mrg 			    kp->kp_eproc.e_vm.vm_issize +
    666  1.82       mrg 			    kp->kp_eproc.e_vm.vm_ssize;
    667  1.34    simonb 
    668  1.39  christos 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    669  1.34    simonb 
    670  1.46   thorpej 			kp2p->p_realflag = kp->kp_proc.p_flag;
    671  1.46   thorpej 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    672  1.46   thorpej 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    673  1.46   thorpej 			kp2p->p_realstat = kp->kp_proc.p_stat;
    674  1.46   thorpej 
    675  1.48     enami 			if (P_ZOMBIE(&kp->kp_proc) ||
    676  1.46   thorpej 			    kp->kp_proc.p_stats == NULL ||
    677  1.48     enami 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    678  1.34    simonb 				kp2p->p_uvalid = 0;
    679  1.34    simonb 			} else {
    680  1.34    simonb 				kp2p->p_uvalid = 1;
    681  1.34    simonb 
    682  1.39  christos 				kp2p->p_ustart_sec = (u_int32_t)
    683  1.46   thorpej 				    pstats.p_start.tv_sec;
    684  1.39  christos 				kp2p->p_ustart_usec = (u_int32_t)
    685  1.46   thorpej 				    pstats.p_start.tv_usec;
    686  1.39  christos 
    687  1.39  christos 				kp2p->p_uutime_sec = (u_int32_t)
    688  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_sec;
    689  1.39  christos 				kp2p->p_uutime_usec = (u_int32_t)
    690  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_usec;
    691  1.39  christos 				kp2p->p_ustime_sec = (u_int32_t)
    692  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_sec;
    693  1.39  christos 				kp2p->p_ustime_usec = (u_int32_t)
    694  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_usec;
    695  1.34    simonb 
    696  1.46   thorpej 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    697  1.46   thorpej 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    698  1.46   thorpej 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    699  1.46   thorpej 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    700  1.46   thorpej 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    701  1.46   thorpej 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    702  1.46   thorpej 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    703  1.46   thorpej 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    704  1.46   thorpej 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    705  1.46   thorpej 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    706  1.46   thorpej 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    707  1.46   thorpej 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    708  1.46   thorpej 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    709  1.46   thorpej 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    710  1.34    simonb 
    711  1.39  christos 				kp2p->p_uctime_sec = (u_int32_t)
    712  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_sec +
    713  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_sec);
    714  1.39  christos 				kp2p->p_uctime_usec = (u_int32_t)
    715  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_usec +
    716  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_usec);
    717  1.34    simonb 			}
    718  1.34    simonb 
    719  1.34    simonb 			memcpy(kp2c, &kp2, esize);
    720  1.34    simonb 			kp2c += esize;
    721  1.34    simonb 		}
    722  1.34    simonb 	}
    723  1.34    simonb 	*cnt = nprocs;
    724  1.34    simonb 	return (kd->procbase2);
    725  1.46   thorpej }
    726  1.46   thorpej 
    727  1.46   thorpej struct kinfo_lwp *
    728  1.85       jym kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
    729  1.46   thorpej {
    730  1.46   thorpej 	size_t size;
    731  1.52      ross 	int mib[5], nlwps;
    732  1.52      ross 	ssize_t st;
    733  1.46   thorpej 	struct kinfo_lwp *kl;
    734  1.46   thorpej 
    735  1.46   thorpej 	if (ISSYSCTL(kd)) {
    736  1.46   thorpej 		size = 0;
    737  1.46   thorpej 		mib[0] = CTL_KERN;
    738  1.46   thorpej 		mib[1] = KERN_LWP;
    739  1.46   thorpej 		mib[2] = pid;
    740  1.52      ross 		mib[3] = (int)esize;
    741  1.46   thorpej 		mib[4] = 0;
    742  1.71  christos again:
    743  1.52      ross 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    744  1.46   thorpej 		if (st == -1) {
    745  1.71  christos 			switch (errno) {
