kvm_proc.c revision 1.95 1 1.95 christos /* $NetBSD: kvm_proc.c,v 1.95 2021/07/19 10:30:36 christos Exp $ */
2 1.26 mycroft
3 1.26 mycroft /*-
4 1.26 mycroft * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.26 mycroft * All rights reserved.
6 1.26 mycroft *
7 1.26 mycroft * This code is derived from software contributed to The NetBSD Foundation
8 1.26 mycroft * by Charles M. Hannum.
9 1.26 mycroft *
10 1.26 mycroft * Redistribution and use in source and binary forms, with or without
11 1.26 mycroft * modification, are permitted provided that the following conditions
12 1.26 mycroft * are met:
13 1.26 mycroft * 1. Redistributions of source code must retain the above copyright
14 1.26 mycroft * notice, this list of conditions and the following disclaimer.
15 1.26 mycroft * 2. Redistributions in binary form must reproduce the above copyright
16 1.26 mycroft * notice, this list of conditions and the following disclaimer in the
17 1.26 mycroft * documentation and/or other materials provided with the distribution.
18 1.26 mycroft *
19 1.26 mycroft * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.26 mycroft * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.26 mycroft * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.26 mycroft * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.26 mycroft * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.26 mycroft * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.26 mycroft * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.26 mycroft * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.26 mycroft * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.26 mycroft * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.26 mycroft * POSSIBILITY OF SUCH DAMAGE.
30 1.26 mycroft */
31 1.16 thorpej
32 1.1 cgd /*-
33 1.1 cgd * Copyright (c) 1989, 1992, 1993
34 1.1 cgd * The Regents of the University of California. All rights reserved.
35 1.1 cgd *
36 1.1 cgd * This code is derived from software developed by the Computer Systems
37 1.1 cgd * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 1.1 cgd * BG 91-66 and contributed to Berkeley.
39 1.1 cgd *
40 1.1 cgd * Redistribution and use in source and binary forms, with or without
41 1.1 cgd * modification, are permitted provided that the following conditions
42 1.1 cgd * are met:
43 1.1 cgd * 1. Redistributions of source code must retain the above copyright
44 1.1 cgd * notice, this list of conditions and the following disclaimer.
45 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
46 1.1 cgd * notice, this list of conditions and the following disclaimer in the
47 1.1 cgd * documentation and/or other materials provided with the distribution.
48 1.54 agc * 3. Neither the name of the University nor the names of its contributors
49 1.1 cgd * may be used to endorse or promote products derived from this software
50 1.1 cgd * without specific prior written permission.
51 1.1 cgd *
52 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 1.1 cgd * SUCH DAMAGE.
63 1.1 cgd */
64 1.1 cgd
65 1.19 mikel #include <sys/cdefs.h>
66 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
67 1.16 thorpej #if 0
68 1.1 cgd static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 1.16 thorpej #else
70 1.95 christos __RCSID("$NetBSD: kvm_proc.c,v 1.95 2021/07/19 10:30:36 christos Exp $");
71 1.16 thorpej #endif
72 1.1 cgd #endif /* LIBC_SCCS and not lint */
73 1.1 cgd
74 1.1 cgd /*
75 1.1 cgd * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 1.1 cgd * users of this code, so we've factored it out into a separate module.
77 1.1 cgd * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 1.1 cgd * most other applications are interested only in open/close/read/nlist).
79 1.1 cgd */
80 1.1 cgd
81 1.1 cgd #include <sys/param.h>
82 1.46 thorpej #include <sys/lwp.h>
83 1.92 christos #include <sys/wait.h>
84 1.1 cgd #include <sys/proc.h>
85 1.1 cgd #include <sys/exec.h>
86 1.1 cgd #include <sys/stat.h>
87 1.1 cgd #include <sys/ioctl.h>
88 1.1 cgd #include <sys/tty.h>
89 1.62 yamt #include <sys/resourcevar.h>
90 1.68 christos #include <sys/mutex.h>
91 1.68 christos #include <sys/specificdata.h>
92 1.86 jym #include <sys/types.h>
93 1.66 ad
94 1.63 yamt #include <errno.h>
95 1.7 cgd #include <stdlib.h>
96 1.52 ross #include <stddef.h>
97 1.10 mycroft #include <string.h>
98 1.1 cgd #include <unistd.h>
99 1.1 cgd #include <nlist.h>
100 1.1 cgd #include <kvm.h>
101 1.1 cgd
102 1.23 chs #include <uvm/uvm_extern.h>
103 1.82 mrg #include <uvm/uvm_param.h>
104 1.29 mrg #include <uvm/uvm_amap.h>
105 1.88 uebayasi #include <uvm/uvm_page.h>
106 1.23 chs
107 1.1 cgd #include <sys/sysctl.h>
108 1.1 cgd
109 1.1 cgd #include <limits.h>
110 1.1 cgd #include <db.h>
111 1.1 cgd #include <paths.h>
112 1.1 cgd
113 1.1 cgd #include "kvm_private.h"
114 1.1 cgd
115 1.34 simonb /*
116 1.34 simonb * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117 1.34 simonb */
118 1.34 simonb struct miniproc {
119 1.34 simonb struct vmspace *p_vmspace;
120 1.34 simonb char p_stat;
121 1.34 simonb struct proc *p_paddr;
122 1.34 simonb pid_t p_pid;
123 1.34 simonb };
124 1.34 simonb
125 1.34 simonb /*
126 1.34 simonb * Convert from struct proc and kinfo_proc{,2} to miniproc.
127 1.34 simonb */
128 1.34 simonb #define PTOMINI(kp, p) \
129 1.48 enami do { \
130 1.34 simonb (p)->p_stat = (kp)->p_stat; \
131 1.34 simonb (p)->p_pid = (kp)->p_pid; \
132 1.34 simonb (p)->p_paddr = NULL; \
133 1.34 simonb (p)->p_vmspace = (kp)->p_vmspace; \
134 1.34 simonb } while (/*CONSTCOND*/0);
135 1.34 simonb
136 1.34 simonb #define KPTOMINI(kp, p) \
137 1.48 enami do { \
138 1.34 simonb (p)->p_stat = (kp)->kp_proc.p_stat; \
139 1.34 simonb (p)->p_pid = (kp)->kp_proc.p_pid; \
140 1.34 simonb (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
141 1.34 simonb (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
142 1.34 simonb } while (/*CONSTCOND*/0);
143 1.34 simonb
144 1.34 simonb #define KP2TOMINI(kp, p) \
145 1.48 enami do { \
146 1.34 simonb (p)->p_stat = (kp)->p_stat; \
147 1.34 simonb (p)->p_pid = (kp)->p_pid; \
148 1.34 simonb (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
149 1.34 simonb (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
150 1.34 simonb } while (/*CONSTCOND*/0);
151 1.34 simonb
152 1.68 christos /*
153 1.68 christos * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
154 1.68 christos * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
155 1.68 christos * kvm(3) so dumps can be read properly.
156 1.68 christos *
157 1.68 christos * Whenever NetBSD starts exporting credentials to userland consistently (using
158 1.68 christos * 'struct uucred', or something) this will have to be updated again.
