kvm_proc.c revision 1.100 1 /* $NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.100 2024/12/15 12:58:38 christos Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/lwp.h>
83 #include <sys/wait.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 #include <sys/types.h>
93
94 #include <errno.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97 #include <string.h>
98 #include <unistd.h>
99 #include <nlist.h>
100 #include <kvm.h>
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_param.h>
104 #include <uvm/uvm_amap.h>
105 #include <uvm/uvm_page.h>
106
107 #include <sys/sysctl.h>
108
109 #include <limits.h>
110 #include <db.h>
111 #include <paths.h>
112
113 #include "kvm_private.h"
114
115 /*
116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117 */
118 struct miniproc {
119 struct vmspace *p_vmspace;
120 char p_stat;
121 vaddr_t p_psstrp;
122 struct proc *p_paddr;
123 pid_t p_pid;
124 };
125
126 /*
127 * Convert from struct proc and kinfo_proc to miniproc.
128 */
129 #define KPTOMINI(kp, p) \
130 do { \
131 (p)->p_stat = (kp)->kp_proc.p_stat; \
132 (p)->p_pid = (kp)->kp_proc.p_pid; \
133 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
134 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
135 } while (0)
136
137
138 /*
139 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
140 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
141 * kvm(3) so dumps can be read properly.
142 *
143 * Whenever NetBSD starts exporting credentials to userland consistently (using
144 * 'struct uucred', or something) this will have to be updated again.
145 */
146 struct kvm_kauth_cred {
147 u_int cr_refcnt; /* reference count */
148 #if COHERENCY_UNIT > 4
149 uint8_t cr_pad[COHERENCY_UNIT - 4];
150 #endif
151 uid_t cr_uid; /* user id */
152 uid_t cr_euid; /* effective user id */
153 uid_t cr_svuid; /* saved effective user id */
154 gid_t cr_gid; /* group id */
155 gid_t cr_egid; /* effective group id */
156 gid_t cr_svgid; /* saved effective group id */
157 u_int cr_ngroups; /* number of groups */
158 gid_t cr_groups[NGROUPS]; /* group memberships */
159 specificdata_reference cr_sd; /* specific data */
160 };
161
162 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
163 u_long *);
164 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
165 char *, size_t);
166
167 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
168 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
169 static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
170 void (*)(struct ps_strings *, u_long *, int *));
171 static char **kvm_doargv2(kvm_t *, pid_t, int, int);
172 static int kvm_proclist(kvm_t *, int, int, struct proc *,
173 struct kinfo_proc *, int);
174 static int proc_verify(kvm_t *, u_long, const struct miniproc *);
175 static void ps_str_a(struct ps_strings *, u_long *, int *);
176 static void ps_str_e(struct ps_strings *, u_long *, int *);
177
178
179 static char *
180 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
181 {
182 u_long addr, head;
183 u_long offset;
184 struct vm_map_entry vme;
185 struct vm_amap amap;
186 struct vm_anon *anonp, anon;
187 struct vm_page pg;
188 u_long slot;
189
190 if (kd->swapspc == NULL) {
191 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
192 if (kd->swapspc == NULL)
193 return (NULL);
194 }
195
196 /*
197 * Look through the address map for the memory object
198 * that corresponds to the given virtual address.
199 * The header just has the entire valid range.
200 */
201 head = (u_long)&p->p_vmspace->vm_map.header;
202 addr = head;
203 for (;;) {
204 if (KREAD(kd, addr, &vme))
205 return (NULL);
206
207 if (va >= vme.start && va < vme.end &&
208 vme.aref.ar_amap != NULL)
209 break;
210
211 addr = (u_long)vme.next;
212 if (addr == head)
213 return (NULL);
214 }
215
216 /*
217 * we found the map entry, now to find the object...