    746  1.72  christos 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    747  1.72  christos 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    748  1.71  christos 				return NULL;
    749  1.71  christos 			default:
    750  1.71  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    751  1.71  christos 				return NULL;
    752  1.71  christos 			}
    753  1.46   thorpej 		}
    754  1.52      ross 		mib[4] = (int) (size / esize);
    755  1.61  christos 		KVM_ALLOC(kd, lwpbase, size);
    756  1.52      ross 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    757  1.46   thorpej 		if (st == -1) {
    758  1.71  christos 			switch (errno) {
    759  1.72  christos 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    760  1.72  christos 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    761  1.71  christos 				return NULL;
    762  1.71  christos 			case ENOMEM:
    763  1.71  christos 				goto again;
    764  1.71  christos 			default:
    765  1.71  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    766  1.71  christos 				return NULL;
    767  1.71  christos 			}
    768  1.46   thorpej 		}
    769  1.52      ross 		nlwps = (int) (size / esize);
    770  1.46   thorpej 	} else {
    771  1.46   thorpej 		/* grovel through the memory image */
    772  1.46   thorpej 		struct proc p;
    773  1.46   thorpej 		struct lwp l;
    774  1.46   thorpej 		u_long laddr;
    775  1.70  christos 		void *back;
    776  1.46   thorpej 		int i;
    777  1.46   thorpej 
    778  1.46   thorpej 		st = kvm_read(kd, paddr, &p, sizeof(p));
    779  1.46   thorpej 		if (st == -1) {
    780  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    781  1.48     enami 			return (NULL);
    782  1.46   thorpej 		}
    783  1.46   thorpej 
    784  1.46   thorpej 		nlwps = p.p_nlwps;
    785  1.61  christos 		size = nlwps * sizeof(*kd->lwpbase);
    786  1.61  christos 		KVM_ALLOC(kd, lwpbase, size);
    787  1.57    atatat 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    788  1.46   thorpej 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    789  1.46   thorpej 			st = kvm_read(kd, laddr, &l, sizeof(l));
    790  1.46   thorpej 			if (st == -1) {
    791  1.46   thorpej 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    792  1.48     enami 				return (NULL);
    793  1.46   thorpej 			}
    794  1.46   thorpej 			kl = &kd->lwpbase[i];
    795  1.46   thorpej 			kl->l_laddr = laddr;
    796  1.70  christos 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
    797  1.70  christos 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
    798  1.70  christos 			st = kvm_read(kd, laddr, &back, sizeof(back));
    799  1.70  christos 			if (st == -1) {
    800  1.70  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    801  1.70  christos 				return (NULL);
    802  1.70  christos 			}
    803  1.70  christos 			kl->l_back = PTRTOUINT64(back);
    804  1.57    atatat 			kl->l_addr = PTRTOUINT64(l.l_addr);
    805  1.46   thorpej 			kl->l_lid = l.l_lid;
    806  1.46   thorpej 			kl->l_flag = l.l_flag;
    807  1.46   thorpej 			kl->l_swtime = l.l_swtime;
    808  1.46   thorpej 			kl->l_slptime = l.l_slptime;
    809  1.46   thorpej 			kl->l_schedflags = 0; /* XXX */
    810  1.84     rmind 			kl->l_holdcnt = 0;
    811  1.46   thorpej 			kl->l_priority = l.l_priority;
    812  1.74        ad 			kl->l_usrpri = l.l_priority;
    813  1.46   thorpej 			kl->l_stat = l.l_stat;
    814  1.57    atatat 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    815  1.46   thorpej 			if (l.l_wmesg)
    816  1.46   thorpej 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    817  1.52      ross 				    kl->l_wmesg, (size_t)WMESGLEN);
    818  1.46   thorpej 			kl->l_cpuid = KI_NOCPU;
    819  1.57    atatat 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    820  1.46   thorpej 		}
    821  1.46   thorpej 	}
    822  1.46   thorpej 
    823  1.46   thorpej 	*cnt = nlwps;
    824  1.48     enami 	return (kd->lwpbase);
    825  1.34    simonb }
    826  1.34    simonb 
    827   1.1       cgd struct kinfo_proc *
    828  1.85       jym kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
    829   1.1       cgd {
    830   1.7       cgd 	size_t size;
    831   1.7       cgd 	int mib[4], st, nprocs;
    832   1.1       cgd 
    833  1.83      yamt 	if (ISALIVE(kd)) {
    834   1.1       cgd 		size = 0;
    835   1.1       cgd 		mib[0] = CTL_KERN;