159 1.68 christos */
160 1.68 christos struct kvm_kauth_cred {
161 1.68 christos u_int cr_refcnt; /* reference count */
162 1.95 christos #if COHERENCY_UNIT > 4
163 1.95 christos uint8_t cr_pad[COHERENCY_UNIT - 4];
164 1.95 christos #endif
165 1.68 christos uid_t cr_uid; /* user id */
166 1.68 christos uid_t cr_euid; /* effective user id */
167 1.68 christos uid_t cr_svuid; /* saved effective user id */
168 1.68 christos gid_t cr_gid; /* group id */
169 1.68 christos gid_t cr_egid; /* effective group id */
170 1.68 christos gid_t cr_svgid; /* saved effective group id */
171 1.68 christos u_int cr_ngroups; /* number of groups */
172 1.68 christos gid_t cr_groups[NGROUPS]; /* group memberships */
173 1.68 christos specificdata_reference cr_sd; /* specific data */
174 1.68 christos };
175 1.68 christos
176 1.34 simonb /* XXX: What uses these two functions? */
177 1.85 jym char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
178 1.85 jym ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *,
179 1.85 jym size_t);
180 1.85 jym
181 1.85 jym static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
182 1.85 jym u_long *);
183 1.85 jym static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
184 1.85 jym char *, size_t);
185 1.85 jym
186 1.85 jym static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
187 1.85 jym static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
188 1.85 jym static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
189 1.85 jym void (*)(struct ps_strings *, u_long *, int *));
190 1.85 jym static char **kvm_doargv2(kvm_t *, pid_t, int, int);
191 1.85 jym static int kvm_proclist(kvm_t *, int, int, struct proc *,
192 1.85 jym struct kinfo_proc *, int);
193 1.85 jym static int proc_verify(kvm_t *, u_long, const struct miniproc *);
194 1.85 jym static void ps_str_a(struct ps_strings *, u_long *, int *);
195 1.85 jym static void ps_str_e(struct ps_strings *, u_long *, int *);
196 1.2 mycroft
197 1.34 simonb
198 1.34 simonb static char *
199 1.85 jym _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
200 1.1 cgd {
201 1.21 perry u_long addr, head;
202 1.21 perry u_long offset;
203 1.1 cgd struct vm_map_entry vme;
204 1.23 chs struct vm_amap amap;
205 1.23 chs struct vm_anon *anonp, anon;
206 1.23 chs struct vm_page pg;
207 1.28 christos u_long slot;
208 1.1 cgd
209 1.36 tron if (kd->swapspc == NULL) {
210 1.61 christos kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
211 1.36 tron if (kd->swapspc == NULL)
212 1.48 enami return (NULL);
213 1.5 deraadt }
214 1.8 mycroft
215 1.1 cgd /*
216 1.1 cgd * Look through the address map for the memory object
217 1.1 cgd * that corresponds to the given virtual address.
218 1.1 cgd * The header just has the entire valid range.
219 1.1 cgd */
220 1.8 mycroft head = (u_long)&p->p_vmspace->vm_map.header;
221 1.1 cgd addr = head;
222 1.73 ad for (;;) {
223 1.2 mycroft if (KREAD(kd, addr, &vme))
224 1.48 enami return (NULL);
225 1.1 cgd
226 1.23 chs if (va >= vme.start && va < vme.end &&
227 1.23 chs vme.aref.ar_amap != NULL)
228 1.23 chs break;
229 1.23 chs
230 1.1 cgd addr = (u_long)vme.next;
231 1.2 mycroft if (addr == head)
232 1.48 enami return (NULL);
233 1.1 cgd }
234 1.2 mycroft
235 1.1 cgd /*
236 1.23 chs * we found the map entry, now to find the object...
237 1.23 chs */
238 1.23 chs if (vme.aref.ar_amap == NULL)
239 1.48 enami return (NULL);
240 1.23 chs
241 1.23 chs addr = (u_long)vme.aref.ar_amap;
242 1.23 chs if (KREAD(kd, addr, &amap))
243 1.48 enami return (NULL);
244 1.23 chs
245 1.23 chs offset = va - vme.start;
246 1.29 mrg slot = offset / kd->nbpg + vme.aref.ar_pageoff;
247 1.23 chs /* sanity-check slot number */
248 1.48 enami if (slot > amap.am_nslot)
249 1.48 enami return (NULL);
250 1.23 chs
251 1.23 chs addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
252 1.23 chs if (KREAD(kd, addr, &anonp))
253 1.48 enami return (NULL);
254 1.23 chs
255 1.23 chs addr = (u_long)anonp;
256 1.23 chs if (KREAD(kd, addr, &anon))
257 1.48 enami return (NULL);
258 1.23 chs
259 1.59 jmc addr = (u_long)anon.an_page;
260 1.23 chs if (addr) {
261 1.23 chs if (KREAD(kd, addr, &pg))
262 1.48 enami return (NULL);
263 1.23 chs
264 1.76 ad if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
265 1.94 ad (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
266 1.48 enami return (NULL);
267 1.48 enami } else {
268 1.60 yamt if (kd->swfd < 0 ||
269 1.76 ad _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
270 1.24 thorpej (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
271 1.48 enami return (NULL);
272 1.23 chs }
273 1.8 mycroft
274 1.2 mycroft /* Found the page. */
275 1.6 mycroft offset %= kd->nbpg;
276 1.6 mycroft *cnt = kd->nbpg - offset;
277 1.28 christos return (&kd->swapspc[(size_t)offset]);
278 1.2 mycroft }
279 1.1 cgd
280 1.34 simonb char *
281 1.85 jym _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
282 1.34 simonb {
283 1.34 simonb struct miniproc mp;
284 1.34 simonb
285 1.34 simonb PTOMINI(p, &mp);
286 1.34 simonb return (_kvm_ureadm(kd, &mp, va, cnt));
287 1.34 simonb }
288 1.34 simonb
289 1.1 cgd /*
290 1.65 elad * Convert credentials located in kernel space address 'cred' and store
291 1.65 elad * them in the appropriate members of 'eproc'.
292 1.65 elad */
293 1.65 elad static int
294 1.65 elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
295 1.65 elad {
296 1.68 christos struct kvm_kauth_cred kauthcred;
297 1.67 dsl struct ki_pcred *pc = &eproc->e_pcred;
298 1.67 dsl struct ki_ucred *uc = &eproc->e_ucred;
299 1.65 elad
300 1.65 elad if (KREAD(kd, cred, &kauthcred) != 0)
301 1.65 elad return (-1);
302 1.65 elad
303 1.65 elad /* inlined version of kauth_cred_to_pcred, see kauth(9). */
304 1.65 elad pc->p_ruid = kauthcred.cr_uid;
305 1.65 elad pc->p_svuid = kauthcred.cr_svuid;
306 1.65 elad pc->p_rgid = kauthcred.cr_gid;
307 1.65 elad pc->p_svgid = kauthcred.cr_svgid;
308 1.65 elad pc->p_refcnt = kauthcred.cr_refcnt;
309 1.67 dsl pc->p_pad = NULL;
310 1.65 elad
311 1.65 elad /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
312 1.65 elad uc->cr_ref = kauthcred.cr_refcnt;
313 1.65 elad uc->cr_uid = kauthcred.cr_euid;
314 1.65 elad uc->cr_gid = kauthcred.cr_egid;
315 1.71 christos uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
316 1.65 elad sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
317 1.65 elad memcpy(uc->cr_groups, kauthcred.cr_groups,
318 1.65 elad uc->cr_ngroups * sizeof(uc->cr_groups[0]));
319 1.65 elad
320 1.65 elad return (0);
321 1.65 elad }
322 1.65 elad
323 1.65 elad /*
324 1.1 cgd * Read proc's from memory file into buffer bp, which has space to hold
325 1.1 cgd * at most maxcnt procs.
