kvm_proc.c revision 1.11 1 /*-
2 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
3 * Copyright (c) 1989, 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software developed by the Computer Systems
7 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8 * BG 91-66 and contributed to Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42
43 /*
44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 #include <kvm.h>
62
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/swap_pager.h>
66
67 #include <sys/sysctl.h>
68
69 #include <limits.h>
70 #include <db.h>
71 #include <paths.h>
72
73 #include "kvm_private.h"
74
75 #define KREAD(kd, addr, obj) \
76 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
77
78 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
79 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
80 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t));
81
82 char *
83 _kvm_uread(kd, p, va, cnt)
84 kvm_t *kd;
85 const struct proc *p;
86 u_long va;
87 u_long *cnt;
88 {
89 register u_long addr, head;
90 register u_long offset;
91 struct vm_map_entry vme;
92 struct vm_object vmo;
93 int rv;
94
95 if (kd->swapspc == 0) {
96 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
97 if (kd->swapspc == 0)
98 return (0);
99 }
100
101 /*
102 * Look through the address map for the memory object
103 * that corresponds to the given virtual address.
104 * The header just has the entire valid range.
105 */
106 head = (u_long)&p->p_vmspace->vm_map.header;
107 addr = head;
108 while (1) {
109 if (KREAD(kd, addr, &vme))
110 return (0);
111
112 if (va >= vme.start && va < vme.end &&
113 vme.object.vm_object != 0)
114 break;
115
116 addr = (u_long)vme.next;
117 if (addr == head)
118 return (0);
119 }
120
121 /*
122 * We found the right object -- follow shadow links.
123 */
124 offset = va - vme.start + vme.offset;
125 addr = (u_long)vme.object.vm_object;
126
127 while (1) {
128 /* Try reading the page from core first. */
129 if ((rv = _kvm_readfromcore(kd, addr, offset)))
130 break;
131
132 if (KREAD(kd, addr, &vmo))
133 return (0);
134
135 /* If there is a pager here, see if it has the page. */
136 if (vmo.pager != 0 &&
137 (rv = _kvm_readfrompager(kd, &vmo, offset)))
138 break;
139
140 /* Move down the shadow chain. */
141 addr = (u_long)vmo.shadow;
142 if (addr == 0)
143 return (0);
144 offset += vmo.shadow_offset;
145 }
146
147 if (rv == -1)
148 return (0);
149
150 /* Found the page. */
151 offset %= kd->nbpg;
152 *cnt = kd->nbpg - offset;
153 return (&kd->swapspc[offset]);
154 }
155
156 #define vm_page_hash(kd, object, offset) \
157 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
158
159 int
160 _kvm_coreinit(kd)
161 kvm_t *kd;
162 {
163 struct nlist nlist[3];
164
165 nlist[0].n_name = "_vm_page_buckets";
166 nlist[1].n_name = "_vm_page_hash_mask";
167 nlist[2].n_name = 0;
168 if (kvm_nlist(kd, nlist) != 0)
169 return (-1);
170
171 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
172 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
173 return (-1);
174
175 return (0);
176 }
177
178 int
179 _kvm_readfromcore(kd, object, offset)
180 kvm_t *kd;
181 u_long object, offset;
182 {
183 u_long addr;
184 struct pglist bucket;
185 struct vm_page mem;
186 off_t seekpoint;
187
188 if (kd->vm_page_buckets == 0 &&
189 _kvm_coreinit(kd))
190 return (-1);
191
192 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
193 if (KREAD(kd, addr, &bucket))
194 return (-1);
195
196 addr = (u_long)bucket.tqh_first;
197 offset &= ~(kd->nbpg -1);
198 while (1) {
199 if (addr == 0)
200 return (0);
201
202 if (KREAD(kd, addr, &mem))
203 return (-1);
204
205 if ((u_long)mem.object == object &&
206 (u_long)mem.offset == offset)
207 break;
208
209 addr = (u_long)mem.hashq.tqe_next;
210 }
211
212 seekpoint = mem.phys_addr;
213
214 if (lseek(kd->pmfd, seekpoint, 0) == -1)
215 return (-1);
216 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
217 return (-1);
218
219 return (1);
220 }
221
222 int
223 _kvm_readfrompager(kd, vmop, offset)
224 kvm_t *kd;
225 struct vm_object *vmop;
226 u_long offset;
227 {
228 u_long addr;
229 struct pager_struct pager;
230 struct swpager swap;
231 int ix;
232 struct swblock swb;
233 off_t seekpoint;
234
235 /* Read in the pager info and make sure it's a swap device. */
236 addr = (u_long)vmop->pager;
237 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
238 return (-1);
239
240 /* Read in the swap_pager private data. */
241 addr = (u_long)pager.pg_data;
242 if (KREAD(kd, addr, &swap))
243 return (-1);
244
245 /*
246 * Calculate the paging offset, and make sure it's within the
247 * bounds of the pager.