    836   1.1       cgd 		mib[1] = KERN_PROC;
    837   1.1       cgd 		mib[2] = op;
    838   1.1       cgd 		mib[3] = arg;
    839  1.52      ross 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    840   1.1       cgd 		if (st == -1) {
    841   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    842  1.48     enami 			return (NULL);
    843   1.1       cgd 		}
    844  1.61  christos 		KVM_ALLOC(kd, procbase, size);
    845  1.52      ross 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    846   1.1       cgd 		if (st == -1) {
    847   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    848  1.48     enami 			return (NULL);
    849   1.1       cgd 		}
    850   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    851   1.1       cgd 			_kvm_err(kd, kd->program,
    852  1.42     enami 			    "proc size mismatch (%lu total, %lu chunks)",
    853  1.42     enami 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    854  1.48     enami 			return (NULL);
    855   1.1       cgd 		}
    856  1.52      ross 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    857   1.1       cgd 	} else {
    858  1.53  christos 		struct nlist nl[4], *p;
    859   1.1       cgd 
    860  1.56  christos 		(void)memset(nl, 0, sizeof(nl));
    861   1.1       cgd 		nl[0].n_name = "_nprocs";
    862   1.1       cgd 		nl[1].n_name = "_allproc";
    863  1.53  christos 		nl[2].n_name = "_zombproc";
    864  1.53  christos 		nl[3].n_name = NULL;
    865   1.1       cgd 
    866   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    867   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    868  1.48     enami 				continue;
    869   1.1       cgd 			_kvm_err(kd, kd->program,
    870  1.48     enami 			    "%s: no such symbol", p->n_name);
    871  1.48     enami 			return (NULL);
    872   1.1       cgd 		}
    873   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    874   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    875  1.48     enami 			return (NULL);
    876   1.1       cgd 		}
    877  1.61  christos 		size = nprocs * sizeof(*kd->procbase);
    878  1.61  christos 		KVM_ALLOC(kd, procbase, size);
    879   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    880  1.53  christos 		    nl[2].n_value, nprocs);
    881  1.32       chs 		if (nprocs < 0)
    882  1.48     enami 			return (NULL);
    883   1.1       cgd #ifdef notdef
    884   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    885   1.1       cgd 		(void)realloc(kd->procbase, size);
    886   1.1       cgd #endif
    887   1.1       cgd 	}
    888   1.1       cgd 	*cnt = nprocs;
    889   1.1       cgd 	return (kd->procbase);
    890   1.1       cgd }
    891   1.1       cgd 
    892   1.1       cgd void *
    893  1.85       jym _kvm_realloc(kvm_t *kd, void *p, size_t n)
    894   1.1       cgd {
    895  1.34    simonb 	void *np = realloc(p, n);
    896   1.1       cgd 
    897  1.36      tron 	if (np == NULL)
    898   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    899   1.1       cgd 	return (np);
    900   1.1       cgd }
    901   1.1       cgd 
    902   1.1       cgd /*
    903   1.1       cgd  * Read in an argument vector from the user address space of process p.
    904  1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    905   1.1       cgd  * strings.  This is used to read in both the command arguments and
    906   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    907   1.1       cgd  */
    908   1.1       cgd static char **
    909  1.85       jym kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
    910  1.85       jym 	 int maxcnt)
    911  1.21     perry {
    912  1.21     perry 	char *np, *cp, *ep, *ap;
    913  1.28  christos 	u_long oaddr = (u_long)~0L;
    914  1.28  christos 	u_long len;
    915  1.28  christos 	size_t cc;
    916  1.21     perry 	char **argv;
    917   1.1       cgd 
    918   1.1       cgd 	/*
    919  1.58    toshii 	 * Check that there aren't an unreasonable number of arguments,
    920   1.1       cgd 	 * and that the address is in user space.
    921   1.1       cgd 	 */
    922  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    923  1.48     enami 		return (NULL);
    924   1.1       cgd 
    925  1.36      tron 	if (kd->argv == NULL) {
    926   1.1       cgd 		/*
    927   1.1       cgd 		 * Try to avoid reallocs.
