kvm_proc.c revision 1.16 1 /* $NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1989, 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software developed by the Computer Systems
9 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 * BG 91-66 and contributed to Berkeley.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #if defined(LIBC_SCCS) && !defined(lint)
42 #if 0
43 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
44 #else
45 static char *rcsid = "$NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $";
46 #endif
47 #endif /* LIBC_SCCS and not lint */
48
49 /*
50 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
51 * users of this code, so we've factored it out into a separate module.
52 * Thus, we keep this grunge out of the other kvm applications (i.e.,
53 * most other applications are interested only in open/close/read/nlist).
54 */
55
56 #include <sys/param.h>
57 #include <sys/user.h>
58 #include <sys/proc.h>
59 #include <sys/exec.h>
60 #include <sys/stat.h>
61 #include <sys/ioctl.h>
62 #include <sys/tty.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <nlist.h>
67 #include <kvm.h>
68
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/swap_pager.h>
72
73 #include <sys/sysctl.h>
74
75 #include <limits.h>
76 #include <db.h>
77 #include <paths.h>
78
79 #include "kvm_private.h"
80
81 #define KREAD(kd, addr, obj) \
82 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83
84 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
85 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
86 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
87 size_t));
88
89 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
90 int));
91 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
92 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
93 void (*)(struct ps_strings *, u_long *, int *)));
94 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
95 struct kinfo_proc *, int));
96 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
97 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
98 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
99
100 char *
101 _kvm_uread(kd, p, va, cnt)
102 kvm_t *kd;
103 const struct proc *p;
104 u_long va;
105 u_long *cnt;
106 {
107 register u_long addr, head;
108 register u_long offset;
109 struct vm_map_entry vme;
110 struct vm_object vmo;
111 int rv;
112
113 if (kd->swapspc == 0) {
114 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
115 if (kd->swapspc == 0)
116 return (0);
117 }
118
119 /*
120 * Look through the address map for the memory object
121 * that corresponds to the given virtual address.
122 * The header just has the entire valid range.
123 */
124 head = (u_long)&p->p_vmspace->vm_map.header;
125 addr = head;
126 while (1) {
127 if (KREAD(kd, addr, &vme))
128 return (0);
129
130 if (va >= vme.start && va < vme.end &&
131 vme.object.vm_object != 0)
132 break;
133
134 addr = (u_long)vme.next;
135 if (addr == head)
136 return (0);
137 }
138
139 /*
140 * We found the right object -- follow shadow links.
141 */
142 offset = va - vme.start + vme.offset;
143 addr = (u_long)vme.object.vm_object;
144
145 while (1) {
146 /* Try reading the page from core first. */
147 if ((rv = _kvm_readfromcore(kd, addr, offset)))
148 break;
149
150 if (KREAD(kd, addr, &vmo))
151 return (0);
152
153 /* If there is a pager here, see if it has the page. */
154 if (vmo.pager != 0 &&
155 (rv = _kvm_readfrompager(kd, &vmo, offset)))
156 break;
157
158 /* Move down the shadow chain. */
159 addr = (u_long)vmo.shadow;
160 if (addr == 0)
161 return (0);
162 offset += vmo.shadow_offset;
163 }
164
165 if (rv == -1)
166 return (0);
167
168 /* Found the page. */
169 offset %= kd->nbpg;
170 *cnt = kd->nbpg - offset;
171 return (&kd->swapspc[offset]);
172 }
173
174 #define vm_page_hash(kd, object, offset) \
175 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
176
177 int
178 _kvm_coreinit(kd)
179 kvm_t *kd;
180 {
181 struct nlist nlist[3];
182
183 nlist[0].n_name = "_vm_page_buckets";
184 nlist[1].n_name = "_vm_page_hash_mask";
185 nlist[2].n_name = 0;
186 if (kvm_nlist(kd, nlist) != 0)
187 return (-1);
188
189 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
190 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
191 return (-1);
192
193 return (0);
194 }
195
196 int
197 _kvm_readfromcore(kd, object, offset)
198 kvm_t *kd;
199 u_long object, offset;
200 {
201 u_long addr;
202 struct pglist bucket;
203 struct vm_page mem;
204 off_t seekpoint;
205
206 if (kd->vm_page_buckets == 0 &&
207 _kvm_coreinit(kd))
208 return (-1);
209
210 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
211 if (KREAD(kd, addr, &bucket))
212 return (-1);
213
214 addr = (u_long)bucket.tqh_first;
215 offset &= ~(kd->nbpg -1);
216 while (1) {
217 if (addr == 0)
218 return (0);
219
220 if (KREAD(kd, addr, &mem))
221 return (-1);
222
223 if ((u_long)mem.object == object &&
224 (u_long)mem.offset == offset)
225 break;
226
227 addr = (u_long)mem.hashq.tqe_next;
228 }
229
230 seekpoint = mem.phys_addr;
231
232 if (lseek(kd->pmfd, seekpoint, 0) == -1)
233 return (-1);
234 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
235 return (-1);
236
237 return (1);
238 }
239
240 int
241 _kvm_readfrompager(kd, vmop, offset)
242 kvm_t *kd;
243 struct vm_object *vmop;
244 u_long offset;
245 {
246 u_long addr;
247 struct pager_struct pager;
248 struct swpager swap;
249 int ix;
250 struct swblock swb;
251 off_t seekpoint;
252
253 /* Read in the pager info and make sure it's a swap device. */
254 addr = (u_long)vmop->pager;
255 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
256 return (-1);
257
258 /* Read in the swap_pager private data. */
259 addr = (u_long)pager.pg_data;
260 if (KREAD(kd, addr, &swap))
261 return (-1);
262
263 /*
264 * Calculate the paging offset, and make sure it's within the
265 * bounds of the pager.
