Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.99
      1  1.99       mrg /*	$NetBSD: kvm_proc.c,v 1.99 2023/08/10 20:38:00 mrg Exp $	*/
      2  1.26   mycroft 
      3  1.26   mycroft /*-
      4  1.26   mycroft  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.26   mycroft  * All rights reserved.
      6  1.26   mycroft  *
      7  1.26   mycroft  * This code is derived from software contributed to The NetBSD Foundation
      8  1.26   mycroft  * by Charles M. Hannum.
      9  1.26   mycroft  *
     10  1.26   mycroft  * Redistribution and use in source and binary forms, with or without
     11  1.26   mycroft  * modification, are permitted provided that the following conditions
     12  1.26   mycroft  * are met:
     13  1.26   mycroft  * 1. Redistributions of source code must retain the above copyright
     14  1.26   mycroft  *    notice, this list of conditions and the following disclaimer.
     15  1.26   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.26   mycroft  *    notice, this list of conditions and the following disclaimer in the
     17  1.26   mycroft  *    documentation and/or other materials provided with the distribution.
     18  1.26   mycroft  *
     19  1.26   mycroft  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.26   mycroft  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.26   mycroft  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.26   mycroft  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.26   mycroft  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.26   mycroft  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.26   mycroft  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.26   mycroft  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.26   mycroft  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.26   mycroft  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.26   mycroft  * POSSIBILITY OF SUCH DAMAGE.
     30  1.26   mycroft  */
     31  1.16   thorpej 
     32   1.1       cgd /*-
     33   1.1       cgd  * Copyright (c) 1989, 1992, 1993
     34   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
     35   1.1       cgd  *
     36   1.1       cgd  * This code is derived from software developed by the Computer Systems
     37   1.1       cgd  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     38   1.1       cgd  * BG 91-66 and contributed to Berkeley.
     39   1.1       cgd  *
     40   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     41   1.1       cgd  * modification, are permitted provided that the following conditions
     42   1.1       cgd  * are met:
     43   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     44   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     45   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     46   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     47   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     48  1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     49   1.1       cgd  *    may be used to endorse or promote products derived from this software
     50   1.1       cgd  *    without specific prior written permission.
     51   1.1       cgd  *
     52   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62   1.1       cgd  * SUCH DAMAGE.
     63   1.1       cgd  */
     64   1.1       cgd 
     65  1.19     mikel #include <sys/cdefs.h>
     66   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     67  1.16   thorpej #if 0
     68   1.1       cgd static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     69  1.16   thorpej #else
     70  1.99       mrg __RCSID("$NetBSD: kvm_proc.c,v 1.99 2023/08/10 20:38:00 mrg Exp $");
     71  1.16   thorpej #endif
     72   1.1       cgd #endif /* LIBC_SCCS and not lint */
     73   1.1       cgd 
     74   1.1       cgd /*
     75   1.1       cgd  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     76   1.1       cgd  * users of this code, so we've factored it out into a separate module.
     77   1.1       cgd  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     78   1.1       cgd  * most other applications are interested only in open/close/read/nlist).
     79   1.1       cgd  */
     80   1.1       cgd 
     81   1.1       cgd #include <sys/param.h>
     82  1.46   thorpej #include <sys/lwp.h>
     83  1.92  christos #include <sys/wait.h>
     84   1.1       cgd #include <sys/proc.h>
     85   1.1       cgd #include <sys/exec.h>
     86   1.1       cgd #include <sys/stat.h>
     87   1.1       cgd #include <sys/ioctl.h>
     88   1.1       cgd #include <sys/tty.h>
     89  1.62      yamt #include <sys/resourcevar.h>
     90  1.68  christos #include <sys/mutex.h>
     91  1.68  christos #include <sys/specificdata.h>
     92  1.86       jym #include <sys/types.h>
     93  1.66        ad 
     94  1.63      yamt #include <errno.h>
     95   1.7       cgd #include <stdlib.h>
     96  1.52      ross #include <stddef.h>
     97  1.10   mycroft #include <string.h>
     98   1.1       cgd #include <unistd.h>
     99   1.1       cgd #include <nlist.h>
    100   1.1       cgd #include <kvm.h>
    101   1.1       cgd 
    102  1.23       chs #include <uvm/uvm_extern.h>
    103  1.82       mrg #include <uvm/uvm_param.h>
    104  1.29       mrg #include <uvm/uvm_amap.h>
    105  1.88  uebayasi #include <uvm/uvm_page.h>
    106  1.23       chs 
    107   1.1       cgd #include <sys/sysctl.h>
    108   1.1       cgd 
    109   1.1       cgd #include <limits.h>
    110   1.1       cgd #include <db.h>
    111   1.1       cgd #include <paths.h>
    112   1.1       cgd 
    113   1.1       cgd #include "kvm_private.h"
    114   1.1       cgd 
    115  1.34    simonb /*
    116  1.34    simonb  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    117  1.34    simonb  */
    118  1.34    simonb struct miniproc {
    119  1.34    simonb 	struct	vmspace *p_vmspace;
    120  1.34    simonb 	char	p_stat;
    121  1.97  christos 	vaddr_t p_psstrp;
    122  1.34    simonb 	struct	proc *p_paddr;
    123  1.34    simonb 	pid_t	p_pid;
    124  1.34    simonb };
    125  1.34    simonb 
    126  1.34    simonb /*
    127  1.34    simonb  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    128  1.34    simonb  */
    129  1.34    simonb #define PTOMINI(kp, p) \
    130  1.48     enami 	do { \
    131  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    132  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    133  1.34    simonb 		(p)->p_paddr = NULL; \
    134  1.34    simonb 		(p)->p_vmspace = (kp)->p_vmspace; \
    135  1.97  christos 		(p)->p_psstrp = (kp)->p_psstrp; \
    136  1.98    rillig 	} while (0);
    137  1.34    simonb 
    138  1.34    simonb #define KPTOMINI(kp, p) \
    139  1.48     enami 	do { \
    140  1.34    simonb 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    141  1.34    simonb 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    142  1.34    simonb 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    143  1.34    simonb 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    144  1.98    rillig 	} while (0);
    145  1.34    simonb 
    146  1.34    simonb #define KP2TOMINI(kp, p) \
    147  1.48     enami 	do { \
    148  1.34    simonb 		(p)->p_stat = (kp)->p_stat; \
    149  1.34    simonb 		(p)->p_pid = (kp)->p_pid; \
    150  1.34    simonb 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    151  1.34    simonb 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    152  1.98    rillig 	} while (0);
    153  1.34    simonb 
    154  1.68  christos /*
    155  1.68  christos  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
    156  1.68  christos  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
    157  1.68  christos  * kvm(3) so dumps can be read properly.
    158  1.68  christos  *
    159  1.68  christos  * Whenever NetBSD starts exporting credentials to userland consistently (using
    160  1.68  christos  * 'struct uucred', or something) this will have to be updated again.