248 */
249 offset += vmop->paging_offset;
250 ix = offset / dbtob(swap.sw_bsize);
251 #if 0
252 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
253 return (-1);
254 #else
255 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
256 int i;
257 printf("BUG BUG BUG BUG:\n");
258 printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
259 vmop, offset - vmop->paging_offset, vmop->paging_offset,
260 vmop->pager, pager.pg_data);
261 printf("osize %x bsize %x blocks %x nblocks %x\n",
262 swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
263 swap.sw_nblocks);
264 for (ix = 0; ix < swap.sw_nblocks; ix++) {
265 addr = (u_long)&swap.sw_blocks[ix];
266 if (KREAD(kd, addr, &swb))
267 return (0);
268 printf("sw_blocks[%d]: block %x mask %x\n", ix,
269 swb.swb_block, swb.swb_mask);
270 }
271 return (-1);
272 }
273 #endif
274
275 /* Read in the swap records. */
276 addr = (u_long)&swap.sw_blocks[ix];
277 if (KREAD(kd, addr, &swb))
278 return (-1);
279
280 /* Calculate offset within pager. */
281 offset %= dbtob(swap.sw_bsize);
282
283 /* Check that the page is actually present. */
284 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
285 return (0);
286
287 if (!ISALIVE(kd))
288 return (-1);
289
290 /* Calculate the physical address and read the page. */
291 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
292
293 if (lseek(kd->swfd, seekpoint, 0) == -1)
294 return (-1);
295 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
296 return (-1);
297
298 return (1);
299 }
300
301 /*
302 * Read proc's from memory file into buffer bp, which has space to hold
303 * at most maxcnt procs.
304 */
305 static int
306 kvm_proclist(kd, what, arg, p, bp, maxcnt)
307 kvm_t *kd;
308 int what, arg;
309 struct proc *p;
310 struct kinfo_proc *bp;
311 int maxcnt;
312 {
313 register int cnt = 0;
314 struct eproc eproc;
315 struct pgrp pgrp;
316 struct session sess;
317 struct tty tty;
318 struct proc proc;
319
320 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
321 if (KREAD(kd, (u_long)p, &proc)) {
322 _kvm_err(kd, kd->program, "can't read proc at %x", p);
323 return (-1);
324 }
325 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
326 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
327 &eproc.e_ucred);
328
329 switch(what) {
330
331 case KERN_PROC_PID:
332 if (proc.p_pid != (pid_t)arg)
333 continue;
334 break;
335
336 case KERN_PROC_UID:
337 if (eproc.e_ucred.cr_uid != (uid_t)arg)
338 continue;
339 break;
340
341 case KERN_PROC_RUID:
342 if (eproc.e_pcred.p_ruid != (uid_t)arg)
343 continue;
344 break;
345 }
346 /*
347 * We're going to add another proc to the set. If this
348 * will overflow the buffer, assume the reason is because
349 * nprocs (or the proc list) is corrupt and declare an error.
