kvm_proc.c revision 1.1.1.1 1 /*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #if defined(LIBC_SCCS) && !defined(lint)
39 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
40 #endif /* LIBC_SCCS and not lint */
41
42 /*
43 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
44 * users of this code, so we've factored it out into a separate module.
45 * Thus, we keep this grunge out of the other kvm applications (i.e.,
46 * most other applications are interested only in open/close/read/nlist).
47 */
48
49 #include <sys/param.h>
50 #include <sys/user.h>
51 #include <sys/proc.h>
52 #include <sys/exec.h>
53 #include <sys/stat.h>
54 #include <sys/ioctl.h>
55 #include <sys/tty.h>
56 #include <unistd.h>
57 #include <nlist.h>
58 #include <kvm.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/swap_pager.h>
63
64 #include <sys/sysctl.h>
65
66 #include <limits.h>
67 #include <db.h>
68 #include <paths.h>
69
70 #include "kvm_private.h"
71
72 static char *
73 kvm_readswap(kd, p, va, cnt)
74 kvm_t *kd;
75 const struct proc *p;
76 u_long va;
77 u_long *cnt;
78 {
79 register int ix;
80 register u_long addr, head;
81 register u_long offset, pagestart, sbstart, pgoff;
82 register off_t seekpoint;
83 struct vm_map_entry vme;
84 struct vm_object vmo;
85 struct pager_struct pager;
86 struct swpager swap;
87 struct swblock swb;
88 static char page[NBPG];
89
90 head = (u_long)&p->p_vmspace->vm_map.header;
91 /*
92 * Look through the address map for the memory object
93 * that corresponds to the given virtual address.
94 * The header just has the entire valid range.
95 */
96 addr = head;
97 while (1) {
98 if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) !=
99 sizeof(vme))
100 return (0);
101
102 if (va >= vme.start && va <= vme.end &&
103 vme.object.vm_object != 0)
104 break;
105
106 addr = (u_long)vme.next;
107 if (addr == 0 || addr == head)
108 return (0);
109 }
110 /*
111 * We found the right object -- follow shadow links.
112 */
113 offset = va - vme.start + vme.offset;
114 addr = (u_long)vme.object.vm_object;
115 while (1) {
116 if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) !=
117 sizeof(vmo))
118 return (0);
119 addr = (u_long)vmo.shadow;
120 if (addr == 0)
121 break;
122 offset += vmo.shadow_offset;
123 }
124 if (vmo.pager == 0)
125 return (0);
126
127 offset += vmo.paging_offset;
128 /*
129 * Read in the pager info and make sure it's a swap device.
130 */
131 addr = (u_long)vmo.pager;
132 if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager)
133 || pager.pg_type != PG_SWAP)
134 return (0);
135
136 /*
137 * Read in the swap_pager private data, and compute the
138 * swap offset.
139 */
140 addr = (u_long)pager.pg_data;
141 if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap))
142 return (0);
143 ix = offset / dbtob(swap.sw_bsize);
144 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
145 return (0);
146
147 addr = (u_long)&swap.sw_blocks[ix];
148 if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb))
149 return (0);
150
151 sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize);
152 sbstart /= NBPG;
153 pagestart = offset / NBPG;
154 pgoff = pagestart - sbstart;
155
156 if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0)
157 return (0);
158
159 seekpoint = dbtob(swb.swb_block) + ctob(pgoff);
160 errno = 0;
161 if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0)
162 return (0);
163 if (read(kd->swfd, page, sizeof(page)) != sizeof(page))
164 return (0);
165
166 offset %= NBPG;
167 *cnt = NBPG - offset;
168 return (&page[offset]);
169 }
170
171 #define KREAD(kd, addr, obj) \
172 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
173
174 /*
175 * Read proc's from memory file into buffer bp, which has space to hold
176 * at most maxcnt procs.
177 */
178 static int
179 kvm_proclist(kd, what, arg, p, bp, maxcnt)
180 kvm_t *kd;
181 int what, arg;
182 struct proc *p;
183 struct kinfo_proc *bp;
184 int maxcnt;
185 {
186 register int cnt = 0;
187 struct eproc eproc;
188 struct pgrp pgrp;
189 struct session sess;
190 struct tty tty;
191 struct proc proc;
192
193 for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
194 if (KREAD(kd, (u_long)p, &proc)) {
195 _kvm_err(kd, kd->program, "can't read proc at %x", p);
196 return (-1);
197 }
198 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
199 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
200 &eproc.e_ucred);
201
202 switch(what) {
203
204 case KERN_PROC_PID:
205 if (proc.p_pid != (pid_t)arg)
206 continue;
207 break;
208
209 case KERN_PROC_UID:
210 if (eproc.e_ucred.cr_uid != (uid_t)arg)
211 continue;
212 break;
213
214 case KERN_PROC_RUID:
215 if (eproc.e_pcred.p_ruid != (uid_t)arg)
216 continue;
217 break;
218 }
219 /*
220 * We're going to add another proc to the set. If this
221 * will overflow the buffer, assume the reason is because
222 * nprocs (or the proc list) is corrupt and declare an error.