    161  1.68  christos  */
    162  1.68  christos struct kvm_kauth_cred {
    163  1.68  christos 	u_int cr_refcnt;		/* reference count */
    164  1.95  christos #if COHERENCY_UNIT > 4
    165  1.95  christos 	uint8_t cr_pad[COHERENCY_UNIT - 4];
    166  1.95  christos #endif
    167  1.68  christos 	uid_t cr_uid;			/* user id */
    168  1.68  christos 	uid_t cr_euid;			/* effective user id */
    169  1.68  christos 	uid_t cr_svuid;			/* saved effective user id */
    170  1.68  christos 	gid_t cr_gid;			/* group id */
    171  1.68  christos 	gid_t cr_egid;			/* effective group id */
    172  1.68  christos 	gid_t cr_svgid;			/* saved effective group id */
    173  1.68  christos 	u_int cr_ngroups;		/* number of groups */
    174  1.68  christos 	gid_t cr_groups[NGROUPS];	/* group memberships */
    175  1.68  christos 	specificdata_reference cr_sd;	/* specific data */
    176  1.68  christos };
    177  1.68  christos 
    178  1.34    simonb /* XXX: What uses these two functions? */
    179  1.85       jym char		*_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
    180  1.85       jym ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *,
    181  1.85       jym 		    size_t);
    182  1.85       jym 
    183  1.85       jym static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    184  1.85       jym 		    u_long *);
    185  1.85       jym static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    186  1.85       jym 		    char *, size_t);
    187  1.85       jym 
    188  1.85       jym static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
    189  1.85       jym static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
    190  1.85       jym static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
    191  1.85       jym 		    void (*)(struct ps_strings *, u_long *, int *));
    192  1.85       jym static char	**kvm_doargv2(kvm_t *, pid_t, int, int);
    193  1.85       jym static int	kvm_proclist(kvm_t *, int, int, struct proc *,
    194  1.85       jym 		    struct kinfo_proc *, int);
    195  1.85       jym static int	proc_verify(kvm_t *, u_long, const struct miniproc *);
    196  1.85       jym static void	ps_str_a(struct ps_strings *, u_long *, int *);
    197  1.85       jym static void	ps_str_e(struct ps_strings *, u_long *, int *);
    198   1.2   mycroft 
    199  1.34    simonb 
    200  1.34    simonb static char *
    201  1.85       jym _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
    202   1.1       cgd {
    203  1.21     perry 	u_long addr, head;
    204  1.21     perry 	u_long offset;
    205   1.1       cgd 	struct vm_map_entry vme;
    206  1.23       chs 	struct vm_amap amap;
    207  1.23       chs 	struct vm_anon *anonp, anon;
    208  1.23       chs 	struct vm_page pg;
    209  1.28  christos 	u_long slot;
    210   1.1       cgd 
    211  1.36      tron 	if (kd->swapspc == NULL) {
    212  1.61  christos 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    213  1.36      tron 		if (kd->swapspc == NULL)
    214  1.48     enami 			return (NULL);
    215   1.5   deraadt 	}
    216   1.8   mycroft 
    217   1.1       cgd 	/*
    218   1.1       cgd 	 * Look through the address map for the memory object
    219   1.1       cgd 	 * that corresponds to the given virtual address.
    220   1.1       cgd 	 * The header just has the entire valid range.
    221   1.1       cgd 	 */
    222   1.8   mycroft 	head = (u_long)&p->p_vmspace->vm_map.header;
    223   1.1       cgd 	addr = head;
    224  1.73        ad 	for (;;) {
    225   1.2   mycroft 		if (KREAD(kd, addr, &vme))
    226  1.48     enami 			return (NULL);
    227   1.1       cgd 
    228  1.23       chs 		if (va >= vme.start && va < vme.end &&
    229  1.23       chs 		    vme.aref.ar_amap != NULL)
    230  1.23       chs 			break;
    231  1.23       chs 
    232   1.1       cgd 		addr = (u_long)vme.next;
    233   1.2   mycroft 		if (addr == head)
    234  1.48     enami 			return (NULL);
    235   1.1       cgd 	}
    236   1.2   mycroft 
    237   1.1       cgd 	/*
    238  1.23       chs 	 * we found the map entry, now to find the object...
    239  1.23       chs 	 */
    240  1.23       chs 	if (vme.aref.ar_amap == NULL)
    241  1.48     enami 		return (NULL);
    242  1.23       chs 
    243  1.23       chs 	addr = (u_long)vme.aref.ar_amap;
    244  1.23       chs 	if (KREAD(kd, addr, &amap))
    245  1.48     enami 		return (NULL);
    246  1.23       chs 
    247  1.23       chs 	offset = va - vme.start;
    248  1.29       mrg 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    249  1.23       chs 	/* sanity-check slot number */
    250  1.48     enami 	if (slot > amap.am_nslot)
    251  1.48     enami 		return (NULL);
    252  1.23       chs 
    253  1.23       chs 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    254  1.23       chs 	if (KREAD(kd, addr, &anonp))
    255  1.48     enami 		return (NULL);
    256  1.23       chs 
    257  1.23       chs 	addr = (u_long)anonp;
    258  1.23       chs 	if (KREAD(kd, addr, &anon))
    259  1.48     enami 		return (NULL);
    260  1.23       chs 
    261  1.59       jmc 	addr = (u_long)anon.an_page;
    262  1.23       chs 	if (addr) {
    263  1.23       chs 		if (KREAD(kd, addr, &pg))
    264  1.48     enami 			return (NULL);
    265  1.23       chs 
    266  1.76        ad 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    267  1.94        ad 		    (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
    268  1.48     enami 			return (NULL);
    269  1.48     enami 	} else {
    270  1.60      yamt 		if (kd->swfd < 0 ||
    271  1.76        ad 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    272  1.24   thorpej 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    273  1.48     enami 			return (NULL);
    274  1.23       chs 	}
    275   1.8   mycroft 
    276   1.2   mycroft 	/* Found the page. */
    277   1.6   mycroft 	offset %= kd->nbpg;
    278   1.6   mycroft 	*cnt = kd->nbpg - offset;
    279  1.28  christos 	return (&kd->swapspc[(size_t)offset]);
    280   1.2   mycroft }
    281   1.1       cgd 
    282  1.34    simonb char *
    283  1.85       jym _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
    284  1.34    simonb {
    285  1.34    simonb 	struct miniproc mp;
    286  1.34    simonb 
    287  1.34    simonb 	PTOMINI(p, &mp);
    288  1.34    simonb 	return (_kvm_ureadm(kd, &mp, va, cnt));
    289  1.34    simonb }
    290  1.34    simonb 
    291   1.1       cgd /*
    292  1.65      elad  * Convert credentials located in kernel space address 'cred' and store
    293  1.65      elad  * them in the appropriate members of 'eproc'.
    294  1.65      elad  */
    295  1.65      elad static int
    296  1.65      elad _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
    297  1.65      elad {
    298  1.68  christos 	struct kvm_kauth_cred kauthcred;
    299  1.67       dsl 	struct ki_pcred *pc = &eproc->e_pcred;
    300  1.67       dsl 	struct ki_ucred *uc = &eproc->e_ucred;
    301  1.65      elad 
    302  1.65      elad 	if (KREAD(kd, cred, &kauthcred) != 0)
    303  1.65      elad 		return (-1);
    304  1.65      elad 
    305  1.65      elad 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
    306  1.65      elad 	pc->p_ruid = kauthcred.cr_uid;
    307  1.65      elad 	pc->p_svuid = kauthcred.cr_svuid;
    308  1.65      elad 	pc->p_rgid = kauthcred.cr_gid;
    309  1.65      elad 	pc->p_svgid = kauthcred.cr_svgid;
    310  1.65      elad 	pc->p_refcnt = kauthcred.cr_refcnt;
    311  1.67       dsl 	pc->p_pad = NULL;
    312  1.65      elad 
    313  1.65      elad 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
    314  1.65      elad 	uc->cr_ref = kauthcred.cr_refcnt;
    315  1.65      elad 	uc->cr_uid = kauthcred.cr_euid;
    316  1.65      elad 	uc->cr_gid = kauthcred.cr_egid;
    317  1.71  christos 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
    318  1.65      elad 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
    319  1.65      elad 	memcpy(uc->cr_groups, kauthcred.cr_groups,
    320  1.65      elad 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
    321  1.65      elad 
    322  1.65      elad 	return (0);
    323  1.65      elad }
    324  1.65      elad 
    325  1.65      elad /*
    326   1.1       cgd  * Read proc's from memory file into buffer bp, which has space to hold
    327   1.1       cgd  * at most maxcnt procs.