350 */
351 if (cnt >= maxcnt) {
352 _kvm_err(kd, kd->program, "nprocs corrupt");
353 return (-1);
354 }
355 /*
356 * gather eproc
357 */
358 eproc.e_paddr = p;
359 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
360 _kvm_err(kd, kd->program, "can't read pgrp at %x",
361 proc.p_pgrp);
362 return (-1);
363 }
364 eproc.e_sess = pgrp.pg_session;
365 eproc.e_pgid = pgrp.pg_id;
366 eproc.e_jobc = pgrp.pg_jobc;
367 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
368 _kvm_err(kd, kd->program, "can't read session at %x",
369 pgrp.pg_session);
370 return (-1);
371 }
372 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
373 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
374 _kvm_err(kd, kd->program,
375 "can't read tty at %x", sess.s_ttyp);
376 return (-1);
377 }
378 eproc.e_tdev = tty.t_dev;
379 eproc.e_tsess = tty.t_session;
380 if (tty.t_pgrp != NULL) {
381 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
382 _kvm_err(kd, kd->program,
383 "can't read tpgrp at &x",
384 tty.t_pgrp);
385 return (-1);
386 }
387 eproc.e_tpgid = pgrp.pg_id;
388 } else
389 eproc.e_tpgid = -1;
390 } else
391 eproc.e_tdev = NODEV;
392 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
393 if (sess.s_leader == p)
394 eproc.e_flag |= EPROC_SLEADER;
395 if (proc.p_wmesg)
396 (void)kvm_read(kd, (u_long)proc.p_wmesg,
397 eproc.e_wmesg, WMESGLEN);
398
399 (void)kvm_read(kd, (u_long)proc.p_vmspace,
400 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
401
402 eproc.e_xsize = eproc.e_xrssize = 0;
403 eproc.e_xccount = eproc.e_xswrss = 0;
404
405 switch (what) {
406
407 case KERN_PROC_PGRP:
408 if (eproc.e_pgid != (pid_t)arg)
409 continue;
410 break;
411
412 case KERN_PROC_TTY:
413 if ((proc.p_flag & P_CONTROLT) == 0 ||
414 eproc.e_tdev != (dev_t)arg)
415 continue;
416 break;
417 }
418 bcopy(&proc, &bp->kp_proc, sizeof(proc));
419 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
420 ++bp;
421 ++cnt;
422 }
423 return (cnt);
424 }
425
426 /*
427 * Build proc info array by reading in proc list from a crash dump.
428 * Return number of procs read. maxcnt is the max we will read.
429 */
430 static int
431 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
432 kvm_t *kd;
433 int what, arg;
434 u_long a_allproc;
435 u_long a_zombproc;
436 int maxcnt;
437 {
438 register struct kinfo_proc *bp = kd->procbase;
439 register int acnt, zcnt;
440 struct proc *p;
441
442 if (KREAD(kd, a_allproc, &p)) {
443 _kvm_err(kd, kd->program, "cannot read allproc");
444 return (-1);
445 }
446 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
447 if (acnt < 0)
448 return (acnt);
449
450 if (KREAD(kd, a_zombproc, &p)) {
451 _kvm_err(kd, kd->program, "cannot read zombproc");
452 return (-1);
453 }
454 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
455 if (zcnt < 0)
456 zcnt = 0;
457
458 return (acnt + zcnt);
459 }
460
461 struct kinfo_proc *
462 kvm_getprocs(kd, op, arg, cnt)
463 kvm_t *kd;
464 int op, arg;
465 int *cnt;
466 {
467 size_t size;
468 int mib[4], st, nprocs;
469
470 if (kd->procbase != 0) {
471 free((void *)kd->procbase);
472 /*
473 * Clear this pointer in case this call fails. Otherwise,
474 * kvm_close() will free it again.