266 */
267 offset += vmop->paging_offset;
268 ix = offset / dbtob(swap.sw_bsize);
269 #if 0
270 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
271 return (-1);
272 #else
273 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
274 int i;
275 printf("BUG BUG BUG BUG:\n");
276 printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
277 vmop, offset - vmop->paging_offset, vmop->paging_offset,
278 vmop->pager, pager.pg_data);
279 printf("osize %x bsize %x blocks %x nblocks %x\n",
280 swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
281 swap.sw_nblocks);
282 for (ix = 0; ix < swap.sw_nblocks; ix++) {
283 addr = (u_long)&swap.sw_blocks[ix];
284 if (KREAD(kd, addr, &swb))
285 return (0);
286 printf("sw_blocks[%d]: block %x mask %x\n", ix,
287 swb.swb_block, swb.swb_mask);
288 }
289 return (-1);
290 }
291 #endif
292
293 /* Read in the swap records. */
294 addr = (u_long)&swap.sw_blocks[ix];
295 if (KREAD(kd, addr, &swb))
296 return (-1);
297
298 /* Calculate offset within pager. */
299 offset %= dbtob(swap.sw_bsize);
300
301 /* Check that the page is actually present. */
302 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
303 return (0);
304
305 if (!ISALIVE(kd))
306 return (-1);
307
308 /* Calculate the physical address and read the page. */
309 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
310
311 if (lseek(kd->swfd, seekpoint, 0) == -1)
312 return (-1);
313 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
314 return (-1);
315
316 return (1);
317 }
318
319 /*
320 * Read proc's from memory file into buffer bp, which has space to hold
321 * at most maxcnt procs.
322 */
323 static int
324 kvm_proclist(kd, what, arg, p, bp, maxcnt)
325 kvm_t *kd;
326 int what, arg;
327 struct proc *p;
328 struct kinfo_proc *bp;
329 int maxcnt;
330 {
331 register int cnt = 0;
332 struct eproc eproc;
333 struct pgrp pgrp;
334 struct session sess;
335 struct tty tty;
336 struct proc proc;
337
338 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
339 if (KREAD(kd, (u_long)p, &proc)) {
340 _kvm_err(kd, kd->program, "can't read proc at %x", p);
341 return (-1);
342 }
343 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
344 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
345 &eproc.e_ucred);
346
347 switch(what) {
348
349 case KERN_PROC_PID:
350 if (proc.p_pid != (pid_t)arg)
351 continue;
352 break;
353
354 case KERN_PROC_UID:
355 if (eproc.e_ucred.cr_uid != (uid_t)arg)
356 continue;
357 break;
358
359 case KERN_PROC_RUID:
360 if (eproc.e_pcred.p_ruid != (uid_t)arg)
361 continue;
362 break;
363 }
364 /*
365 * We're going to add another proc to the set. If this
366 * will overflow the buffer, assume the reason is because
367 * nprocs (or the proc list) is corrupt and declare an error.