    328   1.1       cgd  */
    329   1.1       cgd static int
    330  1.85       jym kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
    331  1.85       jym 	     struct kinfo_proc *bp, int maxcnt)
    332   1.1       cgd {
    333  1.21     perry 	int cnt = 0;
    334  1.46   thorpej 	int nlwps;
    335  1.46   thorpej 	struct kinfo_lwp *kl;
    336   1.1       cgd 	struct eproc eproc;
    337   1.1       cgd 	struct pgrp pgrp;
    338   1.1       cgd 	struct session sess;
    339   1.1       cgd 	struct tty tty;
    340   1.1       cgd 	struct proc proc;
    341   1.1       cgd 
    342   1.4   mycroft 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    343   1.1       cgd 		if (KREAD(kd, (u_long)p, &proc)) {
    344  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    345   1.1       cgd 			return (-1);
    346   1.1       cgd 		}
    347  1.65      elad 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
    348  1.65      elad 			_kvm_err(kd, kd->program,
    349  1.65      elad 			    "can't read proc credentials at %p", p);
    350  1.65      elad 			return (-1);
    351  1.65      elad 		}
    352   1.1       cgd 
    353  1.48     enami 		switch (what) {
    354  1.31    simonb 
    355   1.1       cgd 		case KERN_PROC_PID:
    356   1.1       cgd 			if (proc.p_pid != (pid_t)arg)
    357   1.1       cgd 				continue;
    358   1.1       cgd 			break;
    359   1.1       cgd 
    360   1.1       cgd 		case KERN_PROC_UID:
    361   1.1       cgd 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    362   1.1       cgd 				continue;
    363   1.1       cgd 			break;
    364   1.1       cgd 
    365   1.1       cgd 		case KERN_PROC_RUID:
    366   1.1       cgd 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    367   1.1       cgd 				continue;
    368   1.1       cgd 			break;
    369   1.1       cgd 		}
    370   1.1       cgd 		/*
    371   1.1       cgd 		 * We're going to add another proc to the set.  If this
    372   1.1       cgd 		 * will overflow the buffer, assume the reason is because
    373   1.1       cgd 		 * nprocs (or the proc list) is corrupt and declare an error.
    374   1.1       cgd 		 */
    375   1.1       cgd 		if (cnt >= maxcnt) {
    376   1.1       cgd 			_kvm_err(kd, kd->program, "nprocs corrupt");
    377   1.1       cgd 			return (-1);
    378   1.1       cgd 		}
    379   1.1       cgd 		/*
    380   1.1       cgd 		 * gather eproc
    381   1.1       cgd 		 */
    382   1.1       cgd 		eproc.e_paddr = p;
    383   1.1       cgd 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    384  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    385  1.48     enami 			    proc.p_pgrp);
    386   1.1       cgd 			return (-1);
    387   1.1       cgd 		}
    388   1.1       cgd 		eproc.e_sess = pgrp.pg_session;
    389   1.1       cgd 		eproc.e_pgid = pgrp.pg_id;
    390   1.1       cgd 		eproc.e_jobc = pgrp.pg_jobc;
    391   1.1       cgd 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    392  1.41  sommerfe 			_kvm_err(kd, kd->program, "can't read session at %p",
    393  1.48     enami 			    pgrp.pg_session);
    394   1.1       cgd 			return (-1);
    395   1.1       cgd 		}
    396  1.66        ad 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
    397   1.1       cgd 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    398   1.1       cgd 				_kvm_err(kd, kd->program,
    399  1.48     enami 				    "can't read tty at %p", sess.s_ttyp);
    400   1.1       cgd 				return (-1);
    401   1.1       cgd 			}
    402  1.81  christos 			eproc.e_tdev = (uint32_t)tty.t_dev;
    403   1.1       cgd 			eproc.e_tsess = tty.t_session;
    404   1.1       cgd 			if (tty.t_pgrp != NULL) {
    405   1.1       cgd 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    406   1.1       cgd 					_kvm_err(kd, kd->program,
    407  1.48     enami 					    "can't read tpgrp at %p",
    408  1.48     enami 					    tty.t_pgrp);
    409   1.1       cgd 					return (-1);
    410   1.1       cgd 				}
    411   1.1       cgd 				eproc.e_tpgid = pgrp.pg_id;
    412   1.1       cgd 			} else
    413   1.1       cgd 				eproc.e_tpgid = -1;
    414   1.1       cgd 		} else
    415  1.81  christos 			eproc.e_tdev = (uint32_t)NODEV;
    416   1.1       cgd 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    417  1.33    simonb 		eproc.e_sid = sess.s_sid;
    418   1.1       cgd 		if (sess.s_leader == p)
    419   1.1       cgd 			eproc.e_flag |= EPROC_SLEADER;
    420  1.48     enami 		/*
    421  1.48     enami 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    422  1.55       wiz 		 * from the first available LWP.
    423  1.46   thorpej 		 */
    424  1.47  christos 		kl = kvm_getlwps(kd, proc.p_pid,
    425  1.57    atatat 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    426  1.46   thorpej 		    sizeof(struct kinfo_lwp), &nlwps);
    427  1.46   thorpej 		if (kl) {
    428  1.46   thorpej 			if (nlwps > 0) {
    429  1.46   thorpej 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    430  1.46   thorpej 			}
    431  1.46   thorpej 		}
    432  1.34    simonb 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    433  1.34    simonb 		    sizeof(eproc.e_vm));
    434   1.9        pk 
    435   1.1       cgd 		eproc.e_xsize = eproc.e_xrssize = 0;
    436   1.1       cgd 		eproc.e_xccount = eproc.e_xswrss = 0;
    437   1.1       cgd 
    438   1.1       cgd 		switch (what) {
    439   1.1       cgd 
    440   1.1       cgd 		case KERN_PROC_PGRP:
    441   1.1       cgd 			if (eproc.e_pgid != (pid_t)arg)
    442   1.1       cgd 				continue;
    443   1.1       cgd 			break;
    444   1.1       cgd 
    445   1.1       cgd 		case KERN_PROC_TTY:
    446  1.66        ad 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
    447  1.48     enami 			    eproc.e_tdev != (dev_t)arg)
    448   1.1       cgd 				continue;
    449   1.1       cgd 			break;
    450   1.1       cgd 		}
    451  1.25     perry 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    452  1.25     perry 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    453   1.1       cgd 		++bp;
    454   1.1       cgd 		++cnt;
    455   1.1       cgd 	}
    456   1.1       cgd 	return (cnt);
    457   1.1       cgd }
    458   1.1       cgd 
    459   1.1       cgd /*
    460   1.1       cgd  * Build proc info array by reading in proc list from a crash dump.
    461   1.1       cgd  * Return number of procs read.  maxcnt is the max we will read.