475 */
476 kd->procbase = 0;
477 }
478 if (ISALIVE(kd)) {
479 size = 0;
480 mib[0] = CTL_KERN;
481 mib[1] = KERN_PROC;
482 mib[2] = op;
483 mib[3] = arg;
484 st = sysctl(mib, 4, NULL, &size, NULL, 0);
485 if (st == -1) {
486 _kvm_syserr(kd, kd->program, "kvm_getprocs");
487 return (0);
488 }
489 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
490 if (kd->procbase == 0)
491 return (0);
492 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
493 if (st == -1) {
494 _kvm_syserr(kd, kd->program, "kvm_getprocs");
495 return (0);
496 }
497 if (size % sizeof(struct kinfo_proc) != 0) {
498 _kvm_err(kd, kd->program,
499 "proc size mismatch (%d total, %d chunks)",
500 size, sizeof(struct kinfo_proc));
501 return (0);
502 }
503 nprocs = size / sizeof(struct kinfo_proc);
504 } else {
505 struct nlist nl[4], *p;
506
507 nl[0].n_name = "_nprocs";
508 nl[1].n_name = "_allproc";
509 nl[2].n_name = "_zombproc";
510 nl[3].n_name = 0;
511
512 if (kvm_nlist(kd, nl) != 0) {
513 for (p = nl; p->n_type != 0; ++p)
514 ;
515 _kvm_err(kd, kd->program,
516 "%s: no such symbol", p->n_name);
517 return (0);
518 }
519 if (KREAD(kd, nl[0].n_value, &nprocs)) {
520 _kvm_err(kd, kd->program, "can't read nprocs");
521 return (0);
522 }
523 size = nprocs * sizeof(struct kinfo_proc);
524 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
525 if (kd->procbase == 0)
526 return (0);
527
528 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
529 nl[2].n_value, nprocs);
530 #ifdef notdef
531 size = nprocs * sizeof(struct kinfo_proc);
532 (void)realloc(kd->procbase, size);
533 #endif
534 }
535 *cnt = nprocs;
536 return (kd->procbase);
537 }
538
539 void
540 _kvm_freeprocs(kd)
541 kvm_t *kd;
542 {
543 if (kd->procbase) {
544 free(kd->procbase);
545 kd->procbase = 0;
546 }
547 }
548
549 void *
550 _kvm_realloc(kd, p, n)
551 kvm_t *kd;
552 void *p;
553 size_t n;
554 {
555 void *np = (void *)realloc(p, n);
556
557 if (np == 0)
558 _kvm_err(kd, kd->program, "out of memory");
559 return (np);
560 }
561
562 #ifndef MAX
563 #define MAX(a, b) ((a) > (b) ? (a) : (b))
564 #endif
565
566 /*
567 * Read in an argument vector from the user address space of process p.
568 * addr if the user-space base address of narg null-terminated contiguous
569 * strings. This is used to read in both the command arguments and
570 * environment strings. Read at most maxcnt characters of strings.
571 */
572 static char **
573 kvm_argv(kd, p, addr, narg, maxcnt)
574 kvm_t *kd;
575 struct proc *p;
576 register u_long addr;
577 register int narg;
578 register int maxcnt;
579 {
580 register char *np, *cp, *ep, *ap;
581 register u_long oaddr = -1;
582 register int len, cc;
583 register char **argv;
584
585 /*
586 * Check that there aren't an unreasonable number of agruments,
587 * and that the address is in user space.
588 */
589 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
590 return (0);
591
592 if (kd->argv == 0) {
593 /*
594 * Try to avoid reallocs.
595 */
596 kd->argc = MAX(narg + 1, 32);
597 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
598 sizeof(*kd->argv));
599 if (kd->argv == 0)
600 return (0);
601 } else if (narg + 1 > kd->argc) {
602 kd->argc = MAX(2 * kd->argc, narg + 1);
603 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
604 sizeof(*kd->argv));
605 if (kd->argv == 0)
606 return (0);
607 }
608 if (kd->argspc == 0) {
609 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
610 if (kd->argspc == 0)
611 return (0);
612 kd->arglen = kd->nbpg;
613 }
614 if (kd->argbuf == 0) {
615 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
616 if (kd->argbuf == 0)
617 return (0);
618 }
619 cc = sizeof(char *) * narg;
620 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
621 return (0);
622 ap = np = kd->argspc;
623 argv = kd->argv;
624 len = 0;
625 /*
626 * Loop over pages, filling in the argument vector.
627 */
628 while (argv < kd->argv + narg && *argv != 0) {
629 addr = (u_long)*argv & ~(kd->nbpg - 1);
630 if (addr != oaddr) {
631 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
632 kd->nbpg)
633 return (0);
634 oaddr = addr;
635 }
636 addr = (u_long)*argv & (kd->nbpg - 1);
637 cp = kd->argbuf + addr;
638 cc = kd->nbpg - addr;
639 if (maxcnt > 0 && cc > maxcnt - len)
640 cc = maxcnt - len;;
641 ep = memchr(cp, '\0', cc);
642 if (ep != 0)
643 cc = ep - cp + 1;
644 if (len + cc > kd->arglen) {
645 register int off;
646 register char **pp;
647 register char *op = kd->argspc;
648
649 kd->arglen *= 2;
650 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
651 kd->arglen);
652 if (kd->argspc == 0)
653 return (0);
654 np = kd->argspc + len;
655 /*
656 * Adjust argv pointers in case realloc moved
657 * the string space.