368 */
369 if (cnt >= maxcnt) {
370 _kvm_err(kd, kd->program, "nprocs corrupt");
371 return (-1);
372 }
373 /*
374 * gather eproc
375 */
376 eproc.e_paddr = p;
377 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
378 _kvm_err(kd, kd->program, "can't read pgrp at %x",
379 proc.p_pgrp);
380 return (-1);
381 }
382 eproc.e_sess = pgrp.pg_session;
383 eproc.e_pgid = pgrp.pg_id;
384 eproc.e_jobc = pgrp.pg_jobc;
385 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
386 _kvm_err(kd, kd->program, "can't read session at %x",
387 pgrp.pg_session);
388 return (-1);
389 }
390 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
391 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
392 _kvm_err(kd, kd->program,
393 "can't read tty at %x", sess.s_ttyp);
394 return (-1);
395 }
396 eproc.e_tdev = tty.t_dev;
397 eproc.e_tsess = tty.t_session;
398 if (tty.t_pgrp != NULL) {
399 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
400 _kvm_err(kd, kd->program,
401 "can't read tpgrp at &x",
402 tty.t_pgrp);
403 return (-1);
404 }
405 eproc.e_tpgid = pgrp.pg_id;
406 } else
407 eproc.e_tpgid = -1;
408 } else
409 eproc.e_tdev = NODEV;
410 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
411 if (sess.s_leader == p)
412 eproc.e_flag |= EPROC_SLEADER;
413 if (proc.p_wmesg)
414 (void)kvm_read(kd, (u_long)proc.p_wmesg,
415 eproc.e_wmesg, WMESGLEN);
416
417 (void)kvm_read(kd, (u_long)proc.p_vmspace,
418 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
419
420 eproc.e_xsize = eproc.e_xrssize = 0;
421 eproc.e_xccount = eproc.e_xswrss = 0;
422
423 switch (what) {
424
425 case KERN_PROC_PGRP:
426 if (eproc.e_pgid != (pid_t)arg)
427 continue;
428 break;
429
430 case KERN_PROC_TTY:
431 if ((proc.p_flag & P_CONTROLT) == 0 ||
432 eproc.e_tdev != (dev_t)arg)
433 continue;
434 break;
435 }
436 bcopy(&proc, &bp->kp_proc, sizeof(proc));
437 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
438 ++bp;
439 ++cnt;
440 }
441 return (cnt);
442 }
443
444 /*
445 * Build proc info array by reading in proc list from a crash dump.
446 * Return number of procs read. maxcnt is the max we will read.
447 */
448 static int
449 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
450 kvm_t *kd;
451 int what, arg;
452 u_long a_allproc;
453 u_long a_zombproc;
454 int maxcnt;
455 {
456 register struct kinfo_proc *bp = kd->procbase;
457 register int acnt, zcnt;
458 struct proc *p;
459
460 if (KREAD(kd, a_allproc, &p)) {
461 _kvm_err(kd, kd->program, "cannot read allproc");
462 return (-1);
463 }
464 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
465 if (acnt < 0)
466 return (acnt);
467
468 if (KREAD(kd, a_zombproc, &p)) {
469 _kvm_err(kd, kd->program, "cannot read zombproc");
470 return (-1);
471 }
472 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
473 if (zcnt < 0)
474 zcnt = 0;
475
476 return (acnt + zcnt);
477 }
478
479 struct kinfo_proc *
480 kvm_getprocs(kd, op, arg, cnt)
481 kvm_t *kd;
482 int op, arg;
483 int *cnt;
484 {
485 size_t size;
486 int mib[4], st, nprocs;
487
488 if (kd->procbase != 0) {
489 free((void *)kd->procbase);
490 /*
491 * Clear this pointer in case this call fails. Otherwise,
492 * kvm_close() will free it again.