    462   1.1       cgd  */
    463   1.1       cgd static int
    464  1.85       jym kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
    465  1.85       jym 	      u_long a_zombproc, int maxcnt)
    466   1.1       cgd {
    467  1.21     perry 	struct kinfo_proc *bp = kd->procbase;
    468  1.53  christos 	int acnt, zcnt;
    469   1.1       cgd 	struct proc *p;
    470   1.1       cgd 
    471   1.1       cgd 	if (KREAD(kd, a_allproc, &p)) {
    472   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read allproc");
    473   1.1       cgd 		return (-1);
    474   1.1       cgd 	}
    475   1.1       cgd 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    476   1.1       cgd 	if (acnt < 0)
    477   1.1       cgd 		return (acnt);
    478   1.1       cgd 
    479   1.1       cgd 	if (KREAD(kd, a_zombproc, &p)) {
    480   1.1       cgd 		_kvm_err(kd, kd->program, "cannot read zombproc");
    481   1.1       cgd 		return (-1);
    482   1.1       cgd 	}
    483  1.27   thorpej 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    484  1.53  christos 	    maxcnt - acnt);
    485   1.1       cgd 	if (zcnt < 0)
    486   1.1       cgd 		zcnt = 0;
    487   1.1       cgd 
    488   1.1       cgd 	return (acnt + zcnt);
    489   1.1       cgd }
    490   1.1       cgd 
    491  1.34    simonb struct kinfo_proc2 *
    492  1.85       jym kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
    493  1.34    simonb {
    494  1.34    simonb 	size_t size;
    495  1.34    simonb 	int mib[6], st, nprocs;
    496  1.46   thorpej 	struct pstats pstats;
    497  1.34    simonb 
    498  1.34    simonb 	if (ISSYSCTL(kd)) {
    499  1.34    simonb 		size = 0;
    500  1.34    simonb 		mib[0] = CTL_KERN;
    501  1.34    simonb 		mib[1] = KERN_PROC2;
    502  1.34    simonb 		mib[2] = op;
    503  1.34    simonb 		mib[3] = arg;
    504  1.52      ross 		mib[4] = (int)esize;
    505  1.63      yamt again:
    506  1.34    simonb 		mib[5] = 0;
    507  1.52      ross 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    508  1.34    simonb 		if (st == -1) {
    509  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    510  1.48     enami 			return (NULL);
    511  1.34    simonb 		}
    512  1.34    simonb 
    513  1.52      ross 		mib[5] = (int) (size / esize);
    514  1.61  christos 		KVM_ALLOC(kd, procbase2, size);
    515  1.52      ross 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    516  1.34    simonb 		if (st == -1) {
    517  1.63      yamt 			if (errno == ENOMEM) {
    518  1.63      yamt 				goto again;
    519  1.63      yamt 			}
    520  1.34    simonb 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    521  1.48     enami 			return (NULL);
    522  1.34    simonb 		}
    523  1.52      ross 		nprocs = (int) (size / esize);
    524  1.34    simonb 	} else {
    525  1.34    simonb 		char *kp2c;
    526  1.34    simonb 		struct kinfo_proc *kp;
    527  1.34    simonb 		struct kinfo_proc2 kp2, *kp2p;
    528  1.46   thorpej 		struct kinfo_lwp *kl;
    529  1.46   thorpej 		int i, nlwps;
    530  1.34    simonb 
    531  1.34    simonb 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    532  1.34    simonb 		if (kp == NULL)
    533  1.48     enami 			return (NULL);
    534  1.34    simonb 
    535  1.61  christos 		size = nprocs * esize;
    536  1.61  christos 		KVM_ALLOC(kd, procbase2, size);
    537  1.39  christos 		kp2c = (char *)(void *)kd->procbase2;
    538  1.34    simonb 		kp2p = &kp2;
    539  1.34    simonb 		for (i = 0; i < nprocs; i++, kp++) {
    540  1.75      yamt 			struct timeval tv;
    541  1.75      yamt 
    542  1.48     enami 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    543  1.57    atatat 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    544  1.46   thorpej 			    sizeof(struct kinfo_lwp), &nlwps);
    545  1.64       chs 
    546  1.79    cegger 			if (kl == NULL) {
    547  1.79    cegger 				_kvm_syserr(kd, NULL,
    548  1.79    cegger 					"kvm_getlwps() failed on process %u\n",
    549  1.79    cegger 					kp->kp_proc.p_pid);
    550  1.79    cegger 				if (nlwps == 0)
    551  1.79    cegger 					return NULL;
    552  1.79    cegger 				else
    553  1.79    cegger 					continue;
    554  1.79    cegger 			}
    555  1.79    cegger 
    556  1.46   thorpej 			/* We use kl[0] as the "representative" LWP */
    557  1.34    simonb 			memset(kp2p, 0, sizeof(kp2));
    558  1.46   thorpej 			kp2p->p_forw = kl[0].l_forw;
    559  1.46   thorpej 			kp2p->p_back = kl[0].l_back;
    560  1.57    atatat 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    561  1.46   thorpej 			kp2p->p_addr = kl[0].l_addr;
    562  1.57    atatat 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    563  1.57    atatat 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    564  1.57    atatat 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    565  1.57    atatat 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    566  1.57    atatat 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    567  1.57    atatat 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    568  1.57    atatat 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    569  1.34    simonb 			kp2p->p_tsess = 0;
    570  1.69       dsl #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
    571  1.69       dsl 			kp2p->p_ru = 0;
    572  1.69       dsl #else
    573  1.69       dsl 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
    574  1.69       dsl #endif
    575  1.34    simonb 
    576  1.34    simonb 			kp2p->p_eflag = 0;
    577  1.34    simonb 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    578  1.34    simonb 			kp2p->p_flag = kp->kp_proc.p_flag;
    579  1.34    simonb 
    580  1.34    simonb 			kp2p->p_pid = kp->kp_proc.p_pid;
    581  1.34    simonb 
    582  1.34    simonb 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    583  1.34    simonb 			kp2p->p_sid = kp->kp_eproc.e_sid;
    584  1.34    simonb 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    585  1.34    simonb 
    586  1.51       dsl 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    587  1.34    simonb 
    588  1.34    simonb 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    589  1.34    simonb 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    590  1.50    atatat 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    591  1.34    simonb 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    592  1.34    simonb 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    593  1.50    atatat 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    594  1.34    simonb 
    595  1.39  christos 			/*CONSTCOND*/
    596  1.34    simonb 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    597  1.48     enami 			    MIN(sizeof(kp2p->p_groups),
    598  1.48     enami 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    599  1.34    simonb 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    600  1.34    simonb 
    601  1.34    simonb 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    602  1.34    simonb 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    603  1.34    simonb 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    604  1.57    atatat 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    605  1.34    simonb 
    606  1.74        ad 			kp2p->p_estcpu = 0;
    607  1.75      yamt 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
    608  1.75      yamt 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
    609  1.75      yamt 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
    610  1.70  christos 			kp2p->p_cpticks = kl[0].l_cpticks;
    611  1.34    simonb 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    612  1.46   thorpej 			kp2p->p_swtime = kl[0].l_swtime;
    613  1.46   thorpej 			kp2p->p_slptime = kl[0].l_slptime;
    614  1.35   thorpej #if 0 /* XXX thorpej */
    615  1.34    simonb 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    616  1.35   thorpej #else
    617  1.35   thorpej 			kp2p->p_schedflags = 0;
    618  1.35   thorpej #endif