326 1.1 cgd */
327 1.1 cgd static int
328 1.85 jym kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
329 1.85 jym struct kinfo_proc *bp, int maxcnt)
330 1.1 cgd {
331 1.21 perry int cnt = 0;
332 1.46 thorpej int nlwps;
333 1.46 thorpej struct kinfo_lwp *kl;
334 1.1 cgd struct eproc eproc;
335 1.1 cgd struct pgrp pgrp;
336 1.1 cgd struct session sess;
337 1.1 cgd struct tty tty;
338 1.1 cgd struct proc proc;
339 1.1 cgd
340 1.4 mycroft for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
341 1.1 cgd if (KREAD(kd, (u_long)p, &proc)) {
342 1.41 sommerfe _kvm_err(kd, kd->program, "can't read proc at %p", p);
343 1.1 cgd return (-1);
344 1.1 cgd }
345 1.65 elad if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
346 1.65 elad _kvm_err(kd, kd->program,
347 1.65 elad "can't read proc credentials at %p", p);
348 1.65 elad return (-1);
349 1.65 elad }
350 1.1 cgd
351 1.48 enami switch (what) {
352 1.31 simonb
353 1.1 cgd case KERN_PROC_PID:
354 1.1 cgd if (proc.p_pid != (pid_t)arg)
355 1.1 cgd continue;
356 1.1 cgd break;
357 1.1 cgd
358 1.1 cgd case KERN_PROC_UID:
359 1.1 cgd if (eproc.e_ucred.cr_uid != (uid_t)arg)
360 1.1 cgd continue;
361 1.1 cgd break;
362 1.1 cgd
363 1.1 cgd case KERN_PROC_RUID:
364 1.1 cgd if (eproc.e_pcred.p_ruid != (uid_t)arg)
365 1.1 cgd continue;
366 1.1 cgd break;
367 1.1 cgd }
368 1.1 cgd /*
369 1.1 cgd * We're going to add another proc to the set. If this
370 1.1 cgd * will overflow the buffer, assume the reason is because
371 1.1 cgd * nprocs (or the proc list) is corrupt and declare an error.
372 1.1 cgd */
373 1.1 cgd if (cnt >= maxcnt) {
374 1.1 cgd _kvm_err(kd, kd->program, "nprocs corrupt");
375 1.1 cgd return (-1);
376 1.1 cgd }
377 1.1 cgd /*
378 1.1 cgd * gather eproc
379 1.1 cgd */
380 1.1 cgd eproc.e_paddr = p;
381 1.1 cgd if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
382 1.41 sommerfe _kvm_err(kd, kd->program, "can't read pgrp at %p",
383 1.48 enami proc.p_pgrp);
384 1.1 cgd return (-1);
385 1.1 cgd }
386 1.1 cgd eproc.e_sess = pgrp.pg_session;
387 1.1 cgd eproc.e_pgid = pgrp.pg_id;
388 1.1 cgd eproc.e_jobc = pgrp.pg_jobc;
389 1.1 cgd if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
390 1.41 sommerfe _kvm_err(kd, kd->program, "can't read session at %p",
391 1.48 enami pgrp.pg_session);
392 1.1 cgd return (-1);
393 1.1 cgd }
394 1.66 ad if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
395 1.1 cgd if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
396 1.1 cgd _kvm_err(kd, kd->program,
397 1.48 enami "can't read tty at %p", sess.s_ttyp);
398 1.1 cgd return (-1);
399 1.1 cgd }
400 1.81 christos eproc.e_tdev = (uint32_t)tty.t_dev;
401 1.1 cgd eproc.e_tsess = tty.t_session;
402 1.1 cgd if (tty.t_pgrp != NULL) {
403 1.1 cgd if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
404 1.1 cgd _kvm_err(kd, kd->program,
405 1.48 enami "can't read tpgrp at %p",
406 1.48 enami tty.t_pgrp);
407 1.1 cgd return (-1);
408 1.1 cgd }
409 1.1 cgd eproc.e_tpgid = pgrp.pg_id;
410 1.1 cgd } else
411 1.1 cgd eproc.e_tpgid = -1;
412 1.1 cgd } else
413 1.81 christos eproc.e_tdev = (uint32_t)NODEV;
414 1.1 cgd eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
415 1.33 simonb eproc.e_sid = sess.s_sid;
416 1.1 cgd if (sess.s_leader == p)
417 1.1 cgd eproc.e_flag |= EPROC_SLEADER;
418 1.48 enami /*
419 1.48 enami * Fill in the old-style proc.p_wmesg by copying the wmesg
420 1.55 wiz * from the first available LWP.
421 1.46 thorpej */
422 1.47 christos kl = kvm_getlwps(kd, proc.p_pid,
423 1.57 atatat (u_long)PTRTOUINT64(eproc.e_paddr),
424 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
425 1.46 thorpej if (kl) {
426 1.46 thorpej if (nlwps > 0) {
427 1.46 thorpej strcpy(eproc.e_wmesg, kl[0].l_wmesg);
428 1.46 thorpej }
429 1.46 thorpej }
430 1.34 simonb (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
431 1.34 simonb sizeof(eproc.e_vm));
432 1.9 pk
433 1.1 cgd eproc.e_xsize = eproc.e_xrssize = 0;
434 1.1 cgd eproc.e_xccount = eproc.e_xswrss = 0;
435 1.1 cgd
436 1.1 cgd switch (what) {
437 1.1 cgd
438 1.1 cgd case KERN_PROC_PGRP:
439 1.1 cgd if (eproc.e_pgid != (pid_t)arg)
440 1.1 cgd continue;
441 1.1 cgd break;
442 1.1 cgd
443 1.1 cgd case KERN_PROC_TTY:
444 1.66 ad if ((proc.p_lflag & PL_CONTROLT) == 0 ||
445 1.48 enami eproc.e_tdev != (dev_t)arg)
446 1.1 cgd continue;
447 1.1 cgd break;
448 1.1 cgd }
449 1.25 perry memcpy(&bp->kp_proc, &proc, sizeof(proc));
450 1.25 perry memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
451 1.1 cgd ++bp;
452 1.1 cgd ++cnt;
453 1.1 cgd }
454 1.1 cgd return (cnt);
455 1.1 cgd }
456 1.1 cgd
457 1.1 cgd /*
458 1.1 cgd * Build proc info array by reading in proc list from a crash dump.
459 1.1 cgd * Return number of procs read. maxcnt is the max we will read.