658 */
659 off = kd->argspc - op;
660 for (pp = kd->argv; pp < argv; ++pp)
661 *pp += off;
662 }
663 memcpy(np, cp, cc);
664 np += cc;
665 len += cc;
666 if (ep != 0) {
667 *argv++ = ap;
668 ap = np;
669 } else
670 *argv += cc;
671 if (maxcnt > 0 && len >= maxcnt) {
672 /*
673 * We're stopping prematurely. Terminate the
674 * current string.
675 */
676 if (ep == 0) {
677 *np = '\0';
678 ++argv;
679 }
680 break;
681 }
682 }
683 /* Make sure argv is terminated. */
684 *argv = 0;
685 return (kd->argv);
686 }
687
688 static void
689 ps_str_a(p, addr, n)
690 struct ps_strings *p;
691 u_long *addr;
692 int *n;
693 {
694 *addr = (u_long)p->ps_argvstr;
695 *n = p->ps_nargvstr;
696 }
697
698 static void
699 ps_str_e(p, addr, n)
700 struct ps_strings *p;
701 u_long *addr;
702 int *n;
703 {
704 *addr = (u_long)p->ps_envstr;
705 *n = p->ps_nenvstr;
706 }
707
708 /*
709 * Determine if the proc indicated by p is still active.
710 * This test is not 100% foolproof in theory, but chances of
711 * being wrong are very low.
712 */
713 static int
714 proc_verify(kd, kernp, p)
715 kvm_t *kd;
716 u_long kernp;
717 const struct proc *p;
718 {
719 struct proc kernproc;
720
721 /*
722 * Just read in the whole proc. It's not that big relative
723 * to the cost of the read system call.
724 */
725 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
726 sizeof(kernproc))
727 return (0);
728 return (p->p_pid == kernproc.p_pid &&
729 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
730 }
731
732 static char **
733 kvm_doargv(kd, kp, nchr, info)
734 kvm_t *kd;
735 const struct kinfo_proc *kp;
736 int nchr;
737 void (*info)(struct ps_strings *, u_long *, int *);
738 {
739 register const struct proc *p = &kp->kp_proc;
740 register char **ap;
741 u_long addr;
742 int cnt;
743 struct ps_strings arginfo;
744
745 /*
746 * Pointers are stored at the top of the user stack.
747 */
748 if (p->p_stat == SZOMB ||
749 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
750 sizeof(arginfo)) != sizeof(arginfo))
751 return (0);
752
753 (*info)(&arginfo, &addr, &cnt);
754 if (cnt == 0)
755 return (0);
756 ap = kvm_argv(kd, p, addr, cnt, nchr);
757 /*
758 * For live kernels, make sure this process didn't go away.
759 */
760 if (ap != 0 && ISALIVE(kd) &&
761 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
762 ap = 0;
763 return (ap);
764 }
765
766 /*
767 * Get the command args. This code is now machine independent.
768 */
769 char **
770 kvm_getargv(kd, kp, nchr)
771 kvm_t *kd;
772 const struct kinfo_proc *kp;
773 int nchr;
774 {
775 return (kvm_doargv(kd, kp, nchr, ps_str_a));
776 }
777
778 char **
779 kvm_getenvv(kd, kp, nchr)
780 kvm_t *kd;
781 const struct kinfo_proc *kp;
782 int nchr;
783 {
784 return (kvm_doargv(kd, kp, nchr, ps_str_e));
785 }
786
787 /*
788 * Read from user space. The user context is given by p.
789 */
790 ssize_t
791 kvm_uread(kd, p, uva, buf, len)
792 kvm_t *kd;
793 register const struct proc *p;
794 register u_long uva;
795 register char *buf;
796 register size_t len;
797 {
798 register char *cp;
799
800 cp = buf;
801 while (len > 0) {
802 register int cc;
803 register char *dp;
804 int cnt;
805
806 dp = _kvm_uread(kd, p, uva, &cnt);
807 if (dp == 0) {
808 _kvm_err(kd, 0, "invalid address (%x)", uva);
809 return (0);
810 }
811 cc = MIN(cnt, len);
812 bcopy(dp, cp, cc);
813
814 cp += cc;
815 uva += cc;
816 len -= cc;
817 }
818 return (ssize_t)(cp - buf);
819 }
820