    619  1.34    simonb 
    620  1.34    simonb 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    621  1.34    simonb 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    622  1.34    simonb 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    623  1.34    simonb 
    624  1.57    atatat 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    625  1.34    simonb 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    626  1.34    simonb 
    627  1.46   thorpej 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    628  1.34    simonb 
    629  1.48     enami 			memcpy(&kp2p->p_siglist,
    630  1.66        ad 			    &kp->kp_proc.p_sigpend.sp_set,
    631  1.48     enami 			    sizeof(ki_sigset_t));
    632  1.66        ad 			memset(&kp2p->p_sigmask, 0,
    633  1.48     enami 			    sizeof(ki_sigset_t));
    634  1.48     enami 			memcpy(&kp2p->p_sigignore,
    635  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    636  1.48     enami 			    sizeof(ki_sigset_t));
    637  1.48     enami 			memcpy(&kp2p->p_sigcatch,
    638  1.48     enami 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    639  1.48     enami 			    sizeof(ki_sigset_t));
    640  1.34    simonb 
    641  1.64       chs 			kp2p->p_stat = kl[0].l_stat;
    642  1.46   thorpej 			kp2p->p_priority = kl[0].l_priority;
    643  1.74        ad 			kp2p->p_usrpri = kl[0].l_priority;
    644  1.34    simonb 			kp2p->p_nice = kp->kp_proc.p_nice;
    645  1.34    simonb 
    646  1.91  christos 			kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
    647  1.34    simonb 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    648  1.34    simonb 
    649  1.39  christos 			/*CONSTCOND*/
    650  1.34    simonb 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    651  1.48     enami 			    MIN(sizeof(kp2p->p_comm),
    652  1.48     enami 			    sizeof(kp->kp_proc.p_comm)));
    653  1.34    simonb 
    654  1.48     enami 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    655  1.48     enami 			    sizeof(kp2p->p_wmesg));
    656  1.46   thorpej 			kp2p->p_wchan = kl[0].l_wchan;
    657  1.48     enami 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    658  1.48     enami 			    sizeof(kp2p->p_login));
    659  1.34    simonb 
    660  1.34    simonb 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    661  1.34    simonb 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    662  1.34    simonb 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    663  1.34    simonb 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    664  1.89    martin 			kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
    665  1.89    martin 			    / kd->nbpg;
    666  1.82       mrg 			/* Adjust mapped size */
    667  1.82       mrg 			kp2p->p_vm_msize =
    668  1.82       mrg 			    (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
    669  1.82       mrg 			    kp->kp_eproc.e_vm.vm_issize +
    670  1.82       mrg 			    kp->kp_eproc.e_vm.vm_ssize;
    671  1.34    simonb 
    672  1.39  christos 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    673  1.34    simonb 
    674  1.46   thorpej 			kp2p->p_realflag = kp->kp_proc.p_flag;
    675  1.46   thorpej 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    676  1.46   thorpej 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    677  1.46   thorpej 			kp2p->p_realstat = kp->kp_proc.p_stat;
    678  1.46   thorpej 
    679  1.48     enami 			if (P_ZOMBIE(&kp->kp_proc) ||
    680  1.46   thorpej 			    kp->kp_proc.p_stats == NULL ||
    681  1.48     enami 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    682  1.34    simonb 				kp2p->p_uvalid = 0;
    683  1.34    simonb 			} else {
    684  1.34    simonb 				kp2p->p_uvalid = 1;
    685  1.34    simonb 
    686  1.39  christos 				kp2p->p_ustart_sec = (u_int32_t)
    687  1.46   thorpej 				    pstats.p_start.tv_sec;
    688  1.39  christos 				kp2p->p_ustart_usec = (u_int32_t)
    689  1.46   thorpej 				    pstats.p_start.tv_usec;
    690  1.39  christos 
    691  1.39  christos 				kp2p->p_uutime_sec = (u_int32_t)
    692  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_sec;
    693  1.39  christos 				kp2p->p_uutime_usec = (u_int32_t)
    694  1.46   thorpej 				    pstats.p_ru.ru_utime.tv_usec;
    695  1.39  christos 				kp2p->p_ustime_sec = (u_int32_t)
    696  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_sec;
    697  1.39  christos 				kp2p->p_ustime_usec = (u_int32_t)
    698  1.46   thorpej 				    pstats.p_ru.ru_stime.tv_usec;
    699  1.34    simonb 
    700  1.46   thorpej 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    701  1.46   thorpej 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    702  1.46   thorpej 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    703  1.46   thorpej 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    704  1.46   thorpej 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    705  1.46   thorpej 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    706  1.46   thorpej 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    707  1.46   thorpej 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    708  1.46   thorpej 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    709  1.46   thorpej 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    710  1.46   thorpej 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    711  1.46   thorpej 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    712  1.46   thorpej 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    713  1.46   thorpej 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    714  1.34    simonb 
    715  1.39  christos 				kp2p->p_uctime_sec = (u_int32_t)
    716  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_sec +
    717  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_sec);
    718  1.39  christos 				kp2p->p_uctime_usec = (u_int32_t)
    719  1.46   thorpej 				    (pstats.p_cru.ru_utime.tv_usec +
    720  1.46   thorpej 				    pstats.p_cru.ru_stime.tv_usec);
    721  1.34    simonb 			}
    722  1.34    simonb 
    723  1.34    simonb 			memcpy(kp2c, &kp2, esize);
    724  1.34    simonb 			kp2c += esize;
    725  1.34    simonb 		}
    726  1.34    simonb 	}
    727  1.34    simonb 	*cnt = nprocs;
    728  1.34    simonb 	return (kd->procbase2);
    729  1.46   thorpej }
    730  1.46   thorpej 
    731  1.46   thorpej struct kinfo_lwp *
    732  1.85       jym kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
    733  1.46   thorpej {
    734  1.46   thorpej 	size_t size;
    735  1.52      ross 	int mib[5], nlwps;
    736  1.52      ross 	ssize_t st;
    737  1.46   thorpej 	struct kinfo_lwp *kl;
    738  1.46   thorpej 
    739  1.46   thorpej 	if (ISSYSCTL(kd)) {
    740  1.46   thorpej 		size = 0;
    741  1.46   thorpej 		mib[0] = CTL_KERN;
    742  1.46   thorpej 		mib[1] = KERN_LWP;
    743  1.46   thorpej 		mib[2] = pid;
    744  1.52      ross 		mib[3] = (int)esize;
    745  1.46   thorpej 		mib[4] = 0;
    746  1.71  christos again:
    747  1.52      ross 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    748  1.46   thorpej 		if (st == -1) {
    749  1.71  christos 			switch (errno) {
    750  1.72  christos 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    751  1.72  christos 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    752  1.71  christos 				return NULL;
    753  1.71  christos 			default:
    754  1.71  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    755  1.71  christos 				return NULL;
    756  1.71  christos 			}
    757  1.46   thorpej 		}
    758  1.52      ross 		mib[4] = (int) (size / esize);
    759  1.61  christos 		KVM_ALLOC(kd, lwpbase, size);
    760  1.52      ross 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    761  1.46   thorpej 		if (st == -1) {
    762  1.71  christos 			switch (errno) {
    763  1.72  christos 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    764  1.72  christos 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    765  1.71  christos 				return NULL;