460 1.1 cgd */
461 1.1 cgd static int
462 1.85 jym kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
463 1.85 jym u_long a_zombproc, int maxcnt)
464 1.1 cgd {
465 1.21 perry struct kinfo_proc *bp = kd->procbase;
466 1.53 christos int acnt, zcnt;
467 1.1 cgd struct proc *p;
468 1.1 cgd
469 1.1 cgd if (KREAD(kd, a_allproc, &p)) {
470 1.1 cgd _kvm_err(kd, kd->program, "cannot read allproc");
471 1.1 cgd return (-1);
472 1.1 cgd }
473 1.1 cgd acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
474 1.1 cgd if (acnt < 0)
475 1.1 cgd return (acnt);
476 1.1 cgd
477 1.1 cgd if (KREAD(kd, a_zombproc, &p)) {
478 1.1 cgd _kvm_err(kd, kd->program, "cannot read zombproc");
479 1.1 cgd return (-1);
480 1.1 cgd }
481 1.27 thorpej zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
482 1.53 christos maxcnt - acnt);
483 1.1 cgd if (zcnt < 0)
484 1.1 cgd zcnt = 0;
485 1.1 cgd
486 1.1 cgd return (acnt + zcnt);
487 1.1 cgd }
488 1.1 cgd
489 1.34 simonb struct kinfo_proc2 *
490 1.85 jym kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
491 1.34 simonb {
492 1.34 simonb size_t size;
493 1.34 simonb int mib[6], st, nprocs;
494 1.46 thorpej struct pstats pstats;
495 1.34 simonb
496 1.34 simonb if (ISSYSCTL(kd)) {
497 1.34 simonb size = 0;
498 1.34 simonb mib[0] = CTL_KERN;
499 1.34 simonb mib[1] = KERN_PROC2;
500 1.34 simonb mib[2] = op;
501 1.34 simonb mib[3] = arg;
502 1.52 ross mib[4] = (int)esize;
503 1.63 yamt again:
504 1.34 simonb mib[5] = 0;
505 1.52 ross st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
506 1.34 simonb if (st == -1) {
507 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
508 1.48 enami return (NULL);
509 1.34 simonb }
510 1.34 simonb
511 1.52 ross mib[5] = (int) (size / esize);
512 1.61 christos KVM_ALLOC(kd, procbase2, size);
513 1.52 ross st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
514 1.34 simonb if (st == -1) {
515 1.63 yamt if (errno == ENOMEM) {
516 1.63 yamt goto again;
517 1.63 yamt }
518 1.34 simonb _kvm_syserr(kd, kd->program, "kvm_getproc2");
519 1.48 enami return (NULL);
520 1.34 simonb }
521 1.52 ross nprocs = (int) (size / esize);
522 1.34 simonb } else {
523 1.34 simonb char *kp2c;
524 1.34 simonb struct kinfo_proc *kp;
525 1.34 simonb struct kinfo_proc2 kp2, *kp2p;
526 1.46 thorpej struct kinfo_lwp *kl;
527 1.46 thorpej int i, nlwps;
528 1.34 simonb
529 1.34 simonb kp = kvm_getprocs(kd, op, arg, &nprocs);
530 1.34 simonb if (kp == NULL)
531 1.48 enami return (NULL);
532 1.34 simonb
533 1.61 christos size = nprocs * esize;
534 1.61 christos KVM_ALLOC(kd, procbase2, size);
535 1.39 christos kp2c = (char *)(void *)kd->procbase2;
536 1.34 simonb kp2p = &kp2;
537 1.34 simonb for (i = 0; i < nprocs; i++, kp++) {
538 1.75 yamt struct timeval tv;
539 1.75 yamt
540 1.48 enami kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
541 1.57 atatat (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
542 1.46 thorpej sizeof(struct kinfo_lwp), &nlwps);
543 1.64 chs
544 1.79 cegger if (kl == NULL) {
545 1.79 cegger _kvm_syserr(kd, NULL,
546 1.79 cegger "kvm_getlwps() failed on process %u\n",
547 1.79 cegger kp->kp_proc.p_pid);
548 1.79 cegger if (nlwps == 0)
549 1.79 cegger return NULL;
550 1.79 cegger else
551 1.79 cegger continue;
552 1.79 cegger }
553 1.79 cegger
554 1.46 thorpej /* We use kl[0] as the "representative" LWP */
555 1.34 simonb memset(kp2p, 0, sizeof(kp2));
556 1.46 thorpej kp2p->p_forw = kl[0].l_forw;
557 1.46 thorpej kp2p->p_back = kl[0].l_back;
558 1.57 atatat kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
559 1.46 thorpej kp2p->p_addr = kl[0].l_addr;
560 1.57 atatat kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
561 1.57 atatat kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
562 1.57 atatat kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
563 1.57 atatat kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
564 1.57 atatat kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
565 1.57 atatat kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
566 1.57 atatat kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
567 1.34 simonb kp2p->p_tsess = 0;
568 1.69 dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
569 1.69 dsl kp2p->p_ru = 0;
570 1.69 dsl #else
571 1.69 dsl kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
572 1.69 dsl #endif
573 1.34 simonb
574 1.34 simonb kp2p->p_eflag = 0;
575 1.34 simonb kp2p->p_exitsig = kp->kp_proc.p_exitsig;
576 1.34 simonb kp2p->p_flag = kp->kp_proc.p_flag;
577 1.34 simonb
578 1.34 simonb kp2p->p_pid = kp->kp_proc.p_pid;
579 1.34 simonb
580 1.34 simonb kp2p->p_ppid = kp->kp_eproc.e_ppid;
581 1.34 simonb kp2p->p_sid = kp->kp_eproc.e_sid;
582 1.34 simonb kp2p->p__pgid = kp->kp_eproc.e_pgid;
583 1.34 simonb
584 1.51 dsl kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
585 1.34 simonb
586 1.34 simonb kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
587 1.34 simonb kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
588 1.50 atatat kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
589 1.34 simonb kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
590 1.34 simonb kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
591 1.50 atatat kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
592 1.34 simonb
593 1.39 christos /*CONSTCOND*/
594 1.34 simonb memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
595 1.48 enami MIN(sizeof(kp2p->p_groups),
596 1.48 enami sizeof(kp->kp_eproc.e_ucred.cr_groups)));
597 1.34 simonb kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
598 1.34 simonb
599 1.34 simonb kp2p->p_jobc = kp->kp_eproc.e_jobc;
600 1.34 simonb kp2p->p_tdev = kp->kp_eproc.e_tdev;
601 1.34 simonb kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
602 1.57 atatat kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
603 1.34 simonb
604 1.74 ad kp2p->p_estcpu = 0;
605 1.75 yamt bintime2timeval(&kp->kp_proc.p_rtime, &tv);
606 1.75 yamt kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
607 1.75 yamt kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
608 1.70 christos kp2p->p_cpticks = kl[0].l_cpticks;
609 1.34 simonb kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