218 */
219 if (vme.aref.ar_amap == NULL)
220 return (NULL);
221
222 addr = (u_long)vme.aref.ar_amap;
223 if (KREAD(kd, addr, &amap))
224 return (NULL);
225
226 offset = va - vme.start;
227 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
228 /* sanity-check slot number */
229 if (slot > amap.am_nslot)
230 return (NULL);
231
232 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
233 if (KREAD(kd, addr, &anonp))
234 return (NULL);
235
236 addr = (u_long)anonp;
237 if (KREAD(kd, addr, &anon))
238 return (NULL);
239
240 addr = (u_long)anon.an_page;
241 if (addr) {
242 if (KREAD(kd, addr, &pg))
243 return (NULL);
244
245 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
246 (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
247 return (NULL);
248 } else {
249 if (kd->swfd < 0 ||
250 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
251 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
252 return (NULL);
253 }
254
255 /* Found the page. */
256 offset %= kd->nbpg;
257 *cnt = kd->nbpg - offset;
258 return (&kd->swapspc[(size_t)offset]);
259 }
260
261 /*
262 * Convert credentials located in kernel space address 'cred' and store
263 * them in the appropriate members of 'eproc'.
264 */
265 static int
266 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
267 {
268 struct kvm_kauth_cred kauthcred;
269 struct ki_pcred *pc = &eproc->e_pcred;
270 struct ki_ucred *uc = &eproc->e_ucred;
271
272 if (KREAD(kd, cred, &kauthcred) != 0)
273 return (-1);
274
275 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
276 pc->p_ruid = kauthcred.cr_uid;
277 pc->p_svuid = kauthcred.cr_svuid;
278 pc->p_rgid = kauthcred.cr_gid;
279 pc->p_svgid = kauthcred.cr_svgid;
280 pc->p_refcnt = kauthcred.cr_refcnt;
281 pc->p_pad = NULL;
282
283 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
284 uc->cr_ref = kauthcred.cr_refcnt;
285 uc->cr_uid = kauthcred.cr_euid;
286 uc->cr_gid = kauthcred.cr_egid;
287 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
288 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
289 memcpy(uc->cr_groups, kauthcred.cr_groups,
290 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
291
292 return (0);
293 }
294
295 /*
296 * Read proc's from memory file into buffer bp, which has space to hold
297 * at most maxcnt procs.
298 */
299 static int
300 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
301 struct kinfo_proc *bp, int maxcnt)
302 {
303 int cnt = 0;
304 int nlwps;
305 struct kinfo_lwp *kl;
306 struct eproc eproc;
307 struct pgrp pgrp;
308 struct session sess;
309 struct tty tty;
310 struct proc proc;
311
312 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
313 if (KREAD(kd, (u_long)p, &proc)) {
314 _kvm_err(kd, kd->program, "can't read proc at %p", p);
315 return (-1);
316 }
317 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
318 _kvm_err(kd, kd->program,
319 "can't read proc credentials at %p", p);
320 return (-1);
321 }
322
323 switch (what) {
324
325 case KERN_PROC_PID:
326 if (proc.p_pid != (pid_t)arg)
327 continue;
328 break;
329
330 case KERN_PROC_UID:
331 if (eproc.e_ucred.cr_uid != (uid_t)arg)
332 continue;
333 break;
334
335 case KERN_PROC_RUID:
336 if (eproc.e_pcred.p_ruid != (uid_t)arg)
337 continue;
338 break;
339 }
340 /*
341 * We're going to add another proc to the set. If this
342 * will overflow the buffer, assume the reason is because
343 * nprocs (or the proc list) is corrupt and declare an error.
344 */
345 if (cnt >= maxcnt) {
346 _kvm_err(kd, kd->program, "nprocs corrupt");
347 return (-1);
348 }
349 /*
350 * gather eproc
351 */
352 eproc.e_paddr = p;
353 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
354 _kvm_err(kd, kd->program, "can't read pgrp at %p",
355 proc.p_pgrp);
356 return (-1);
357 }
358 eproc.e_sess = pgrp.pg_session;
359 eproc.e_pgid = pgrp.pg_id;
360 eproc.e_jobc = pgrp.pg_jobc;
361 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
362 _kvm_err(kd, kd->program, "can't read session at %p",
363 pgrp.pg_session);
364 return (-1);
365 }
366 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
367 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
368 _kvm_err(kd, kd->program,
369 "can't read tty at %p", sess.s_ttyp);
370 return (-1);
371 }
372 eproc.e_tdev = (uint32_t)tty.t_dev;
373 eproc.e_tsess = tty.t_session;
374 if (tty.t_pgrp != NULL) {
375 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
376 _kvm_err(kd, kd->program,
377 "can't read tpgrp at %p",
378 tty.t_pgrp);
379 return (-1);
380 }
381 eproc.e_tpgid = pgrp.pg_id;
382 } else
383 eproc.e_tpgid = -1;
384 } else
385 eproc.e_tdev = (uint32_t)NODEV;
386 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
387 eproc.e_sid = sess.s_sid;
388 if (sess.s_leader == p)
389 eproc.e_flag |= EPROC_SLEADER;
390 /*
391 * Fill in the old-style proc.p_wmesg by copying the wmesg
392 * from the first available LWP.