223 */
224 if (cnt >= maxcnt) {
225 _kvm_err(kd, kd->program, "nprocs corrupt");
226 return (-1);
227 }
228 /*
229 * gather eproc
230 */
231 eproc.e_paddr = p;
232 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
233 _kvm_err(kd, kd->program, "can't read pgrp at %x",
234 proc.p_pgrp);
235 return (-1);
236 }
237 eproc.e_sess = pgrp.pg_session;
238 eproc.e_pgid = pgrp.pg_id;
239 eproc.e_jobc = pgrp.pg_jobc;
240 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
241 _kvm_err(kd, kd->program, "can't read session at %x",
242 pgrp.pg_session);
243 return (-1);
244 }
245 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
246 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
247 _kvm_err(kd, kd->program,
248 "can't read tty at %x", sess.s_ttyp);
249 return (-1);
250 }
251 eproc.e_tdev = tty.t_dev;
252 eproc.e_tsess = tty.t_session;
253 if (tty.t_pgrp != NULL) {
254 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
255 _kvm_err(kd, kd->program,
256 "can't read tpgrp at &x",
257 tty.t_pgrp);
258 return (-1);
259 }
260 eproc.e_tpgid = pgrp.pg_id;
261 } else
262 eproc.e_tpgid = -1;
263 } else
264 eproc.e_tdev = NODEV;
265 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
266 if (sess.s_leader == p)
267 eproc.e_flag |= EPROC_SLEADER;
268 if (proc.p_wmesg)
269 (void)kvm_read(kd, (u_long)proc.p_wmesg,
270 eproc.e_wmesg, WMESGLEN);
271
272 #ifdef sparc
273 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
274 (char *)&eproc.e_vm.vm_rssize,
275 sizeof(eproc.e_vm.vm_rssize));
276 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
277 (char *)&eproc.e_vm.vm_tsize,
278 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */
279 #else
280 (void)kvm_read(kd, (u_long)proc.p_vmspace,
281 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
282 #endif
283 eproc.e_xsize = eproc.e_xrssize = 0;
284 eproc.e_xccount = eproc.e_xswrss = 0;
285
286 switch (what) {
287
288 case KERN_PROC_PGRP:
289 if (eproc.e_pgid != (pid_t)arg)
290 continue;
291 break;
292
293 case KERN_PROC_TTY:
294 if ((proc.p_flag & P_CONTROLT) == 0 ||
295 eproc.e_tdev != (dev_t)arg)
296 continue;
297 break;
298 }
299 bcopy(&proc, &bp->kp_proc, sizeof(proc));
300 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
301 ++bp;
302 ++cnt;
303 }
304 return (cnt);
305 }
306
307 /*
308 * Build proc info array by reading in proc list from a crash dump.
309 * Return number of procs read. maxcnt is the max we will read.
310 */
311 static int
312 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
313 kvm_t *kd;
314 int what, arg;
315 u_long a_allproc;
316 u_long a_zombproc;
317 int maxcnt;
318 {
319 register struct kinfo_proc *bp = kd->procbase;
320 register int acnt, zcnt;
321 struct proc *p;
322
323 if (KREAD(kd, a_allproc, &p)) {
324 _kvm_err(kd, kd->program, "cannot read allproc");
325 return (-1);
326 }
327 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
328 if (acnt < 0)
329 return (acnt);
330
331 if (KREAD(kd, a_zombproc, &p)) {
332 _kvm_err(kd, kd->program, "cannot read zombproc");
333 return (-1);
334 }
335 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
336 if (zcnt < 0)
337 zcnt = 0;
338
339 return (acnt + zcnt);
340 }
341
342 struct kinfo_proc *
343 kvm_getprocs(kd, op, arg, cnt)
344 kvm_t *kd;
345 int op, arg;
346 int *cnt;
347 {
348 int mib[4], size, st, nprocs;
349
350 if (kd->procbase != 0) {
351 free((void *)kd->procbase);
352 /*
353 * Clear this pointer in case this call fails. Otherwise,
354 * kvm_close() will free it again.