493 */
494 kd->procbase = 0;
495 }
496 if (ISALIVE(kd)) {
497 size = 0;
498 mib[0] = CTL_KERN;
499 mib[1] = KERN_PROC;
500 mib[2] = op;
501 mib[3] = arg;
502 st = sysctl(mib, 4, NULL, &size, NULL, 0);
503 if (st == -1) {
504 _kvm_syserr(kd, kd->program, "kvm_getprocs");
505 return (0);
506 }
507 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
508 if (kd->procbase == 0)
509 return (0);
510 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
511 if (st == -1) {
512 _kvm_syserr(kd, kd->program, "kvm_getprocs");
513 return (0);
514 }
515 if (size % sizeof(struct kinfo_proc) != 0) {
516 _kvm_err(kd, kd->program,
517 "proc size mismatch (%d total, %d chunks)",
518 size, sizeof(struct kinfo_proc));
519 return (0);
520 }
521 nprocs = size / sizeof(struct kinfo_proc);
522 } else {
523 struct nlist nl[4], *p;
524
525 nl[0].n_name = "_nprocs";
526 nl[1].n_name = "_allproc";
527 nl[2].n_name = "_zombproc";
528 nl[3].n_name = 0;
529
530 if (kvm_nlist(kd, nl) != 0) {
531 for (p = nl; p->n_type != 0; ++p)
532 ;
533 _kvm_err(kd, kd->program,
534 "%s: no such symbol", p->n_name);
535 return (0);
536 }
537 if (KREAD(kd, nl[0].n_value, &nprocs)) {
538 _kvm_err(kd, kd->program, "can't read nprocs");
539 return (0);
540 }
541 size = nprocs * sizeof(struct kinfo_proc);
542 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
543 if (kd->procbase == 0)
544 return (0);
545
546 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
547 nl[2].n_value, nprocs);
548 #ifdef notdef
549 size = nprocs * sizeof(struct kinfo_proc);
550 (void)realloc(kd->procbase, size);
551 #endif
552 }
553 *cnt = nprocs;
554 return (kd->procbase);
555 }
556
557 void
558 _kvm_freeprocs(kd)
559 kvm_t *kd;
560 {
561 if (kd->procbase) {
562 free(kd->procbase);
563 kd->procbase = 0;
564 }
565 }
566
567 void *
568 _kvm_realloc(kd, p, n)
569 kvm_t *kd;
570 void *p;
571 size_t n;
572 {
573 void *np = (void *)realloc(p, n);
574
575 if (np == 0)
576 _kvm_err(kd, kd->program, "out of memory");
577 return (np);
578 }
579
580 #ifndef MAX
581 #define MAX(a, b) ((a) > (b) ? (a) : (b))
582 #endif
583
584 /*
585 * Read in an argument vector from the user address space of process p.
586 * addr if the user-space base address of narg null-terminated contiguous
587 * strings. This is used to read in both the command arguments and
588 * environment strings. Read at most maxcnt characters of strings.
589 */
590 static char **
591 kvm_argv(kd, p, addr, narg, maxcnt)
592 kvm_t *kd;
593 const struct proc *p;
594 register u_long addr;
595 register int narg;
596 register int maxcnt;
597 {
598 register char *np, *cp, *ep, *ap;
599 register u_long oaddr = -1;
600 register int len, cc;
601 register char **argv;
602
603 /*
604 * Check that there aren't an unreasonable number of agruments,
605 * and that the address is in user space.
606 */
607 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
608 return (0);
609
610 if (kd->argv == 0) {
611 /*
612 * Try to avoid reallocs.
613 */
614 kd->argc = MAX(narg + 1, 32);
615 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
616 sizeof(*kd->argv));
617 if (kd->argv == 0)
618 return (0);
619 } else if (narg + 1 > kd->argc) {
620 kd->argc = MAX(2 * kd->argc, narg + 1);
621 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
622 sizeof(*kd->argv));
623 if (kd->argv == 0)
624 return (0);
625 }
626 if (kd->argspc == 0) {
627 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
628 if (kd->argspc == 0)
629 return (0);
630 kd->arglen = kd->nbpg;
631 }
632 if (kd->argbuf == 0) {
633 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
634 if (kd->argbuf == 0)
635 return (0);
636 }
637 cc = sizeof(char *) * narg;
638 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
639 return (0);
640 ap = np = kd->argspc;
641 argv = kd->argv;
642 len = 0;
643 /*
644 * Loop over pages, filling in the argument vector.
645 */
646 while (argv < kd->argv + narg && *argv != 0) {
647 addr = (u_long)*argv & ~(kd->nbpg - 1);
648 if (addr != oaddr) {
649 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
650 kd->nbpg)
651 return (0);
652 oaddr = addr;
653 }
654 addr = (u_long)*argv & (kd->nbpg - 1);
655 cp = kd->argbuf + addr;
656 cc = kd->nbpg - addr;
657 if (maxcnt > 0 && cc > maxcnt - len)
658 cc = maxcnt - len;;
659 ep = memchr(cp, '\0', cc);
660 if (ep != 0)
661 cc = ep - cp + 1;
662 if (len + cc > kd->arglen) {
663 register int off;
664 register char **pp;
665 register char *op = kd->argspc;
666
667 kd->arglen *= 2;
668 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
669 kd->arglen);
670 if (kd->argspc == 0)
671 return (0);
672 /*
673 * Adjust argv pointers in case realloc moved
674 * the string space.