393 */
394 kl = kvm_getlwps(kd, proc.p_pid,
395 (u_long)PTRTOUINT64(eproc.e_paddr),
396 sizeof(struct kinfo_lwp), &nlwps);
397 if (kl) {
398 if (nlwps > 0) {
399 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
400 }
401 }
402 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
403 sizeof(eproc.e_vm));
404
405 eproc.e_xsize = eproc.e_xrssize = 0;
406 eproc.e_xccount = eproc.e_xswrss = 0;
407
408 switch (what) {
409
410 case KERN_PROC_PGRP:
411 if (eproc.e_pgid != (pid_t)arg)
412 continue;
413 break;
414
415 case KERN_PROC_TTY:
416 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
417 eproc.e_tdev != (dev_t)arg)
418 continue;
419 break;
420 }
421 memcpy(&bp->kp_proc, &proc, sizeof(proc));
422 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
423 ++bp;
424 ++cnt;
425 }
426 return (cnt);
427 }
428
429 /*
430 * Build proc info array by reading in proc list from a crash dump.
431 * Return number of procs read. maxcnt is the max we will read.
432 */
433 static int
434 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
435 u_long a_zombproc, int maxcnt)
436 {
437 struct kinfo_proc *bp = kd->procbase;
438 int acnt, zcnt;
439 struct proc *p;
440
441 if (KREAD(kd, a_allproc, &p)) {
442 _kvm_err(kd, kd->program, "cannot read allproc");
443 return (-1);
444 }
445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 if (acnt < 0)
447 return (acnt);
448
449 if (KREAD(kd, a_zombproc, &p)) {
450 _kvm_err(kd, kd->program, "cannot read zombproc");
451 return (-1);
452 }
453 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
454 maxcnt - acnt);
455 if (zcnt < 0)
456 zcnt = 0;
457
458 return (acnt + zcnt);
459 }
460
461 struct kinfo_proc2 *
462 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
463 {
464 size_t size;
465 int mib[6], st, nprocs;
466 struct pstats pstats;
467
468 if (ISSYSCTL(kd)) {
469 size = 0;
470 mib[0] = CTL_KERN;
471 mib[1] = KERN_PROC2;
472 mib[2] = op;
473 mib[3] = arg;
474 mib[4] = (int)esize;
475 again:
476 mib[5] = 0;
477 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
478 if (st == -1) {
479 _kvm_syserr(kd, kd->program, "kvm_getproc2");
480 return (NULL);
481 }
482
483 mib[5] = (int) (size / esize);
484 KVM_ALLOC(kd, procbase2, size);
485 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
486 if (st == -1) {
487 if (errno == ENOMEM) {
488 goto again;
489 }
490 _kvm_syserr(kd, kd->program, "kvm_getproc2");
491 return (NULL);
492 }
493 nprocs = (int) (size / esize);
494 } else {
495 char *kp2c;
496 struct kinfo_proc *kp;
497 struct kinfo_proc2 kp2, *kp2p;
498 struct kinfo_lwp *kl;
499 int i, nlwps;
500
501 kp = kvm_getprocs(kd, op, arg, &nprocs);
502 if (kp == NULL)
503 return (NULL);
504
505 size = nprocs * esize;
506 KVM_ALLOC(kd, procbase2, size);
507 kp2c = (char *)(void *)kd->procbase2;
508 kp2p = &kp2;
509 for (i = 0; i < nprocs; i++, kp++) {
510 struct timeval tv;
511
512 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
513 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
514 sizeof(struct kinfo_lwp), &nlwps);
515
516 if (kl == NULL) {
517 _kvm_syserr(kd, NULL,
518 "kvm_getlwps() failed on process %u\n",
519 kp->kp_proc.p_pid);
520 if (nlwps == 0)
521 return NULL;
522 else
523 continue;
524 }
525
526 /* We use kl[0] as the "representative" LWP */
527 memset(kp2p, 0, sizeof(kp2));
528 kp2p->p_forw = kl[0].l_forw;
529 kp2p->p_back = kl[0].l_back;
530 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
531 kp2p->p_addr = kl[0].l_addr;
532 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
533 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
534 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
535 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
536 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