355 */
356 kd->procbase = 0;
357 }
358 if (ISALIVE(kd)) {
359 size = 0;
360 mib[0] = CTL_KERN;
361 mib[1] = KERN_PROC;
362 mib[2] = op;
363 mib[3] = arg;
364 st = sysctl(mib, 4, NULL, &size, NULL, 0);
365 if (st == -1) {
366 _kvm_syserr(kd, kd->program, "kvm_getprocs");
367 return (0);
368 }
369 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
370 if (kd->procbase == 0)
371 return (0);
372 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
373 if (st == -1) {
374 _kvm_syserr(kd, kd->program, "kvm_getprocs");
375 return (0);
376 }
377 if (size % sizeof(struct kinfo_proc) != 0) {
378 _kvm_err(kd, kd->program,
379 "proc size mismatch (%d total, %d chunks)",
380 size, sizeof(struct kinfo_proc));
381 return (0);
382 }
383 nprocs = size / sizeof(struct kinfo_proc);
384 } else {
385 struct nlist nl[4], *p;
386
387 nl[0].n_name = "_nprocs";
388 nl[1].n_name = "_allproc";
389 nl[2].n_name = "_zombproc";
390 nl[3].n_name = 0;
391
392 if (kvm_nlist(kd, nl) != 0) {
393 for (p = nl; p->n_type != 0; ++p)
394 ;
395 _kvm_err(kd, kd->program,
396 "%s: no such symbol", p->n_name);
397 return (0);
398 }
399 if (KREAD(kd, nl[0].n_value, &nprocs)) {
400 _kvm_err(kd, kd->program, "can't read nprocs");
401 return (0);
402 }
403 size = nprocs * sizeof(struct kinfo_proc);
404 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
405 if (kd->procbase == 0)
406 return (0);
407
408 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
409 nl[2].n_value, nprocs);
410 #ifdef notdef
411 size = nprocs * sizeof(struct kinfo_proc);
412 (void)realloc(kd->procbase, size);
413 #endif
414 }
415 *cnt = nprocs;
416 return (kd->procbase);
417 }
418
419 void
420 _kvm_freeprocs(kd)
421 kvm_t *kd;
422 {
423 if (kd->procbase) {
424 free(kd->procbase);
425 kd->procbase = 0;
426 }
427 }
428
429 void *
430 _kvm_realloc(kd, p, n)
431 kvm_t *kd;
432 void *p;
433 size_t n;
434 {
435 void *np = (void *)realloc(p, n);
436
437 if (np == 0)
438 _kvm_err(kd, kd->program, "out of memory");
439 return (np);
440 }
441
442 #ifndef MAX
443 #define MAX(a, b) ((a) > (b) ? (a) : (b))
444 #endif
445
446 /*
447 * Read in an argument vector from the user address space of process p.
448 * addr if the user-space base address of narg null-terminated contiguous
449 * strings. This is used to read in both the command arguments and
450 * environment strings. Read at most maxcnt characters of strings.
451 */
452 static char **
453 kvm_argv(kd, p, addr, narg, maxcnt)
454 kvm_t *kd;
455 struct proc *p;
456 register u_long addr;
457 register int narg;
458 register int maxcnt;
459 {
460 register char *cp;
461 register int len, cc;
462 register char **argv;
463
464 /*
465 * Check that there aren't an unreasonable number of agruments,
466 * and that the address is in user space.
467 */
468 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
469 return (0);
470
471 if (kd->argv == 0) {
472 /*
473 * Try to avoid reallocs.
474 */
475 kd->argc = MAX(narg + 1, 32);
476 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
477 sizeof(*kd->argv));
478 if (kd->argv == 0)
479 return (0);
480 } else if (narg + 1 > kd->argc) {
481 kd->argc = MAX(2 * kd->argc, narg + 1);
482 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
483 sizeof(*kd->argv));
484 if (kd->argv == 0)
485 return (0);
486 }
487 if (kd->argspc == 0) {
488 kd->argspc = (char *)_kvm_malloc(kd, NBPG);
489 if (kd->argspc == 0)
490 return (0);
491 kd->arglen = NBPG;
492 }
493 cp = kd->argspc;
494 argv = kd->argv;
495 *argv = cp;
496 len = 0;
497 /*
498 * Loop over pages, filling in the argument vector.
499 */
500 while (addr < VM_MAXUSER_ADDRESS) {
501 cc = NBPG - (addr & PGOFSET);
502 if (maxcnt > 0 && cc > maxcnt - len)
503 cc = maxcnt - len;;
504 if (len + cc > kd->arglen) {
505 register int off;
506 register char **pp;
507 register char *op = kd->argspc;
508
509 kd->arglen *= 2;
510 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
511 kd->arglen);
512 if (kd->argspc == 0)
513 return (0);
514 cp = &kd->argspc[len];
515 /*
516 * Adjust argv pointers in case realloc moved
517 * the string space.