675 */
676 off = kd->argspc - op;
677 for (pp = kd->argv; pp < argv; pp++)
678 *pp += off;
679 ap += off;
680 np += off;
681 }
682 memcpy(np, cp, cc);
683 np += cc;
684 len += cc;
685 if (ep != 0) {
686 *argv++ = ap;
687 ap = np;
688 } else
689 *argv += cc;
690 if (maxcnt > 0 && len >= maxcnt) {
691 /*
692 * We're stopping prematurely. Terminate the
693 * current string.
694 */
695 if (ep == 0) {
696 *np = '\0';
697 *argv++ = ap;
698 }
699 break;
700 }
701 }
702 /* Make sure argv is terminated. */
703 *argv = 0;
704 return (kd->argv);
705 }
706
707 static void
708 ps_str_a(p, addr, n)
709 struct ps_strings *p;
710 u_long *addr;
711 int *n;
712 {
713 *addr = (u_long)p->ps_argvstr;
714 *n = p->ps_nargvstr;
715 }
716
717 static void
718 ps_str_e(p, addr, n)
719 struct ps_strings *p;
720 u_long *addr;
721 int *n;
722 {
723 *addr = (u_long)p->ps_envstr;
724 *n = p->ps_nenvstr;
725 }
726
727 /*
728 * Determine if the proc indicated by p is still active.
729 * This test is not 100% foolproof in theory, but chances of
730 * being wrong are very low.
731 */
732 static int
733 proc_verify(kd, kernp, p)
734 kvm_t *kd;
735 u_long kernp;
736 const struct proc *p;
737 {
738 struct proc kernproc;
739
740 /*
741 * Just read in the whole proc. It's not that big relative
742 * to the cost of the read system call.
743 */
744 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
745 sizeof(kernproc))
746 return (0);
747 return (p->p_pid == kernproc.p_pid &&
748 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
749 }
750
751 static char **
752 kvm_doargv(kd, kp, nchr, info)
753 kvm_t *kd;
754 const struct kinfo_proc *kp;
755 int nchr;
756 void (*info)(struct ps_strings *, u_long *, int *);
757 {
758 register const struct proc *p = &kp->kp_proc;
759 register char **ap;
760 u_long addr;
761 int cnt;
762 struct ps_strings arginfo;
763
764 /*
765 * Pointers are stored at the top of the user stack.
766 */
767 if (p->p_stat == SZOMB ||
768 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
769 sizeof(arginfo)) != sizeof(arginfo))
770 return (0);
771
772 (*info)(&arginfo, &addr, &cnt);
773 if (cnt == 0)
774 return (0);
775 ap = kvm_argv(kd, p, addr, cnt, nchr);
776 /*
777 * For live kernels, make sure this process didn't go away.
778 */
779 if (ap != 0 && ISALIVE(kd) &&
780 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
781 ap = 0;
782 return (ap);
783 }
784
785 /*
786 * Get the command args. This code is now machine independent.
787 */
788 char **
789 kvm_getargv(kd, kp, nchr)
790 kvm_t *kd;
791 const struct kinfo_proc *kp;
792 int nchr;
793 {
794 return (kvm_doargv(kd, kp, nchr, ps_str_a));
795 }
796
797 char **
798 kvm_getenvv(kd, kp, nchr)
799 kvm_t *kd;
800 const struct kinfo_proc *kp;
801 int nchr;
802 {
803 return (kvm_doargv(kd, kp, nchr, ps_str_e));
804 }
805
806 /*
807 * Read from user space. The user context is given by p.
808 */
809 ssize_t
810 kvm_uread(kd, p, uva, buf, len)
811 kvm_t *kd;
812 register const struct proc *p;
813 register u_long uva;
814 register char *buf;
815 register size_t len;
816 {
817 register char *cp;
818
819 cp = buf;
820 while (len > 0) {
821 register int cc;
822 register char *dp;
823 u_long cnt;
824
825 dp = _kvm_uread(kd, p, uva, &cnt);
826 if (dp == 0) {
827 _kvm_err(kd, 0, "invalid address (%x)", uva);
828 return (0);
829 }
830 cc = MIN(cnt, len);
831 bcopy(dp, cp, cc);
832
833 cp += cc;
834 uva += cc;
835 len -= cc;
836 }
837 return (ssize_t)(cp - buf);
838 }
839