537 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
538 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
539 kp2p->p_tsess = 0;
540 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
541 kp2p->p_ru = 0;
542 #else
543 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
544 #endif
545
546 kp2p->p_eflag = 0;
547 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
548 kp2p->p_flag = kp->kp_proc.p_flag;
549
550 kp2p->p_pid = kp->kp_proc.p_pid;
551
552 kp2p->p_ppid = kp->kp_eproc.e_ppid;
553 kp2p->p_sid = kp->kp_eproc.e_sid;
554 kp2p->p__pgid = kp->kp_eproc.e_pgid;
555
556 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
557
558 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
559 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
560 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
561 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
562 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
563 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
564
565 /*CONSTCOND*/
566 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
567 MIN(sizeof(kp2p->p_groups),
568 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
569 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
570
571 kp2p->p_jobc = kp->kp_eproc.e_jobc;
572 kp2p->p_tdev = kp->kp_eproc.e_tdev;
573 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
574 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
575
576 kp2p->p_estcpu = 0;
577 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
578 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
579 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
580 kp2p->p_cpticks = kl[0].l_cpticks;
581 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
582 kp2p->p_swtime = kl[0].l_swtime;
583 kp2p->p_slptime = kl[0].l_slptime;
584 #if 0 /* XXX thorpej */
585 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
586 #else
587 kp2p->p_schedflags = 0;
588 #endif
589
590 kp2p->p_uticks = kp->kp_proc.p_uticks;
591 kp2p->p_sticks = kp->kp_proc.p_sticks;
592 kp2p->p_iticks = kp->kp_proc.p_iticks;
593
594 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
595 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
596
597 kp2p->p_holdcnt = kl[0].l_holdcnt;
598
599 memcpy(&kp2p->p_siglist,
600 &kp->kp_proc.p_sigpend.sp_set,
601 sizeof(ki_sigset_t));
602 memset(&kp2p->p_sigmask, 0,
603 sizeof(ki_sigset_t));
604 memcpy(&kp2p->p_sigignore,
605 &kp->kp_proc.p_sigctx.ps_sigignore,
606 sizeof(ki_sigset_t));
607 memcpy(&kp2p->p_sigcatch,
608 &kp->kp_proc.p_sigctx.ps_sigcatch,
609 sizeof(ki_sigset_t));
610
611 kp2p->p_stat = kl[0].l_stat;
612 kp2p->p_priority = kl[0].l_priority;
613 kp2p->p_usrpri = kl[0].l_priority;
614 kp2p->p_nice = kp->kp_proc.p_nice;
615
616 kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
617 kp2p->p_acflag = kp->kp_proc.p_acflag;
618
619 /*CONSTCOND*/
620 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
621 MIN(sizeof(kp2p->p_comm),
622 sizeof(kp->kp_proc.p_comm)));
623
624 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
625 sizeof(kp2p->p_wmesg));
626 kp2p->p_wchan = kl[0].l_wchan;
627 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
628 sizeof(kp2p->p_login));
629
630 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
631 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
632 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
633 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
634 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
635 / kd->nbpg;
636 /* Adjust mapped size */
637 kp2p->p_vm_msize =
638 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
639 kp->kp_eproc.e_vm.vm_issize +
640 kp->kp_eproc.e_vm.vm_ssize;
641