518 */
519 off = kd->argspc - op;
520 for (pp = kd->argv; pp < argv; ++pp)
521 *pp += off;
522 }
523 if (kvm_uread(kd, p, addr, cp, cc) != cc)
524 /* XXX */
525 return (0);
526 len += cc;
527 addr += cc;
528
529 if (maxcnt == 0 && len > 16 * NBPG)
530 /* sanity */
531 return (0);
532
533 while (--cc >= 0) {
534 if (*cp++ == 0) {
535 if (--narg <= 0) {
536 *++argv = 0;
537 return (kd->argv);
538 } else
539 *++argv = cp;
540 }
541 }
542 if (maxcnt > 0 && len >= maxcnt) {
543 /*
544 * We're stopping prematurely. Terminate the
545 * argv and current string.
546 */
547 *++argv = 0;
548 *cp = 0;
549 return (kd->argv);
550 }
551 }
552 }
553
554 static void
555 ps_str_a(p, addr, n)
556 struct ps_strings *p;
557 u_long *addr;
558 int *n;
559 {
560 *addr = (u_long)p->ps_argvstr;
561 *n = p->ps_nargvstr;
562 }
563
564 static void
565 ps_str_e(p, addr, n)
566 struct ps_strings *p;
567 u_long *addr;
568 int *n;
569 {
570 *addr = (u_long)p->ps_envstr;
571 *n = p->ps_nenvstr;
572 }
573
574 /*
575 * Determine if the proc indicated by p is still active.
576 * This test is not 100% foolproof in theory, but chances of
577 * being wrong are very low.
578 */
579 static int
580 proc_verify(kd, kernp, p)
581 kvm_t *kd;
582 u_long kernp;
583 const struct proc *p;
584 {
585 struct proc kernproc;
586
587 /*
588 * Just read in the whole proc. It's not that big relative
589 * to the cost of the read system call.
590 */
591 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
592 sizeof(kernproc))
593 return (0);
594 return (p->p_pid == kernproc.p_pid &&
595 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
596 }
597
598 static char **
599 kvm_doargv(kd, kp, nchr, info)
600 kvm_t *kd;
601 const struct kinfo_proc *kp;
602 int nchr;
603 int (*info)(struct ps_strings*, u_long *, int *);
604 {
605 register const struct proc *p = &kp->kp_proc;
606 register char **ap;
607 u_long addr;
608 int cnt;
609 struct ps_strings arginfo;
610
611 /*
612 * Pointers are stored at the top of the user stack.
613 */
614 if (p->p_stat == SZOMB ||
615 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
616 sizeof(arginfo)) != sizeof(arginfo))
617 return (0);
618
619 (*info)(&arginfo, &addr, &cnt);
620 ap = kvm_argv(kd, p, addr, cnt, nchr);
621 /*
622 * For live kernels, make sure this process didn't go away.
623 */
624 if (ap != 0 && ISALIVE(kd) &&
625 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
626 ap = 0;
627 return (ap);
628 }
629
630 /*
631 * Get the command args. This code is now machine independent.
632 */
633 char **
634 kvm_getargv(kd, kp, nchr)
635 kvm_t *kd;
636 const struct kinfo_proc *kp;
637 int nchr;
638 {
639 return (kvm_doargv(kd, kp, nchr, ps_str_a));
640 }
641
642 char **
643 kvm_getenvv(kd, kp, nchr)
644 kvm_t *kd;
645 const struct kinfo_proc *kp;
646 int nchr;
647 {
648 return (kvm_doargv(kd, kp, nchr, ps_str_e));
649 }
650
651 /*
652 * Read from user space. The user context is given by p.
653 */
654 ssize_t
655 kvm_uread(kd, p, uva, buf, len)
656 kvm_t *kd;
657 register struct proc *p;
658 register u_long uva;
659 register char *buf;
660 register size_t len;
661 {
662 register char *cp;
663
664 cp = buf;
665 while (len > 0) {
666 u_long pa;
667 register int cc;
668
669 cc = _kvm_uvatop(kd, p, uva, &pa);
670 if (cc > 0) {
671 if (cc > len)
672 cc = len;
673 errno = 0;
674 if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
675 _kvm_err(kd, 0, "invalid address (%x)", uva);
676 break;
677 }
678 cc = read(kd->pmfd, cp, cc);
679 if (cc < 0) {
680 _kvm_syserr(kd, 0, _PATH_MEM);
681 break;
682 } else if (cc < len) {
683 _kvm_err(kd, kd->program, "short read");
684 break;
685 }
686 } else if (ISALIVE(kd)) {
687 /* try swap */
688 register char *dp;
689 int cnt;
690
691 dp = kvm_readswap(kd, p, uva, &cnt);
692 if (dp == 0) {
693 _kvm_err(kd, 0, "invalid address (%x)", uva);
694 return (0);
695 }
696 cc = MIN(cnt, len);
697 bcopy(dp, cp, cc);
698 } else
699 break;
700 cp += cc;
701 uva += cc;
702 len -= cc;
703 }
704 return (ssize_t)(cp - buf);
705 }
706