    928   1.1       cgd 		 */
    929   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    930  1.61  christos 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
    931  1.36      tron 		if (kd->argv == NULL)
    932  1.48     enami 			return (NULL);
    933   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    934   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    935  1.61  christos 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
    936  1.48     enami 		    sizeof(*kd->argv));
    937  1.36      tron 		if (kd->argv == NULL)
    938  1.48     enami 			return (NULL);
    939   1.1       cgd 	}
    940  1.36      tron 	if (kd->argspc == NULL) {
    941  1.61  christos 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    942  1.36      tron 		if (kd->argspc == NULL)
    943  1.48     enami 			return (NULL);
    944  1.61  christos 		kd->argspc_len = kd->nbpg;
    945   1.1       cgd 	}
    946  1.36      tron 	if (kd->argbuf == NULL) {
    947  1.61  christos 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
    948  1.36      tron 		if (kd->argbuf == NULL)
    949  1.48     enami 			return (NULL);
    950  1.10   mycroft 	}
    951  1.10   mycroft 	cc = sizeof(char *) * narg;
    952  1.34    simonb 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    953  1.48     enami 		return (NULL);
    954  1.10   mycroft 	ap = np = kd->argspc;
    955   1.1       cgd 	argv = kd->argv;
    956   1.1       cgd 	len = 0;
    957   1.1       cgd 	/*
    958   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    959   1.1       cgd 	 */
    960  1.36      tron 	while (argv < kd->argv + narg && *argv != NULL) {
    961  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    962  1.10   mycroft 		if (addr != oaddr) {
    963  1.34    simonb 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    964  1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    965  1.48     enami 				return (NULL);
    966  1.10   mycroft 			oaddr = addr;
    967  1.10   mycroft 		}
    968  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    969  1.28  christos 		cp = kd->argbuf + (size_t)addr;
    970  1.28  christos 		cc = kd->nbpg - (size_t)addr;
    971  1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    972  1.28  christos 			cc = (size_t)(maxcnt - len);
    973  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    974  1.36      tron 		if (ep != NULL)
    975  1.10   mycroft 			cc = ep - cp + 1;
    976  1.61  christos 		if (len + cc > kd->argspc_len) {
    977  1.52      ross 			ptrdiff_t off;
    978  1.21     perry 			char **pp;
    979  1.21     perry 			char *op = kd->argspc;
    980   1.1       cgd 
    981  1.61  christos 			kd->argspc_len *= 2;
    982  1.61  christos 			kd->argspc = _kvm_realloc(kd, kd->argspc,
    983  1.61  christos 			    kd->argspc_len);
    984  1.36      tron 			if (kd->argspc == NULL)
    985  1.48     enami 				return (NULL);
    986   1.1       cgd 			/*
    987   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    988   1.1       cgd 			 * the string space.
    989   1.1       cgd 			 */
    990   1.1       cgd 			off = kd->argspc - op;
    991  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    992   1.1       cgd 				*pp += off;
    993  1.12   mycroft 			ap += off;
    994  1.12   mycroft 			np += off;
    995   1.1       cgd 		}
    996  1.10   mycroft 		memcpy(np, cp, cc);
    997  1.10   mycroft 		np += cc;
    998   1.1       cgd 		len += cc;
    999  1.36      tron 		if (ep != NULL) {
   1000  1.10   mycroft 			*argv++ = ap;
   1001  1.10   mycroft 			ap = np;
   1002  1.10   mycroft 		} else
   1003  1.10   mycroft 			*argv += cc;
   1004   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
   1005   1.1       cgd 			/*
   1006   1.1       cgd 			 * We're stopping prematurely.  Terminate the
   1007  1.10   mycroft 			 * current string.
   1008   1.1       cgd 			 */
   1009  1.36      tron 			if (ep == NULL) {
   1010  1.10   mycroft 				*np = '\0';
   1011  1.14   mycroft 				*argv++ = ap;
   1012  1.10   mycroft 			}
   1013  1.10   mycroft 			break;
   1014   1.1       cgd 		}
   1015   1.1       cgd 	}
   1016  1.10   mycroft 	/* Make sure argv is terminated. */
   1017  1.36      tron 	*argv = NULL;
   1018  1.10   mycroft 	return (kd->argv);
   1019   1.1       cgd }
   1020   1.1       cgd 
   1021   1.1       cgd static void
   1022  1.85       jym ps_str_a(struct ps_strings *p, u_long *addr, int *n)
   1023   1.1       cgd {
   1024  1.48     enami 
   1025   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
   1026   1.1       cgd 	*n = p->ps_nargvstr;
   1027   1.1       cgd }
   1028   1.1       cgd 
   1029   1.1       cgd static void
   1030  1.85       jym ps_str_e(struct ps_strings *p, u_long *addr, int *n)
   1031   1.1       cgd {
   1032  1.48     enami 
   1033   1.1       cgd 	*addr = (u_long)p->ps_envstr;
   1034   1.1       cgd 	*n = p->ps_nenvstr;
   1035   1.1       cgd }
   1036   1.1       cgd 
   1037   1.1       cgd /*
   1038   1.1       cgd  * Determine if the proc indicated by p is still active.
   1039   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
   1040   1.1       cgd  * being wrong are very low.