642 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
643
644 kp2p->p_realflag = kp->kp_proc.p_flag;
645 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
646 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
647 kp2p->p_realstat = kp->kp_proc.p_stat;
648
649 if (P_ZOMBIE(&kp->kp_proc) ||
650 kp->kp_proc.p_stats == NULL ||
651 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
652 kp2p->p_uvalid = 0;
653 } else {
654 kp2p->p_uvalid = 1;
655
656 kp2p->p_ustart_sec = (u_int32_t)
657 pstats.p_start.tv_sec;
658 kp2p->p_ustart_usec = (u_int32_t)
659 pstats.p_start.tv_usec;
660
661 kp2p->p_uutime_sec = (u_int32_t)
662 pstats.p_ru.ru_utime.tv_sec;
663 kp2p->p_uutime_usec = (u_int32_t)
664 pstats.p_ru.ru_utime.tv_usec;
665 kp2p->p_ustime_sec = (u_int32_t)
666 pstats.p_ru.ru_stime.tv_sec;
667 kp2p->p_ustime_usec = (u_int32_t)
668 pstats.p_ru.ru_stime.tv_usec;
669
670 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
671 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
672 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
673 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
674 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
675 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
676 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
677 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
678 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
679 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
680 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
681 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
682 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
683 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
684
685 kp2p->p_uctime_sec = (u_int32_t)
686 (pstats.p_cru.ru_utime.tv_sec +
687 pstats.p_cru.ru_stime.tv_sec);
688 kp2p->p_uctime_usec = (u_int32_t)
689 (pstats.p_cru.ru_utime.tv_usec +
690 pstats.p_cru.ru_stime.tv_usec);
691 }
692
693 memcpy(kp2c, &kp2, esize);
694 kp2c += esize;
695 }
696 }
697 *cnt = nprocs;
698 return (kd->procbase2);
699 }
700
701 struct kinfo_lwp *
702 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
703 {
704 size_t size;
705 int mib[5], nlwps;
706 ssize_t st;
707 struct kinfo_lwp *kl;
708
709 if (ISSYSCTL(kd)) {
710 size = 0;
711 mib[0] = CTL_KERN;
712 mib[1] = KERN_LWP;
713 mib[2] = pid;
714 mib[3] = (int)esize;
715 mib[4] = 0;
716 again:
717 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
718 if (st == -1) {
719 switch (errno) {
720 case ESRCH: /* Treat this as a soft error; see kvm.c */
721 _kvm_syserr(kd, NULL, "kvm_getlwps");
722 return NULL;
723 default:
724 _kvm_syserr(kd, kd->program, "kvm_getlwps");
725 return NULL;
726 }
727 }
728 mib[4] = (int) (size / esize);
729 KVM_ALLOC(kd, lwpbase, size);
730 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
731 if (st == -1) {
732 switch (errno) {
733 case ESRCH: /* Treat this as a soft error; see kvm.c */
734 _kvm_syserr(kd, NULL, "kvm_getlwps");
735 return NULL;
736 case ENOMEM:
737 goto again;
738 default:
739 _kvm_syserr(kd, kd->program, "kvm_getlwps");
740 return NULL;
741 }
742 }
743 nlwps = (int) (size / esize);
744 } else {
745 /* grovel through the memory image */
746 struct proc p;
747 struct lwp l;
748 u_long laddr;
749 void *back;
750 int i;
751
752 st = kvm_read(kd, paddr, &p, sizeof(p));
753 if (st == -1) {
754 _kvm_syserr(kd, kd->program, "kvm_getlwps");
755 return (NULL);
756 }
757
758 nlwps = p.p_nlwps;
759 size = nlwps * sizeof(*kd->lwpbase);
760 KVM_ALLOC(kd, lwpbase, size);
761 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
762 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
763 st = kvm_read(kd, laddr, &l, sizeof(l));
764 if (st == -1) {
765 _kvm_syserr(kd, kd->program, "kvm_getlwps");