    766  1.71  christos 			case ENOMEM:
    767  1.71  christos 				goto again;
    768  1.71  christos 			default:
    769  1.71  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    770  1.71  christos 				return NULL;
    771  1.71  christos 			}
    772  1.46   thorpej 		}
    773  1.52      ross 		nlwps = (int) (size / esize);
    774  1.46   thorpej 	} else {
    775  1.46   thorpej 		/* grovel through the memory image */
    776  1.46   thorpej 		struct proc p;
    777  1.46   thorpej 		struct lwp l;
    778  1.46   thorpej 		u_long laddr;
    779  1.70  christos 		void *back;
    780  1.46   thorpej 		int i;
    781  1.46   thorpej 
    782  1.46   thorpej 		st = kvm_read(kd, paddr, &p, sizeof(p));
    783  1.46   thorpej 		if (st == -1) {
    784  1.46   thorpej 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    785  1.48     enami 			return (NULL);
    786  1.46   thorpej 		}
    787  1.46   thorpej 
    788  1.46   thorpej 		nlwps = p.p_nlwps;
    789  1.61  christos 		size = nlwps * sizeof(*kd->lwpbase);
    790  1.61  christos 		KVM_ALLOC(kd, lwpbase, size);
    791  1.57    atatat 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    792  1.46   thorpej 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    793  1.46   thorpej 			st = kvm_read(kd, laddr, &l, sizeof(l));
    794  1.46   thorpej 			if (st == -1) {
    795  1.46   thorpej 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    796  1.48     enami 				return (NULL);
    797  1.46   thorpej 			}
    798  1.46   thorpej 			kl = &kd->lwpbase[i];
    799  1.46   thorpej 			kl->l_laddr = laddr;
    800  1.70  christos 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
    801  1.70  christos 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
    802  1.70  christos 			st = kvm_read(kd, laddr, &back, sizeof(back));
    803  1.70  christos 			if (st == -1) {
    804  1.70  christos 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    805  1.70  christos 				return (NULL);
    806  1.70  christos 			}
    807  1.70  christos 			kl->l_back = PTRTOUINT64(back);
    808  1.57    atatat 			kl->l_addr = PTRTOUINT64(l.l_addr);
    809  1.46   thorpej 			kl->l_lid = l.l_lid;
    810  1.46   thorpej 			kl->l_flag = l.l_flag;
    811  1.46   thorpej 			kl->l_swtime = l.l_swtime;
    812  1.46   thorpej 			kl->l_slptime = l.l_slptime;
    813  1.46   thorpej 			kl->l_schedflags = 0; /* XXX */
    814  1.84     rmind 			kl->l_holdcnt = 0;
    815  1.46   thorpej 			kl->l_priority = l.l_priority;
    816  1.74        ad 			kl->l_usrpri = l.l_priority;
    817  1.46   thorpej 			kl->l_stat = l.l_stat;
    818  1.57    atatat 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    819  1.46   thorpej 			if (l.l_wmesg)
    820  1.46   thorpej 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    821  1.52      ross 				    kl->l_wmesg, (size_t)WMESGLEN);
    822  1.46   thorpej 			kl->l_cpuid = KI_NOCPU;
    823  1.57    atatat 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    824  1.46   thorpej 		}
    825  1.46   thorpej 	}
    826  1.46   thorpej 
    827  1.46   thorpej 	*cnt = nlwps;
    828  1.48     enami 	return (kd->lwpbase);
    829  1.34    simonb }
    830  1.34    simonb 
    831   1.1       cgd struct kinfo_proc *
    832  1.85       jym kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
    833   1.1       cgd {
    834   1.7       cgd 	size_t size;
    835   1.7       cgd 	int mib[4], st, nprocs;
    836   1.1       cgd 
    837  1.83      yamt 	if (ISALIVE(kd)) {
    838   1.1       cgd 		size = 0;
    839   1.1       cgd 		mib[0] = CTL_KERN;
    840   1.1       cgd 		mib[1] = KERN_PROC;
    841   1.1       cgd 		mib[2] = op;
    842   1.1       cgd 		mib[3] = arg;
    843  1.52      ross 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    844   1.1       cgd 		if (st == -1) {
    845   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    846  1.48     enami 			return (NULL);
    847   1.1       cgd 		}
    848  1.61  christos 		KVM_ALLOC(kd, procbase, size);
    849  1.52      ross 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    850   1.1       cgd 		if (st == -1) {
    851   1.1       cgd 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    852  1.48     enami 			return (NULL);
    853   1.1       cgd 		}
    854   1.1       cgd 		if (size % sizeof(struct kinfo_proc) != 0) {
    855   1.1       cgd 			_kvm_err(kd, kd->program,
    856  1.42     enami 			    "proc size mismatch (%lu total, %lu chunks)",
    857  1.42     enami 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    858  1.48     enami 			return (NULL);
    859   1.1       cgd 		}
    860  1.52      ross 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    861   1.1       cgd 	} else {
    862  1.53  christos 		struct nlist nl[4], *p;
    863   1.1       cgd 
    864  1.56  christos 		(void)memset(nl, 0, sizeof(nl));
    865   1.1       cgd 		nl[0].n_name = "_nprocs";
    866   1.1       cgd 		nl[1].n_name = "_allproc";
    867  1.53  christos 		nl[2].n_name = "_zombproc";
    868  1.53  christos 		nl[3].n_name = NULL;
    869   1.1       cgd 
    870   1.1       cgd 		if (kvm_nlist(kd, nl) != 0) {
    871   1.1       cgd 			for (p = nl; p->n_type != 0; ++p)
    872  1.48     enami 				continue;
    873   1.1       cgd 			_kvm_err(kd, kd->program,
    874  1.48     enami 			    "%s: no such symbol", p->n_name);
    875  1.48     enami 			return (NULL);
    876   1.1       cgd 		}
    877   1.1       cgd 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    878   1.1       cgd 			_kvm_err(kd, kd->program, "can't read nprocs");
    879  1.48     enami 			return (NULL);
    880   1.1       cgd 		}
    881  1.61  christos 		size = nprocs * sizeof(*kd->procbase);
    882  1.61  christos 		KVM_ALLOC(kd, procbase, size);
    883   1.1       cgd 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    884  1.53  christos 		    nl[2].n_value, nprocs);
    885  1.32       chs 		if (nprocs < 0)
    886  1.48     enami 			return (NULL);
    887   1.1       cgd #ifdef notdef
    888   1.1       cgd 		size = nprocs * sizeof(struct kinfo_proc);
    889   1.1       cgd 		(void)realloc(kd->procbase, size);
    890   1.1       cgd #endif
    891   1.1       cgd 	}
    892   1.1       cgd 	*cnt = nprocs;
    893   1.1       cgd 	return (kd->procbase);
    894   1.1       cgd }
    895   1.1       cgd 
    896   1.1       cgd void *
    897  1.85       jym _kvm_realloc(kvm_t *kd, void *p, size_t n)
    898   1.1       cgd {
    899  1.34    simonb 	void *np = realloc(p, n);
    900   1.1       cgd 
    901  1.36      tron 	if (np == NULL)
    902   1.1       cgd 		_kvm_err(kd, kd->program, "out of memory");
    903   1.1       cgd 	return (np);
    904   1.1       cgd }
    905   1.1       cgd 
    906   1.1       cgd /*
    907   1.1       cgd  * Read in an argument vector from the user address space of process p.
    908  1.31    simonb  * addr if the user-space base address of narg null-terminated contiguous
    909   1.1       cgd  * strings.  This is used to read in both the command arguments and
    910   1.1       cgd  * environment strings.  Read at most maxcnt characters of strings.
    911   1.1       cgd  */
    912   1.1       cgd static char **
    913  1.85       jym kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
    914  1.85       jym 	 int maxcnt)
    915  1.21     perry {
    916  1.21     perry 	char *np, *cp, *ep, *ap;
    917  1.28  christos 	u_long oaddr = (u_long)~0L;
    918  1.28  christos 	u_long len;
    919  1.28  christos 	size_t cc;
    920  1.21     perry 	char **argv;
    921   1.1       cgd 
    922   1.1       cgd 	/*
    923  1.58    toshii 	 * Check that there aren't an unreasonable number of arguments,
    924   1.1       cgd 	 * and that the address is in user space.
    925   1.1       cgd 	 */
    926  1.18       gwr 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    927  1.48     enami 		return (NULL);
    928   1.1       cgd 
    929  1.36      tron 	if (kd->argv == NULL) {
    930   1.1       cgd 		/*
    931   1.1       cgd 		 * Try to avoid reallocs.