   1041   1.1       cgd  */
   1042   1.1       cgd static int
   1043  1.85       jym proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
   1044   1.1       cgd {
   1045   1.1       cgd 	struct proc kernproc;
   1046   1.1       cgd 
   1047   1.1       cgd 	/*
   1048   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
   1049   1.1       cgd 	 * to the cost of the read system call.
   1050   1.1       cgd 	 */
   1051  1.34    simonb 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1052   1.1       cgd 	    sizeof(kernproc))
   1053  1.48     enami 		return (0);
   1054   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
   1055  1.48     enami 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1056   1.1       cgd }
   1057   1.1       cgd 
   1058   1.1       cgd static char **
   1059  1.85       jym kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
   1060  1.85       jym 	   void (*info)(struct ps_strings *, u_long *, int *))
   1061   1.1       cgd {
   1062  1.21     perry 	char **ap;
   1063   1.1       cgd 	u_long addr;
   1064   1.1       cgd 	int cnt;
   1065   1.1       cgd 	struct ps_strings arginfo;
   1066   1.1       cgd 
   1067   1.1       cgd 	/*
   1068   1.1       cgd 	 * Pointers are stored at the top of the user stack.
   1069   1.1       cgd 	 */
   1070  1.18       gwr 	if (p->p_stat == SZOMB)
   1071  1.48     enami 		return (NULL);
   1072  1.52      ross 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1073  1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
   1074  1.18       gwr 	if (cnt != sizeof(arginfo))
   1075  1.48     enami 		return (NULL);
   1076   1.1       cgd 
   1077   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
   1078   1.3   mycroft 	if (cnt == 0)
   1079  1.48     enami 		return (NULL);
   1080   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1081   1.1       cgd 	/*
   1082   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
   1083   1.1       cgd 	 */
   1084  1.36      tron 	if (ap != NULL && ISALIVE(kd) &&
   1085  1.34    simonb 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1086  1.36      tron 		ap = NULL;
   1087   1.1       cgd 	return (ap);
   1088   1.1       cgd }
   1089   1.1       cgd 
   1090   1.1       cgd /*
   1091   1.1       cgd  * Get the command args.  This code is now machine independent.
   1092   1.1       cgd  */
   1093   1.1       cgd char **
   1094  1.85       jym kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1095   1.1       cgd {
   1096  1.34    simonb 	struct miniproc p;
   1097  1.34    simonb 
   1098  1.34    simonb 	KPTOMINI(kp, &p);
   1099  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1100   1.1       cgd }
   1101   1.1       cgd 
   1102   1.1       cgd char **
   1103  1.85       jym kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1104   1.1       cgd {
   1105  1.34    simonb 	struct miniproc p;
   1106  1.34    simonb 
   1107  1.34    simonb 	KPTOMINI(kp, &p);
   1108  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1109  1.34    simonb }
   1110  1.34    simonb 
   1111  1.34    simonb static char **
   1112  1.85       jym kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
   1113  1.34    simonb {
   1114  1.34    simonb 	size_t bufs;
   1115  1.39  christos 	int narg, mib[4];
   1116  1.61  christos 	size_t newargspc_len;
   1117  1.34    simonb 	char **ap, *bp, *endp;
   1118  1.34    simonb 
   1119  1.34    simonb 	/*
   1120  1.58    toshii 	 * Check that there aren't an unreasonable number of arguments.
   1121  1.34    simonb 	 */
   1122  1.34    simonb 	if (nchr > ARG_MAX)
   1123  1.48     enami 		return (NULL);
   1124  1.34    simonb 
   1125  1.34    simonb 	if (nchr == 0)
   1126  1.34    simonb 		nchr = ARG_MAX;
   1127  1.34    simonb 
   1128  1.34    simonb 	/* Get number of strings in argv */
   1129  1.34    simonb 	mib[0] = CTL_KERN;
   1130  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1131  1.34    simonb 	mib[2] = pid;
   1132  1.34    simonb 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1133  1.34    simonb 	bufs = sizeof(narg);
   1134  1.52      ross 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1135  1.48     enami 		return (NULL);
   1136  1.34    simonb 
   1137  1.36      tron 	if (kd->argv == NULL) {
   1138  1.34    simonb 		/*
   1139  1.34    simonb 		 * Try to avoid reallocs.