766 return (NULL);
767 }
768 kl = &kd->lwpbase[i];
769 kl->l_laddr = laddr;
770 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
771 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
772 st = kvm_read(kd, laddr, &back, sizeof(back));
773 if (st == -1) {
774 _kvm_syserr(kd, kd->program, "kvm_getlwps");
775 return (NULL);
776 }
777 kl->l_back = PTRTOUINT64(back);
778 kl->l_addr = PTRTOUINT64(l.l_addr);
779 kl->l_lid = l.l_lid;
780 kl->l_flag = l.l_flag;
781 kl->l_swtime = l.l_swtime;
782 kl->l_slptime = l.l_slptime;
783 kl->l_schedflags = 0; /* XXX */
784 kl->l_holdcnt = 0;
785 kl->l_priority = l.l_priority;
786 kl->l_usrpri = l.l_priority;
787 kl->l_stat = l.l_stat;
788 kl->l_wchan = PTRTOUINT64(l.l_wchan);
789 if (l.l_wmesg)
790 (void)kvm_read(kd, (u_long)l.l_wmesg,
791 kl->l_wmesg, (size_t)WMESGLEN);
792 kl->l_cpuid = KI_NOCPU;
793 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
794 }
795 }
796
797 *cnt = nlwps;
798 return (kd->lwpbase);
799 }
800
801 struct kinfo_proc *
802 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
803 {
804 size_t size;
805 int mib[4], st, nprocs;
806
807 if (ISALIVE(kd)) {
808 size = 0;
809 mib[0] = CTL_KERN;
810 mib[1] = KERN_PROC;
811 mib[2] = op;
812 mib[3] = arg;
813 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
814 if (st == -1) {
815 _kvm_syserr(kd, kd->program, "kvm_getprocs");
816 return (NULL);
817 }
818 KVM_ALLOC(kd, procbase, size);
819 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
820 if (st == -1) {
821 _kvm_syserr(kd, kd->program, "kvm_getprocs");
822 return (NULL);
823 }
824 if (size % sizeof(struct kinfo_proc) != 0) {
825 _kvm_err(kd, kd->program,
826 "proc size mismatch (%lu total, %lu chunks)",
827 (u_long)size, (u_long)sizeof(struct kinfo_proc));
828 return (NULL);
829 }
830 nprocs = (int) (size / sizeof(struct kinfo_proc));
831 } else {
832 struct nlist nl[4], *p;
833
834 (void)memset(nl, 0, sizeof(nl));
835 nl[0].n_name = "_nprocs";
836 nl[1].n_name = "_allproc";
837 nl[2].n_name = "_zombproc";
838 nl[3].n_name = NULL;
839
840 if (kvm_nlist(kd, nl) != 0) {
841 for (p = nl; p->n_type != 0; ++p)
842 continue;
843 _kvm_err(kd, kd->program,
844 "%s: no such symbol", p->n_name);
845 return (NULL);
846 }
847 if (KREAD(kd, nl[0].n_value, &nprocs)) {
848 _kvm_err(kd, kd->program, "can't read nprocs");
849 return (NULL);
850 }
851 size = nprocs * sizeof(*kd->procbase);
852 KVM_ALLOC(kd, procbase, size);
853 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
854 nl[2].n_value, nprocs);
855 if (nprocs < 0)
856 return (NULL);
857 #ifdef notdef
858 size = nprocs * sizeof(struct kinfo_proc);
859 (void)realloc(kd->procbase, size);
860 #endif
861 }
862 *cnt = nprocs;
863 return (kd->procbase);
864 }
865
866 void *
867 _kvm_realloc(kvm_t *kd, void *p, size_t n)
868 {
869 void *np = realloc(p, n);
870
871 if (np == NULL)
872 _kvm_err(kd, kd->program, "out of memory");
873 return (np);
874 }
875
876 /*
877 * Read in an argument vector from the user address space of process p.
878 * addr if the user-space base address of narg null-terminated contiguous
879 * strings. This is used to read in both the command arguments and
880 * environment strings. Read at most maxcnt characters of strings.
881 */
882 static char **
883 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
884 int maxcnt)
885 {
886 char *np, *cp, *ep, *ap;
887 u_long oaddr = (u_long)~0L;
888 u_long len;
889 size_t cc;
890 char **argv;
891
892 /*
893 * Check that there aren't an unreasonable number of arguments,
894 * and that the address is in user space.
895 */
896 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
897 return (NULL);
898
899 if (kd->argv == NULL) {
900 /*
901 * Try to avoid reallocs.