610 1.46 thorpej kp2p->p_swtime = kl[0].l_swtime;
611 1.46 thorpej kp2p->p_slptime = kl[0].l_slptime;
612 1.35 thorpej #if 0 /* XXX thorpej */
613 1.34 simonb kp2p->p_schedflags = kp->kp_proc.p_schedflags;
614 1.35 thorpej #else
615 1.35 thorpej kp2p->p_schedflags = 0;
616 1.35 thorpej #endif
617 1.34 simonb
618 1.34 simonb kp2p->p_uticks = kp->kp_proc.p_uticks;
619 1.34 simonb kp2p->p_sticks = kp->kp_proc.p_sticks;
620 1.34 simonb kp2p->p_iticks = kp->kp_proc.p_iticks;
621 1.34 simonb
622 1.57 atatat kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
623 1.34 simonb kp2p->p_traceflag = kp->kp_proc.p_traceflag;
624 1.34 simonb
625 1.46 thorpej kp2p->p_holdcnt = kl[0].l_holdcnt;
626 1.34 simonb
627 1.48 enami memcpy(&kp2p->p_siglist,
628 1.66 ad &kp->kp_proc.p_sigpend.sp_set,
629 1.48 enami sizeof(ki_sigset_t));
630 1.66 ad memset(&kp2p->p_sigmask, 0,
631 1.48 enami sizeof(ki_sigset_t));
632 1.48 enami memcpy(&kp2p->p_sigignore,
633 1.48 enami &kp->kp_proc.p_sigctx.ps_sigignore,
634 1.48 enami sizeof(ki_sigset_t));
635 1.48 enami memcpy(&kp2p->p_sigcatch,
636 1.48 enami &kp->kp_proc.p_sigctx.ps_sigcatch,
637 1.48 enami sizeof(ki_sigset_t));
638 1.34 simonb
639 1.64 chs kp2p->p_stat = kl[0].l_stat;
640 1.46 thorpej kp2p->p_priority = kl[0].l_priority;
641 1.74 ad kp2p->p_usrpri = kl[0].l_priority;
642 1.34 simonb kp2p->p_nice = kp->kp_proc.p_nice;
643 1.34 simonb
644 1.91 christos kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
645 1.34 simonb kp2p->p_acflag = kp->kp_proc.p_acflag;
646 1.34 simonb
647 1.39 christos /*CONSTCOND*/
648 1.34 simonb strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
649 1.48 enami MIN(sizeof(kp2p->p_comm),
650 1.48 enami sizeof(kp->kp_proc.p_comm)));
651 1.34 simonb
652 1.48 enami strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
653 1.48 enami sizeof(kp2p->p_wmesg));
654 1.46 thorpej kp2p->p_wchan = kl[0].l_wchan;
655 1.48 enami strncpy(kp2p->p_login, kp->kp_eproc.e_login,
656 1.48 enami sizeof(kp2p->p_login));
657 1.34 simonb
658 1.34 simonb kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
659 1.34 simonb kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
660 1.34 simonb kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
661 1.34 simonb kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
662 1.89 martin kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
663 1.89 martin / kd->nbpg;
664 1.82 mrg /* Adjust mapped size */
665 1.82 mrg kp2p->p_vm_msize =
666 1.82 mrg (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
667 1.82 mrg kp->kp_eproc.e_vm.vm_issize +
668 1.82 mrg kp->kp_eproc.e_vm.vm_ssize;
669 1.34 simonb
670 1.39 christos kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
671 1.34 simonb
672 1.46 thorpej kp2p->p_realflag = kp->kp_proc.p_flag;
673 1.46 thorpej kp2p->p_nlwps = kp->kp_proc.p_nlwps;
674 1.46 thorpej kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
675 1.46 thorpej kp2p->p_realstat = kp->kp_proc.p_stat;
676 1.46 thorpej
677 1.48 enami if (P_ZOMBIE(&kp->kp_proc) ||
678 1.46 thorpej kp->kp_proc.p_stats == NULL ||
679 1.48 enami KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
680 1.34 simonb kp2p->p_uvalid = 0;
681 1.34 simonb } else {
682 1.34 simonb kp2p->p_uvalid = 1;
683 1.34 simonb
684 1.39 christos kp2p->p_ustart_sec = (u_int32_t)
685 1.46 thorpej pstats.p_start.tv_sec;
686 1.39 christos kp2p->p_ustart_usec = (u_int32_t)
687 1.46 thorpej pstats.p_start.tv_usec;
688 1.39 christos
689 1.39 christos kp2p->p_uutime_sec = (u_int32_t)
690 1.46 thorpej pstats.p_ru.ru_utime.tv_sec;
691 1.39 christos kp2p->p_uutime_usec = (u_int32_t)
692 1.46 thorpej pstats.p_ru.ru_utime.tv_usec;
693 1.39 christos kp2p->p_ustime_sec = (u_int32_t)
694 1.46 thorpej pstats.p_ru.ru_stime.tv_sec;
695 1.39 christos kp2p->p_ustime_usec = (u_int32_t)
696 1.46 thorpej pstats.p_ru.ru_stime.tv_usec;
697 1.34 simonb
698 1.46 thorpej kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
699 1.46 thorpej kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
700 1.46 thorpej kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
701 1.46 thorpej kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
702 1.46 thorpej kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
703 1.46 thorpej kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
704 1.46 thorpej kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
705 1.46 thorpej kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
706 1.46 thorpej kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
707 1.46 thorpej kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
708 1.46 thorpej kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
709 1.46 thorpej kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
710 1.46 thorpej kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
711 1.46 thorpej kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
712 1.34 simonb
713 1.39 christos kp2p->p_uctime_sec = (u_int32_t)
714 1.46 thorpej (pstats.p_cru.ru_utime.tv_sec +
715 1.46 thorpej pstats.p_cru.ru_stime.tv_sec);
716 1.39 christos kp2p->p_uctime_usec = (u_int32_t)
717 1.46 thorpej (pstats.p_cru.ru_utime.tv_usec +
718 1.46 thorpej pstats.p_cru.ru_stime.tv_usec);
719 1.34 simonb }
720 1.34 simonb
721 1.34 simonb memcpy(kp2c, &kp2, esize);
722 1.34 simonb kp2c += esize;
723 1.34 simonb }
724 1.34 simonb }
725 1.34 simonb *cnt = nprocs;
726 1.34 simonb return (kd->procbase2);
727 1.46 thorpej }
728 1.46 thorpej
729 1.46 thorpej struct kinfo_lwp *
730 1.85 jym kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
731 1.46 thorpej {
732 1.46 thorpej size_t size;
733 1.52 ross int mib[5], nlwps;
734 1.52 ross ssize_t st;
735 1.46 thorpej struct kinfo_lwp *kl;
736 1.46 thorpej
737 1.46 thorpej if (ISSYSCTL(kd)) {
738 1.46 thorpej size = 0;
739 1.46 thorpej mib[0] = CTL_KERN;
740 1.46 thorpej mib[1] = KERN_LWP;
741 1.46 thorpej mib[2] = pid;
742 1.52 ross mib[3] = (int)esize;
743 1.46 thorpej mib[4] = 0;
744 1.71 christos again:
745 1.52 ross st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
746 1.46 thorpej if (st == -1) {
747 1.71 christos switch (errno) {
748 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */
749 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps");
750 1.71 christos return NULL;
751 1.71 christos default:
752 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
753 1.71 christos return NULL;
754 1.71 christos }
755 1.46 thorpej }
756 1.52 ross mib[4] = (int) (size / esize);
757 1.61 christos KVM_ALLOC(kd, lwpbase, size);
758 1.52 ross st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
759 1.46 thorpej if (st == -1) {
760 1.71 christos switch (errno) {
761 1.72 christos case ESRCH: /* Treat this as a soft error; see kvm.c */
762 1.72 christos _kvm_syserr(kd, NULL, "kvm_getlwps");
763 1.71 christos return NULL;
764 1.71 christos case ENOMEM:
765 1.71 christos goto again;
766 1.71 christos default:
767 1.71 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
768 1.71 christos return NULL;
769 1.71 christos }
770 1.46 thorpej }
771 1.52 ross nlwps = (int) (size / esize);
772 1.46 thorpej } else {
773 1.46 thorpej /* grovel through the memory image */
774 1.46 thorpej struct proc p;
775 1.46 thorpej struct lwp l;
776 1.46 thorpej u_long laddr;
777 1.70 christos void *back;
778 1.46 thorpej int i;
779 1.46 thorpej
780 1.46 thorpej st = kvm_read(kd, paddr, &p, sizeof(p));
781 1.46 thorpej if (st == -1) {
782 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
783 1.48 enami return (NULL);
784 1.46 thorpej }
785 1.46 thorpej
786 1.46 thorpej nlwps = p.p_nlwps;
787 1.61 christos size = nlwps * sizeof(*kd->lwpbase);
788 1.61 christos KVM_ALLOC(kd, lwpbase, size);
789 1.57 atatat laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
790 1.46 thorpej for (i = 0; (i < nlwps) && (laddr != 0); i++) {
791 1.46 thorpej st = kvm_read(kd, laddr, &l, sizeof(l));
792 1.46 thorpej if (st == -1) {
793 1.46 thorpej _kvm_syserr(kd, kd->program, "kvm_getlwps");
794 1.48 enami return (NULL);
795 1.46 thorpej }
796 1.46 thorpej kl = &kd->lwpbase[i];
797 1.46 thorpej kl->l_laddr = laddr;
798 1.70 christos kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
799 1.70 christos laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
800 1.70 christos st = kvm_read(kd, laddr, &back, sizeof(back));
801 1.70 christos if (st == -1) {
802 1.70 christos _kvm_syserr(kd, kd->program, "kvm_getlwps");
803 1.70 christos return (NULL);
804 1.70 christos }
805 1.70 christos kl->l_back = PTRTOUINT64(back);
806 1.57 atatat kl->l_addr = PTRTOUINT64(l.l_addr);
807 1.46 thorpej kl->l_lid = l.l_lid;
808 1.46 thorpej kl->l_flag = l.l_flag;
809 1.46 thorpej kl->l_swtime = l.l_swtime;
810 1.46 thorpej kl->l_slptime = l.l_slptime;
811 1.46 thorpej kl->l_schedflags = 0; /* XXX */
812 1.84 rmind kl->l_holdcnt = 0;
813 1.46 thorpej kl->l_priority = l.l_priority;
814 1.74 ad kl->l_usrpri = l.l_priority;
815 1.46 thorpej kl->l_stat = l.l_stat;
816 1.57 atatat kl->l_wchan = PTRTOUINT64(l.l_wchan);
817 1.46 thorpej if (l.l_wmesg)
818 1.46 thorpej (void)kvm_read(kd, (u_long)l.l_wmesg,
819 1.52 ross kl->l_wmesg, (size_t)WMESGLEN);
820 1.46 thorpej kl->l_cpuid = KI_NOCPU;
821 1.57 atatat laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
822 1.46 thorpej }
823 1.46 thorpej }
824 1.46 thorpej
825 1.46 thorpej *cnt = nlwps;
826 1.48 enami return (kd->lwpbase);
827 1.34 simonb }
828 1.34 simonb
829 1.1 cgd struct kinfo_proc *
830 1.85 jym kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
831 1.1 cgd {
832 1.7 cgd size_t size;
833 1.7 cgd int mib[4], st, nprocs;
834 1.1 cgd
835 1.83 yamt if (ISALIVE(kd)) {
836 1.1 cgd size = 0;
837 1.1 cgd mib[0] = CTL_KERN;
838 1.1 cgd mib[1] = KERN_PROC;
839 1.1 cgd mib[2] = op;
840 1.1 cgd mib[3] = arg;
841 1.52 ross st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
842 1.1 cgd if (st == -1) {
843 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
844 1.48 enami return (NULL);
845 1.1 cgd }
846 1.61 christos KVM_ALLOC(kd, procbase, size);
847 1.52 ross st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
848 1.1 cgd if (st == -1) {
849 1.1 cgd _kvm_syserr(kd, kd->program, "kvm_getprocs");
850 1.48 enami return (NULL);
851 1.1 cgd }
852 1.1 cgd if (size % sizeof(struct kinfo_proc) != 0) {
853 1.1 cgd _kvm_err(kd, kd->program,
854 1.42 enami "proc size mismatch (%lu total, %lu chunks)",
855 1.42 enami (u_long)size, (u_long)sizeof(struct kinfo_proc));
856 1.48 enami return (NULL);
857 1.1 cgd }
858 1.52 ross nprocs = (int) (size / sizeof(struct kinfo_proc));
859 1.1 cgd } else {
860 1.53 christos struct nlist nl[4], *p;
861 1.1 cgd
862 1.56 christos (void)memset(nl, 0, sizeof(nl));
863 1.1 cgd nl[0].n_name = "_nprocs";
864 1.1 cgd nl[1].n_name = "_allproc";
865 1.53 christos nl[2].n_name = "_zombproc";
866 1.53 christos nl[3].n_name = NULL;
867 1.1 cgd
868 1.1 cgd if (kvm_nlist(kd, nl) != 0) {
869 1.1 cgd for (p = nl; p->n_type != 0; ++p)
870 1.48 enami continue;
871 1.1 cgd _kvm_err(kd, kd->program,
872 1.48 enami "%s: no such symbol", p->n_name);
873 1.48 enami return (NULL);
874 1.1 cgd }
875 1.1 cgd if (KREAD(kd, nl[0].n_value, &nprocs)) {
876 1.1 cgd _kvm_err(kd, kd->program, "can't read nprocs");
877 1.48 enami return (NULL);
878 1.1 cgd }
879 1.61 christos size = nprocs * sizeof(*kd->procbase);
880 1.61 christos KVM_ALLOC(kd, procbase, size);
881 1.1 cgd nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
882 1.53 christos nl[2].n_value, nprocs);
883 1.32 chs if (nprocs < 0)
884 1.48 enami return (NULL);
885 1.1 cgd #ifdef notdef
886 1.1 cgd size = nprocs * sizeof(struct kinfo_proc);
887 1.1 cgd (void)realloc(kd->procbase, size);
888 1.1 cgd #endif
889 1.1 cgd }
890 1.1 cgd *cnt = nprocs;
891 1.1 cgd return (kd->procbase);
892 1.1 cgd }
893 1.1 cgd
894 1.1 cgd void *
895 1.85 jym _kvm_realloc(kvm_t *kd, void *p, size_t n)
896 1.1 cgd {
897 1.34 simonb void *np = realloc(p, n);
898 1.1 cgd
899 1.36 tron if (np == NULL)
900 1.1 cgd _kvm_err(kd, kd->program, "out of memory");
901 1.1 cgd return (np);
902 1.1 cgd }
903 1.1 cgd
904 1.1 cgd /*
905 1.1 cgd * Read in an argument vector from the user address space of process p.
906 1.31 simonb * addr if the user-space base address of narg null-terminated contiguous
907 1.1 cgd * strings. This is used to read in both the command arguments and
908 1.1 cgd * environment strings. Read at most maxcnt characters of strings.