    932   1.1       cgd 		 */
    933   1.1       cgd 		kd->argc = MAX(narg + 1, 32);
    934  1.61  christos 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
    935  1.36      tron 		if (kd->argv == NULL)
    936  1.48     enami 			return (NULL);
    937   1.1       cgd 	} else if (narg + 1 > kd->argc) {
    938   1.1       cgd 		kd->argc = MAX(2 * kd->argc, narg + 1);
    939  1.61  christos 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
    940  1.48     enami 		    sizeof(*kd->argv));
    941  1.36      tron 		if (kd->argv == NULL)
    942  1.48     enami 			return (NULL);
    943   1.1       cgd 	}
    944  1.36      tron 	if (kd->argspc == NULL) {
    945  1.61  christos 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    946  1.36      tron 		if (kd->argspc == NULL)
    947  1.48     enami 			return (NULL);
    948  1.61  christos 		kd->argspc_len = kd->nbpg;
    949   1.1       cgd 	}
    950  1.36      tron 	if (kd->argbuf == NULL) {
    951  1.61  christos 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
    952  1.36      tron 		if (kd->argbuf == NULL)
    953  1.48     enami 			return (NULL);
    954  1.10   mycroft 	}
    955  1.10   mycroft 	cc = sizeof(char *) * narg;
    956  1.34    simonb 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    957  1.48     enami 		return (NULL);
    958  1.10   mycroft 	ap = np = kd->argspc;
    959   1.1       cgd 	argv = kd->argv;
    960   1.1       cgd 	len = 0;
    961   1.1       cgd 	/*
    962   1.1       cgd 	 * Loop over pages, filling in the argument vector.
    963   1.1       cgd 	 */
    964  1.36      tron 	while (argv < kd->argv + narg && *argv != NULL) {
    965  1.10   mycroft 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    966  1.10   mycroft 		if (addr != oaddr) {
    967  1.34    simonb 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    968  1.28  christos 			    (size_t)kd->nbpg) != kd->nbpg)
    969  1.48     enami 				return (NULL);
    970  1.10   mycroft 			oaddr = addr;
    971  1.10   mycroft 		}
    972  1.10   mycroft 		addr = (u_long)*argv & (kd->nbpg - 1);
    973  1.28  christos 		cp = kd->argbuf + (size_t)addr;
    974  1.28  christos 		cc = kd->nbpg - (size_t)addr;
    975  1.28  christos 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    976  1.28  christos 			cc = (size_t)(maxcnt - len);
    977  1.10   mycroft 		ep = memchr(cp, '\0', cc);
    978  1.36      tron 		if (ep != NULL)
    979  1.10   mycroft 			cc = ep - cp + 1;
    980  1.61  christos 		if (len + cc > kd->argspc_len) {
    981  1.52      ross 			ptrdiff_t off;
    982  1.21     perry 			char **pp;
    983  1.99       mrg 			uintptr_t op = (uintptr_t)kd->argspc;
    984   1.1       cgd 
    985  1.61  christos 			kd->argspc_len *= 2;
    986  1.61  christos 			kd->argspc = _kvm_realloc(kd, kd->argspc,
    987  1.61  christos 			    kd->argspc_len);
    988  1.36      tron 			if (kd->argspc == NULL)
    989  1.48     enami 				return (NULL);
    990   1.1       cgd 			/*
    991   1.1       cgd 			 * Adjust argv pointers in case realloc moved
    992   1.1       cgd 			 * the string space.
    993   1.1       cgd 			 */
    994  1.99       mrg 			off = (uintptr_t)kd->argspc - op;
    995  1.13   mycroft 			for (pp = kd->argv; pp < argv; pp++)
    996   1.1       cgd 				*pp += off;
    997  1.12   mycroft 			ap += off;
    998  1.12   mycroft 			np += off;
    999   1.1       cgd 		}
   1000  1.10   mycroft 		memcpy(np, cp, cc);
   1001  1.10   mycroft 		np += cc;
   1002   1.1       cgd 		len += cc;
   1003  1.36      tron 		if (ep != NULL) {
   1004  1.10   mycroft 			*argv++ = ap;
   1005  1.10   mycroft 			ap = np;
   1006  1.10   mycroft 		} else
   1007  1.10   mycroft 			*argv += cc;
   1008   1.1       cgd 		if (maxcnt > 0 && len >= maxcnt) {
   1009   1.1       cgd 			/*
   1010   1.1       cgd 			 * We're stopping prematurely.  Terminate the
   1011  1.10   mycroft 			 * current string.
   1012   1.1       cgd 			 */
   1013  1.36      tron 			if (ep == NULL) {
   1014  1.10   mycroft 				*np = '\0';
   1015  1.14   mycroft 				*argv++ = ap;
   1016  1.10   mycroft 			}
   1017  1.10   mycroft 			break;
   1018   1.1       cgd 		}
   1019   1.1       cgd 	}
   1020  1.10   mycroft 	/* Make sure argv is terminated. */
   1021  1.36      tron 	*argv = NULL;
   1022  1.10   mycroft 	return (kd->argv);
   1023   1.1       cgd }
   1024   1.1       cgd 
   1025   1.1       cgd static void
   1026  1.85       jym ps_str_a(struct ps_strings *p, u_long *addr, int *n)
   1027   1.1       cgd {
   1028  1.48     enami 
   1029   1.1       cgd 	*addr = (u_long)p->ps_argvstr;
   1030   1.1       cgd 	*n = p->ps_nargvstr;
   1031   1.1       cgd }
   1032   1.1       cgd 
   1033   1.1       cgd static void
   1034  1.85       jym ps_str_e(struct ps_strings *p, u_long *addr, int *n)
   1035   1.1       cgd {
   1036  1.48     enami 
   1037   1.1       cgd 	*addr = (u_long)p->ps_envstr;
   1038   1.1       cgd 	*n = p->ps_nenvstr;
   1039   1.1       cgd }
   1040   1.1       cgd 
   1041   1.1       cgd /*
   1042   1.1       cgd  * Determine if the proc indicated by p is still active.
   1043   1.1       cgd  * This test is not 100% foolproof in theory, but chances of
   1044   1.1       cgd  * being wrong are very low.
   1045   1.1       cgd  */
   1046   1.1       cgd static int
   1047  1.85       jym proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
   1048   1.1       cgd {
   1049   1.1       cgd 	struct proc kernproc;
   1050   1.1       cgd 
   1051   1.1       cgd 	/*
   1052   1.1       cgd 	 * Just read in the whole proc.  It's not that big relative
   1053   1.1       cgd 	 * to the cost of the read system call.
   1054   1.1       cgd 	 */
   1055  1.34    simonb 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1056   1.1       cgd 	    sizeof(kernproc))
   1057  1.48     enami 		return (0);
   1058   1.1       cgd 	return (p->p_pid == kernproc.p_pid &&
   1059  1.48     enami 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1060   1.1       cgd }
   1061   1.1       cgd 
   1062   1.1       cgd static char **
   1063  1.85       jym kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
   1064  1.85       jym 	   void (*info)(struct ps_strings *, u_long *, int *))
   1065   1.1       cgd {
   1066  1.21     perry 	char **ap;
   1067   1.1       cgd 	u_long addr;
   1068   1.1       cgd 	int cnt;
   1069   1.1       cgd 	struct ps_strings arginfo;
   1070   1.1       cgd 
   1071   1.1       cgd 	/*
   1072   1.1       cgd 	 * Pointers are stored at the top of the user stack.
   1073   1.1       cgd 	 */
   1074  1.18       gwr 	if (p->p_stat == SZOMB)
   1075  1.48     enami 		return (NULL);
   1076  1.97  christos 	cnt = (int)kvm_ureadm(kd, p, p->p_psstrp,
   1077  1.28  christos 	    (void *)&arginfo, sizeof(arginfo));
   1078  1.18       gwr 	if (cnt != sizeof(arginfo))
   1079  1.48     enami 		return (NULL);
   1080   1.1       cgd 
   1081   1.1       cgd 	(*info)(&arginfo, &addr, &cnt);
   1082   1.3   mycroft 	if (cnt == 0)
   1083  1.48     enami 		return (NULL);
   1084   1.1       cgd 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1085   1.1       cgd 	/*
   1086   1.1       cgd 	 * For live kernels, make sure this process didn't go away.