902 */
903 kd->argc = MAX(narg + 1, 32);
904 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
905 if (kd->argv == NULL)
906 return (NULL);
907 } else if (narg + 1 > kd->argc) {
908 kd->argc = MAX(2 * kd->argc, narg + 1);
909 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
910 sizeof(*kd->argv));
911 if (kd->argv == NULL)
912 return (NULL);
913 }
914 if (kd->argspc == NULL) {
915 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
916 if (kd->argspc == NULL)
917 return (NULL);
918 kd->argspc_len = kd->nbpg;
919 }
920 if (kd->argbuf == NULL) {
921 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
922 if (kd->argbuf == NULL)
923 return (NULL);
924 }
925 cc = sizeof(char *) * narg;
926 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
927 return (NULL);
928 ap = np = kd->argspc;
929 argv = kd->argv;
930 len = 0;
931 /*
932 * Loop over pages, filling in the argument vector.
933 */
934 while (argv < kd->argv + narg && *argv != NULL) {
935 addr = (u_long)*argv & ~(kd->nbpg - 1);
936 if (addr != oaddr) {
937 if (kvm_ureadm(kd, p, addr, kd->argbuf,
938 (size_t)kd->nbpg) != kd->nbpg)
939 return (NULL);
940 oaddr = addr;
941 }
942 addr = (u_long)*argv & (kd->nbpg - 1);
943 cp = kd->argbuf + (size_t)addr;
944 cc = kd->nbpg - (size_t)addr;
945 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
946 cc = (size_t)(maxcnt - len);
947 ep = memchr(cp, '\0', cc);
948 if (ep != NULL)
949 cc = ep - cp + 1;
950 if (len + cc > kd->argspc_len) {
951 ptrdiff_t off;
952 char **pp;
953 uintptr_t op = (uintptr_t)kd->argspc;
954
955 kd->argspc_len *= 2;
956 kd->argspc = _kvm_realloc(kd, kd->argspc,
957 kd->argspc_len);
958 if (kd->argspc == NULL)
959 return (NULL);
960 /*
961 * Adjust argv pointers in case realloc moved
962 * the string space.
963 */
964 off = (uintptr_t)kd->argspc - op;
965 for (pp = kd->argv; pp < argv; pp++)
966 *pp += off;
967 ap += off;
968 np += off;
969 }
970 memcpy(np, cp, cc);
971 np += cc;
972 len += cc;
973 if (ep != NULL) {
974 *argv++ = ap;
975 ap = np;
976 } else
977 *argv += cc;
978 if (maxcnt > 0 && len >= maxcnt) {
979 /*
980 * We're stopping prematurely. Terminate the
981 * current string.
982 */
983 if (ep == NULL) {
984 *np = '\0';
985 *argv++ = ap;
986 }
987 break;
988 }
989 }
990 /* Make sure argv is terminated. */
991 *argv = NULL;
992 return (kd->argv);
993 }
994
995 static void
996 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
997 {
998
999 *addr = (u_long)p->ps_argvstr;
1000 *n = p->ps_nargvstr;
1001 }
1002
1003 static void
1004 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1005 {
1006
1007 *addr = (u_long)p->ps_envstr;
1008 *n = p->ps_nenvstr;
1009 }
1010
1011 /*
1012 * Determine if the proc indicated by p is still active.
1013 * This test is not 100% foolproof in theory, but chances of
1014 * being wrong are very low.
1015 */
1016 static int
1017 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1018 {
1019 struct proc kernproc;
1020
1021 /*
1022 * Just read in the whole proc. It's not that big relative
1023 * to the cost of the read system call.
1024 */
1025 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1026 sizeof(kernproc))
1027 return (0);
1028 return (p->p_pid == kernproc.p_pid &&
1029 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1030 }
1031
1032 static char **
1033 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1034 void (*info)(struct ps_strings *, u_long *, int *))
1035 {
1036 char **ap;
1037 u_long addr;
1038 int cnt;
1039 struct ps_strings arginfo;
1040
1041 /*
1042 * Pointers are stored at the top of the user stack.