909 1.1 cgd */
910 1.1 cgd static char **
911 1.85 jym kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
912 1.85 jym int maxcnt)
913 1.21 perry {
914 1.21 perry char *np, *cp, *ep, *ap;
915 1.28 christos u_long oaddr = (u_long)~0L;
916 1.28 christos u_long len;
917 1.28 christos size_t cc;
918 1.21 perry char **argv;
919 1.1 cgd
920 1.1 cgd /*
921 1.58 toshii * Check that there aren't an unreasonable number of arguments,
922 1.1 cgd * and that the address is in user space.
923 1.1 cgd */
924 1.18 gwr if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
925 1.48 enami return (NULL);
926 1.1 cgd
927 1.36 tron if (kd->argv == NULL) {
928 1.1 cgd /*
929 1.1 cgd * Try to avoid reallocs.
930 1.1 cgd */
931 1.1 cgd kd->argc = MAX(narg + 1, 32);
932 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
933 1.36 tron if (kd->argv == NULL)
934 1.48 enami return (NULL);
935 1.1 cgd } else if (narg + 1 > kd->argc) {
936 1.1 cgd kd->argc = MAX(2 * kd->argc, narg + 1);
937 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
938 1.48 enami sizeof(*kd->argv));
939 1.36 tron if (kd->argv == NULL)
940 1.48 enami return (NULL);
941 1.1 cgd }
942 1.36 tron if (kd->argspc == NULL) {
943 1.61 christos kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
944 1.36 tron if (kd->argspc == NULL)
945 1.48 enami return (NULL);
946 1.61 christos kd->argspc_len = kd->nbpg;
947 1.1 cgd }
948 1.36 tron if (kd->argbuf == NULL) {
949 1.61 christos kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
950 1.36 tron if (kd->argbuf == NULL)
951 1.48 enami return (NULL);
952 1.10 mycroft }
953 1.10 mycroft cc = sizeof(char *) * narg;
954 1.34 simonb if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
955 1.48 enami return (NULL);
956 1.10 mycroft ap = np = kd->argspc;
957 1.1 cgd argv = kd->argv;
958 1.1 cgd len = 0;
959 1.1 cgd /*
960 1.1 cgd * Loop over pages, filling in the argument vector.
961 1.1 cgd */
962 1.36 tron while (argv < kd->argv + narg && *argv != NULL) {
963 1.10 mycroft addr = (u_long)*argv & ~(kd->nbpg - 1);
964 1.10 mycroft if (addr != oaddr) {
965 1.34 simonb if (kvm_ureadm(kd, p, addr, kd->argbuf,
966 1.28 christos (size_t)kd->nbpg) != kd->nbpg)
967 1.48 enami return (NULL);
968 1.10 mycroft oaddr = addr;
969 1.10 mycroft }
970 1.10 mycroft addr = (u_long)*argv & (kd->nbpg - 1);
971 1.28 christos cp = kd->argbuf + (size_t)addr;
972 1.28 christos cc = kd->nbpg - (size_t)addr;
973 1.28 christos if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
974 1.28 christos cc = (size_t)(maxcnt - len);
975 1.10 mycroft ep = memchr(cp, '\0', cc);
976 1.36 tron if (ep != NULL)
977 1.10 mycroft cc = ep - cp + 1;
978 1.61 christos if (len + cc > kd->argspc_len) {
979 1.52 ross ptrdiff_t off;
980 1.21 perry char **pp;
981 1.21 perry char *op = kd->argspc;
982 1.1 cgd
983 1.61 christos kd->argspc_len *= 2;
984 1.61 christos kd->argspc = _kvm_realloc(kd, kd->argspc,
985 1.61 christos kd->argspc_len);
986 1.36 tron if (kd->argspc == NULL)
987 1.48 enami return (NULL);
988 1.1 cgd /*
989 1.1 cgd * Adjust argv pointers in case realloc moved
990 1.1 cgd * the string space.
991 1.1 cgd */
992 1.1 cgd off = kd->argspc - op;
993 1.13 mycroft for (pp = kd->argv; pp < argv; pp++)
994 1.1 cgd *pp += off;
995 1.12 mycroft ap += off;
996 1.12 mycroft np += off;
997 1.1 cgd }
998 1.10 mycroft memcpy(np, cp, cc);
999 1.10 mycroft np += cc;
1000 1.1 cgd len += cc;
1001 1.36 tron if (ep != NULL) {
1002 1.10 mycroft *argv++ = ap;
1003 1.10 mycroft ap = np;
1004 1.10 mycroft } else
1005 1.10 mycroft *argv += cc;
1006 1.1 cgd if (maxcnt > 0 && len >= maxcnt) {
1007 1.1 cgd /*
1008 1.1 cgd * We're stopping prematurely. Terminate the
1009 1.10 mycroft * current string.
1010 1.1 cgd */
1011 1.36 tron if (ep == NULL) {
1012 1.10 mycroft *np = '\0';
1013 1.14 mycroft *argv++ = ap;
1014 1.10 mycroft }
1015 1.10 mycroft break;
1016 1.1 cgd }
1017 1.1 cgd }
1018 1.10 mycroft /* Make sure argv is terminated. */
1019 1.36 tron *argv = NULL;
1020 1.10 mycroft return (kd->argv);
1021 1.1 cgd }
1022 1.1 cgd
1023 1.1 cgd static void
1024 1.85 jym ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1025 1.1 cgd {
1026 1.48 enami
1027 1.1 cgd *addr = (u_long)p->ps_argvstr;
1028 1.1 cgd *n = p->ps_nargvstr;
1029 1.1 cgd }
1030 1.1 cgd
1031 1.1 cgd static void
1032 1.85 jym ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1033 1.1 cgd {
1034 1.48 enami
1035 1.1 cgd *addr = (u_long)p->ps_envstr;
1036 1.1 cgd *n = p->ps_nenvstr;
1037 1.1 cgd }
1038 1.1 cgd
1039 1.1 cgd /*
1040 1.1 cgd * Determine if the proc indicated by p is still active.
1041 1.1 cgd * This test is not 100% foolproof in theory, but chances of
1042 1.1 cgd * being wrong are very low.
1043 1.1 cgd */
1044 1.1 cgd static int
1045 1.85 jym proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1046 1.1 cgd {
1047 1.1 cgd struct proc kernproc;
1048 1.1 cgd
1049 1.1 cgd /*
1050 1.1 cgd * Just read in the whole proc. It's not that big relative
1051 1.1 cgd * to the cost of the read system call.
1052 1.1 cgd */
1053 1.34 simonb if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1054 1.1 cgd sizeof(kernproc))
1055 1.48 enami return (0);
1056 1.1 cgd return (p->p_pid == kernproc.p_pid &&
1057 1.48 enami (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1058 1.1 cgd }
1059 1.1 cgd
1060 1.1 cgd static char **
1061 1.85 jym kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1062 1.85 jym void (*info)(struct ps_strings *, u_long *, int *))
1063 1.1 cgd {
1064 1.21 perry char **ap;
1065 1.1 cgd u_long addr;
1066 1.1 cgd int cnt;
1067 1.1 cgd struct ps_strings arginfo;
1068 1.1 cgd
1069 1.1 cgd /*
1070 1.1 cgd * Pointers are stored at the top of the user stack.