   1140  1.34    simonb 		 */
   1141  1.34    simonb 		kd->argc = MAX(narg + 1, 32);
   1142  1.61  christos 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
   1143  1.36      tron 		if (kd->argv == NULL)
   1144  1.48     enami 			return (NULL);
   1145  1.34    simonb 	} else if (narg + 1 > kd->argc) {
   1146  1.34    simonb 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1147  1.61  christos 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
   1148  1.48     enami 		    sizeof(*kd->argv));
   1149  1.36      tron 		if (kd->argv == NULL)
   1150  1.48     enami 			return (NULL);
   1151  1.34    simonb 	}
   1152  1.34    simonb 
   1153  1.61  christos 	newargspc_len = MIN(nchr, ARG_MAX);
   1154  1.61  christos 	KVM_ALLOC(kd, argspc, newargspc_len);
   1155  1.61  christos 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
   1156  1.34    simonb 
   1157  1.34    simonb 	mib[0] = CTL_KERN;
   1158  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1159  1.34    simonb 	mib[2] = pid;
   1160  1.34    simonb 	mib[3] = type;
   1161  1.61  christos 	bufs = kd->argspc_len;
   1162  1.52      ross 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1163  1.48     enami 		return (NULL);
   1164  1.34    simonb 
   1165  1.34    simonb 	bp = kd->argspc;
   1166  1.61  christos 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
   1167  1.34    simonb 	ap = kd->argv;
   1168  1.34    simonb 	endp = bp + MIN(nchr, bufs);
   1169  1.34    simonb 
   1170  1.34    simonb 	while (bp < endp) {
   1171  1.34    simonb 		*ap++ = bp;
   1172  1.48     enami 		/*
   1173  1.48     enami 		 * XXX: don't need following anymore, or stick check
   1174  1.48     enami 		 * for max argc in above while loop?
   1175  1.48     enami 		 */
   1176  1.34    simonb 		if (ap >= kd->argv + kd->argc) {
   1177  1.34    simonb 			kd->argc *= 2;
   1178  1.34    simonb 			kd->argv = _kvm_realloc(kd, kd->argv,
   1179  1.34    simonb 			    kd->argc * sizeof(*kd->argv));
   1180  1.44  jdolecek 			ap = kd->argv;
   1181  1.34    simonb 		}
   1182  1.34    simonb 		bp += strlen(bp) + 1;
   1183  1.34    simonb 	}
   1184  1.34    simonb 	*ap = NULL;
   1185  1.48     enami 
   1186  1.34    simonb 	return (kd->argv);
   1187  1.34    simonb }
   1188  1.34    simonb 
   1189  1.34    simonb char **
   1190  1.85       jym kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1191  1.34    simonb {
   1192  1.48     enami 
   1193  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1194  1.34    simonb }
   1195  1.34    simonb 
   1196  1.34    simonb char **
   1197  1.85       jym kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1198  1.34    simonb {
   1199  1.48     enami 
   1200  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1201   1.1       cgd }
   1202   1.1       cgd 
   1203   1.1       cgd /*
   1204   1.1       cgd  * Read from user space.  The user context is given by p.
   1205   1.1       cgd  */
   1206  1.34    simonb static ssize_t
   1207  1.85       jym kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
   1208  1.85       jym 	   char *buf, size_t len)
   1209   1.1       cgd {
   1210  1.21     perry 	char *cp;
   1211   1.1       cgd 
   1212   1.1       cgd 	cp = buf;
   1213   1.1       cgd 	while (len > 0) {
   1214  1.28  christos 		size_t cc;
   1215  1.21     perry 		char *dp;
   1216  1.15       cgd 		u_long cnt;
   1217   1.8   mycroft 
   1218  1.34    simonb 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1219  1.36      tron 		if (dp == NULL) {
   1220  1.41  sommerfe 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1221  1.48     enami 			return (0);
   1222   1.8   mycroft 		}
   1223  1.28  christos 		cc = (size_t)MIN(cnt, len);
   1224  1.25     perry 		memcpy(cp, dp, cc);
   1225   1.1       cgd 		cp += cc;
   1226   1.1       cgd 		uva += cc;
   1227   1.1       cgd 		len -= cc;
   1228   1.1       cgd 	}
   1229   1.1       cgd 	return (ssize_t)(cp - buf);
   1230  1.34    simonb }
   1231  1.34    simonb 
   1232  1.34    simonb ssize_t
   1233  1.85       jym kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
   1234  1.34    simonb {
   1235  1.34    simonb 	struct miniproc mp;
   1236  1.34    simonb 
   1237  1.34    simonb 	PTOMINI(p, &mp);
   1238  1.34    simonb 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1239   1.1       cgd }
   1240