1043 */
1044 if (p->p_stat == SZOMB)
1045 return (NULL);
1046 cnt = (int)kvm_ureadm(kd, p, p->p_psstrp,
1047 (void *)&arginfo, sizeof(arginfo));
1048 if (cnt != sizeof(arginfo))
1049 return (NULL);
1050
1051 (*info)(&arginfo, &addr, &cnt);
1052 if (cnt == 0)
1053 return (NULL);
1054 ap = kvm_argv(kd, p, addr, cnt, nchr);
1055 /*
1056 * For live kernels, make sure this process didn't go away.
1057 */
1058 if (ap != NULL && ISALIVE(kd) &&
1059 !proc_verify(kd, (u_long)p->p_paddr, p))
1060 ap = NULL;
1061 return (ap);
1062 }
1063
1064 /*
1065 * Get the command args. This code is now machine independent.
1066 */
1067 char **
1068 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1069 {
1070 struct miniproc p;
1071
1072 KPTOMINI(kp, &p);
1073 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1074 }
1075
1076 char **
1077 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1078 {
1079 struct miniproc p;
1080
1081 KPTOMINI(kp, &p);
1082 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1083 }
1084
1085 static char **
1086 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1087 {
1088 size_t bufs;
1089 int narg, mib[4];
1090 size_t newargspc_len;
1091 char **ap, *bp, *endp;
1092
1093 /*
1094 * Check that there aren't an unreasonable number of arguments.
1095 */
1096 if (nchr > ARG_MAX)
1097 return (NULL);
1098
1099 if (nchr == 0)
1100 nchr = ARG_MAX;
1101
1102 /* Get number of strings in argv */
1103 mib[0] = CTL_KERN;
1104 mib[1] = KERN_PROC_ARGS;
1105 mib[2] = pid;
1106 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1107 bufs = sizeof(narg);
1108 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1109 return (NULL);
1110
1111 if (kd->argv == NULL) {
1112 /*
1113 * Try to avoid reallocs.
1114 */
1115 kd->argc = MAX(narg + 1, 32);
1116 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1117 if (kd->argv == NULL)
1118 return (NULL);
1119 } else if (narg + 1 > kd->argc) {
1120 kd->argc = MAX(2 * kd->argc, narg + 1);
1121 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1122 sizeof(*kd->argv));
1123 if (kd->argv == NULL)
1124 return (NULL);
1125 }
1126
1127 newargspc_len = MIN(nchr, ARG_MAX);
1128 KVM_ALLOC(kd, argspc, newargspc_len);
1129 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1130
1131 mib[0] = CTL_KERN;
1132 mib[1] = KERN_PROC_ARGS;
1133 mib[2] = pid;
1134 mib[3] = type;
1135 bufs = kd->argspc_len;
1136 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1137 return (NULL);
1138
1139 bp = kd->argspc;
1140 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1141 ap = kd->argv;
1142 endp = bp + MIN(nchr, bufs);
1143
1144 while (bp < endp) {
1145 *ap++ = bp;
1146 /*
1147 * XXX: don't need following anymore, or stick check
1148 * for max argc in above while loop?
1149 */
1150 if (ap >= kd->argv + kd->argc) {
1151 kd->argc *= 2;
1152 kd->argv = _kvm_realloc(kd, kd->argv,
1153 kd->argc * sizeof(*kd->argv));
1154 ap = kd->argv;
1155 }
1156 bp += strlen(bp) + 1;
1157 }
1158 *ap = NULL;
1159
1160 return (kd->argv);
1161 }
1162
1163 char **
1164 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1165 {
1166
1167 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1168 }
1169
1170 char **
1171 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1172 {
1173
1174 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1175 }
1176
1177 /*
1178 * Read from user space. The user context is given by p.
1179 */
1180 static ssize_t
1181 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1182 char *buf, size_t len)
1183 {
1184 char *cp;
1185
1186 cp = buf;
1187 while (len > 0) {
1188 size_t cc;
1189 char *dp;
1190 u_long cnt;
1191
1192 dp = _kvm_ureadm(kd, p, uva, &cnt);
1193 if (dp == NULL) {
1194 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1195 return (0);
1196 }
1197 cc = (size_t)MIN(cnt, len);
1198 memcpy(cp, dp, cc);
1199 cp += cc;
1200 uva += cc;
1201 len -= cc;
1202 }
1203 return (ssize_t)(cp - buf);
1204 }
1205