1071 1.1 cgd */
1072 1.18 gwr if (p->p_stat == SZOMB)
1073 1.48 enami return (NULL);
1074 1.52 ross cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1075 1.28 christos (void *)&arginfo, sizeof(arginfo));
1076 1.18 gwr if (cnt != sizeof(arginfo))
1077 1.48 enami return (NULL);
1078 1.1 cgd
1079 1.1 cgd (*info)(&arginfo, &addr, &cnt);
1080 1.3 mycroft if (cnt == 0)
1081 1.48 enami return (NULL);
1082 1.1 cgd ap = kvm_argv(kd, p, addr, cnt, nchr);
1083 1.1 cgd /*
1084 1.1 cgd * For live kernels, make sure this process didn't go away.
1085 1.1 cgd */
1086 1.36 tron if (ap != NULL && ISALIVE(kd) &&
1087 1.34 simonb !proc_verify(kd, (u_long)p->p_paddr, p))
1088 1.36 tron ap = NULL;
1089 1.1 cgd return (ap);
1090 1.1 cgd }
1091 1.1 cgd
1092 1.1 cgd /*
1093 1.1 cgd * Get the command args. This code is now machine independent.
1094 1.1 cgd */
1095 1.1 cgd char **
1096 1.85 jym kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1097 1.1 cgd {
1098 1.34 simonb struct miniproc p;
1099 1.34 simonb
1100 1.34 simonb KPTOMINI(kp, &p);
1101 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_a));
1102 1.1 cgd }
1103 1.1 cgd
1104 1.1 cgd char **
1105 1.85 jym kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1106 1.1 cgd {
1107 1.34 simonb struct miniproc p;
1108 1.34 simonb
1109 1.34 simonb KPTOMINI(kp, &p);
1110 1.34 simonb return (kvm_doargv(kd, &p, nchr, ps_str_e));
1111 1.34 simonb }
1112 1.34 simonb
1113 1.34 simonb static char **
1114 1.85 jym kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1115 1.34 simonb {
1116 1.34 simonb size_t bufs;
1117 1.39 christos int narg, mib[4];
1118 1.61 christos size_t newargspc_len;
1119 1.34 simonb char **ap, *bp, *endp;
1120 1.34 simonb
1121 1.34 simonb /*
1122 1.58 toshii * Check that there aren't an unreasonable number of arguments.
1123 1.34 simonb */
1124 1.34 simonb if (nchr > ARG_MAX)
1125 1.48 enami return (NULL);
1126 1.34 simonb
1127 1.34 simonb if (nchr == 0)
1128 1.34 simonb nchr = ARG_MAX;
1129 1.34 simonb
1130 1.34 simonb /* Get number of strings in argv */
1131 1.34 simonb mib[0] = CTL_KERN;
1132 1.34 simonb mib[1] = KERN_PROC_ARGS;
1133 1.34 simonb mib[2] = pid;
1134 1.34 simonb mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1135 1.34 simonb bufs = sizeof(narg);
1136 1.52 ross if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1137 1.48 enami return (NULL);
1138 1.34 simonb
1139 1.36 tron if (kd->argv == NULL) {
1140 1.34 simonb /*
1141 1.34 simonb * Try to avoid reallocs.
1142 1.34 simonb */
1143 1.34 simonb kd->argc = MAX(narg + 1, 32);
1144 1.61 christos kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1145 1.36 tron if (kd->argv == NULL)
1146 1.48 enami return (NULL);
1147 1.34 simonb } else if (narg + 1 > kd->argc) {
1148 1.34 simonb kd->argc = MAX(2 * kd->argc, narg + 1);
1149 1.61 christos kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1150 1.48 enami sizeof(*kd->argv));
1151 1.36 tron if (kd->argv == NULL)
1152 1.48 enami return (NULL);
1153 1.34 simonb }
1154 1.34 simonb
1155 1.61 christos newargspc_len = MIN(nchr, ARG_MAX);
1156 1.61 christos KVM_ALLOC(kd, argspc, newargspc_len);
1157 1.61 christos memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1158 1.34 simonb
1159 1.34 simonb mib[0] = CTL_KERN;
1160 1.34 simonb mib[1] = KERN_PROC_ARGS;
1161 1.34 simonb mib[2] = pid;
1162 1.34 simonb mib[3] = type;
1163 1.61 christos bufs = kd->argspc_len;
1164 1.52 ross if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1165 1.48 enami return (NULL);
1166 1.34 simonb
1167 1.34 simonb bp = kd->argspc;
1168 1.61 christos bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1169 1.34 simonb ap = kd->argv;
1170 1.34 simonb endp = bp + MIN(nchr, bufs);
1171 1.34 simonb
1172 1.34 simonb while (bp < endp) {
1173 1.34 simonb *ap++ = bp;
1174 1.48 enami /*
1175 1.48 enami * XXX: don't need following anymore, or stick check
1176 1.48 enami * for max argc in above while loop?
1177 1.48 enami */
1178 1.34 simonb if (ap >= kd->argv + kd->argc) {
1179 1.34 simonb kd->argc *= 2;
1180 1.34 simonb kd->argv = _kvm_realloc(kd, kd->argv,
1181 1.34 simonb kd->argc * sizeof(*kd->argv));
1182 1.44 jdolecek ap = kd->argv;
1183 1.34 simonb }
1184 1.34 simonb bp += strlen(bp) + 1;
1185 1.34 simonb }
1186 1.34 simonb *ap = NULL;
1187 1.48 enami
1188 1.34 simonb return (kd->argv);
1189 1.34 simonb }
1190 1.34 simonb
1191 1.34 simonb char **
1192 1.85 jym kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1193 1.34 simonb {
1194 1.48 enami
1195 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1196 1.34 simonb }
1197 1.34 simonb
1198 1.34 simonb char **
1199 1.85 jym kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1200 1.34 simonb {
1201 1.48 enami
1202 1.34 simonb return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1203 1.1 cgd }
1204 1.1 cgd
1205 1.1 cgd /*
1206 1.1 cgd * Read from user space. The user context is given by p.
1207 1.1 cgd */
1208 1.34 simonb static ssize_t
1209 1.85 jym kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1210 1.85 jym char *buf, size_t len)
1211 1.1 cgd {
1212 1.21 perry char *cp;
1213 1.1 cgd
1214 1.1 cgd cp = buf;
1215 1.1 cgd while (len > 0) {
1216 1.28 christos size_t cc;
1217 1.21 perry char *dp;
1218 1.15 cgd u_long cnt;
1219 1.8 mycroft
1220 1.34 simonb dp = _kvm_ureadm(kd, p, uva, &cnt);
1221 1.36 tron if (dp == NULL) {
1222 1.41 sommerfe _kvm_err(kd, 0, "invalid address (%lx)", uva);
1223 1.48 enami return (0);
1224 1.8 mycroft }
1225 1.28 christos cc = (size_t)MIN(cnt, len);
1226 1.25 perry memcpy(cp, dp, cc);
1227 1.1 cgd cp += cc;
1228 1.1 cgd uva += cc;
1229 1.1 cgd len -= cc;
1230 1.1 cgd }
1231 1.1 cgd return (ssize_t)(cp - buf);
1232 1.34 simonb }
1233 1.34 simonb
1234 1.34 simonb ssize_t
1235 1.85 jym kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1236 1.34 simonb {
1237 1.34 simonb struct miniproc mp;
1238 1.34 simonb
1239 1.34 simonb PTOMINI(p, &mp);
1240 1.34 simonb return (kvm_ureadm(kd, &mp, uva, buf, len));
1241 1.1 cgd }
1242