   1087   1.1       cgd 	 */
   1088  1.36      tron 	if (ap != NULL && ISALIVE(kd) &&
   1089  1.34    simonb 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1090  1.36      tron 		ap = NULL;
   1091   1.1       cgd 	return (ap);
   1092   1.1       cgd }
   1093   1.1       cgd 
   1094   1.1       cgd /*
   1095   1.1       cgd  * Get the command args.  This code is now machine independent.
   1096   1.1       cgd  */
   1097   1.1       cgd char **
   1098  1.85       jym kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1099   1.1       cgd {
   1100  1.34    simonb 	struct miniproc p;
   1101  1.34    simonb 
   1102  1.34    simonb 	KPTOMINI(kp, &p);
   1103  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1104   1.1       cgd }
   1105   1.1       cgd 
   1106   1.1       cgd char **
   1107  1.85       jym kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1108   1.1       cgd {
   1109  1.34    simonb 	struct miniproc p;
   1110  1.34    simonb 
   1111  1.34    simonb 	KPTOMINI(kp, &p);
   1112  1.34    simonb 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1113  1.34    simonb }
   1114  1.34    simonb 
   1115  1.34    simonb static char **
   1116  1.85       jym kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
   1117  1.34    simonb {
   1118  1.34    simonb 	size_t bufs;
   1119  1.39  christos 	int narg, mib[4];
   1120  1.61  christos 	size_t newargspc_len;
   1121  1.34    simonb 	char **ap, *bp, *endp;
   1122  1.34    simonb 
   1123  1.34    simonb 	/*
   1124  1.58    toshii 	 * Check that there aren't an unreasonable number of arguments.
   1125  1.34    simonb 	 */
   1126  1.34    simonb 	if (nchr > ARG_MAX)
   1127  1.48     enami 		return (NULL);
   1128  1.34    simonb 
   1129  1.34    simonb 	if (nchr == 0)
   1130  1.34    simonb 		nchr = ARG_MAX;
   1131  1.34    simonb 
   1132  1.34    simonb 	/* Get number of strings in argv */
   1133  1.34    simonb 	mib[0] = CTL_KERN;
   1134  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1135  1.34    simonb 	mib[2] = pid;
   1136  1.34    simonb 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1137  1.34    simonb 	bufs = sizeof(narg);
   1138  1.52      ross 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1139  1.48     enami 		return (NULL);
   1140  1.34    simonb 
   1141  1.36      tron 	if (kd->argv == NULL) {
   1142  1.34    simonb 		/*
   1143  1.34    simonb 		 * Try to avoid reallocs.
   1144  1.34    simonb 		 */
   1145  1.34    simonb 		kd->argc = MAX(narg + 1, 32);
   1146  1.61  christos 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
   1147  1.36      tron 		if (kd->argv == NULL)
   1148  1.48     enami 			return (NULL);
   1149  1.34    simonb 	} else if (narg + 1 > kd->argc) {
   1150  1.34    simonb 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1151  1.61  christos 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
   1152  1.48     enami 		    sizeof(*kd->argv));
   1153  1.36      tron 		if (kd->argv == NULL)
   1154  1.48     enami 			return (NULL);
   1155  1.34    simonb 	}
   1156  1.34    simonb 
   1157  1.61  christos 	newargspc_len = MIN(nchr, ARG_MAX);
   1158  1.61  christos 	KVM_ALLOC(kd, argspc, newargspc_len);
   1159  1.61  christos 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
   1160  1.34    simonb 
   1161  1.34    simonb 	mib[0] = CTL_KERN;
   1162  1.34    simonb 	mib[1] = KERN_PROC_ARGS;
   1163  1.34    simonb 	mib[2] = pid;
   1164  1.34    simonb 	mib[3] = type;
   1165  1.61  christos 	bufs = kd->argspc_len;
   1166  1.52      ross 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1167  1.48     enami 		return (NULL);
   1168  1.34    simonb 
   1169  1.34    simonb 	bp = kd->argspc;
   1170  1.61  christos 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
   1171  1.34    simonb 	ap = kd->argv;
   1172  1.34    simonb 	endp = bp + MIN(nchr, bufs);
   1173  1.34    simonb 
   1174  1.34    simonb 	while (bp < endp) {
   1175  1.34    simonb 		*ap++ = bp;
   1176  1.48     enami 		/*
   1177  1.48     enami 		 * XXX: don't need following anymore, or stick check
   1178  1.48     enami 		 * for max argc in above while loop?
   1179  1.48     enami 		 */
   1180  1.34    simonb 		if (ap >= kd->argv + kd->argc) {
   1181  1.34    simonb 			kd->argc *= 2;
   1182  1.34    simonb 			kd->argv = _kvm_realloc(kd, kd->argv,
   1183  1.34    simonb 			    kd->argc * sizeof(*kd->argv));
   1184  1.44  jdolecek 			ap = kd->argv;
   1185  1.34    simonb 		}
   1186  1.34    simonb 		bp += strlen(bp) + 1;
   1187  1.34    simonb 	}
   1188  1.34    simonb 	*ap = NULL;
   1189  1.48     enami 
   1190  1.34    simonb 	return (kd->argv);
   1191  1.34    simonb }
   1192  1.34    simonb 
   1193  1.34    simonb char **
   1194  1.85       jym kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1195  1.34    simonb {
   1196  1.48     enami 
   1197  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1198  1.34    simonb }
   1199  1.34    simonb 
   1200  1.34    simonb char **
   1201  1.85       jym kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1202  1.34    simonb {
   1203  1.48     enami 
   1204  1.34    simonb 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1205   1.1       cgd }
   1206   1.1       cgd 
   1207   1.1       cgd /*
   1208   1.1       cgd  * Read from user space.  The user context is given by p.
   1209   1.1       cgd  */
   1210  1.34    simonb static ssize_t
   1211  1.85       jym kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
   1212  1.85       jym 	   char *buf, size_t len)
   1213   1.1       cgd {
   1214  1.21     perry 	char *cp;
   1215   1.1       cgd 
   1216   1.1       cgd 	cp = buf;
   1217   1.1       cgd 	while (len > 0) {
   1218  1.28  christos 		size_t cc;
   1219  1.21     perry 		char *dp;
   1220  1.15       cgd 		u_long cnt;
   1221   1.8   mycroft 
   1222  1.34    simonb 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1223  1.36      tron 		if (dp == NULL) {
   1224  1.41  sommerfe 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1225  1.48     enami 			return (0);
   1226   1.8   mycroft 		}
   1227  1.28  christos 		cc = (size_t)MIN(cnt, len);
   1228  1.25     perry 		memcpy(cp, dp, cc);
   1229   1.1       cgd 		cp += cc;
   1230   1.1       cgd 		uva += cc;
   1231   1.1       cgd 		len -= cc;
   1232   1.1       cgd 	}
   1233   1.1       cgd 	return (ssize_t)(cp - buf);
   1234  1.34    simonb }
   1235  1.34    simonb 
   1236  1.34    simonb ssize_t
   1237  1.85       jym kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
   1238  1.34    simonb {
   1239  1.34    simonb 	struct miniproc mp;
   1240  1.34    simonb 
   1241  1.34    simonb 	PTOMINI(p, &mp);
   1242  1.34    simonb 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1243   1.1       cgd }
   1244