Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.16
      1 /*	$NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
      5  * Copyright (c) 1989, 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software developed by the Computer Systems
      9  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     10  * BG 91-66 and contributed to Berkeley.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  */
     40 
     41 #if defined(LIBC_SCCS) && !defined(lint)
     42 #if 0
     43 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     44 #else
     45 static char *rcsid = "$NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $";
     46 #endif
     47 #endif /* LIBC_SCCS and not lint */
     48 
     49 /*
     50  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     51  * users of this code, so we've factored it out into a separate module.
     52  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     53  * most other applications are interested only in open/close/read/nlist).
     54  */
     55 
     56 #include <sys/param.h>
     57 #include <sys/user.h>
     58 #include <sys/proc.h>
     59 #include <sys/exec.h>
     60 #include <sys/stat.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/tty.h>
     63 #include <stdlib.h>
     64 #include <string.h>
     65 #include <unistd.h>
     66 #include <nlist.h>
     67 #include <kvm.h>
     68 
     69 #include <vm/vm.h>
     70 #include <vm/vm_param.h>
     71 #include <vm/swap_pager.h>
     72 
     73 #include <sys/sysctl.h>
     74 
     75 #include <limits.h>
     76 #include <db.h>
     77 #include <paths.h>
     78 
     79 #include "kvm_private.h"
     80 
     81 #define KREAD(kd, addr, obj) \
     82 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     83 
     84 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
     85 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     86 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
     87 		    size_t));
     88 
     89 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
     90 		    int));
     91 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
     92 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
     93 		    void (*)(struct ps_strings *, u_long *, int *)));
     94 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
     95 		    struct kinfo_proc *, int));
     96 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
     97 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
     98 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
     99 
    100 char *
    101 _kvm_uread(kd, p, va, cnt)
    102 	kvm_t *kd;
    103 	const struct proc *p;
    104 	u_long va;
    105 	u_long *cnt;
    106 {
    107 	register u_long addr, head;
    108 	register u_long offset;
    109 	struct vm_map_entry vme;
    110 	struct vm_object vmo;
    111 	int rv;
    112 
    113 	if (kd->swapspc == 0) {
    114 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    115 		if (kd->swapspc == 0)
    116 			return (0);
    117 	}
    118 
    119 	/*
    120 	 * Look through the address map for the memory object
    121 	 * that corresponds to the given virtual address.
    122 	 * The header just has the entire valid range.
    123 	 */
    124 	head = (u_long)&p->p_vmspace->vm_map.header;
    125 	addr = head;
    126 	while (1) {
    127 		if (KREAD(kd, addr, &vme))
    128 			return (0);
    129 
    130 		if (va >= vme.start && va < vme.end &&
    131 		    vme.object.vm_object != 0)
    132 			break;
    133 
    134 		addr = (u_long)vme.next;
    135 		if (addr == head)
    136 			return (0);
    137 	}
    138 
    139 	/*
    140 	 * We found the right object -- follow shadow links.
    141 	 */
    142 	offset = va - vme.start + vme.offset;
    143 	addr = (u_long)vme.object.vm_object;
    144 
    145 	while (1) {
    146 		/* Try reading the page from core first. */
    147 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    148 			break;
    149 
    150 		if (KREAD(kd, addr, &vmo))
    151 			return (0);
    152 
    153 		/* If there is a pager here, see if it has the page. */
    154 		if (vmo.pager != 0 &&
    155 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    156 			break;
    157 
    158 		/* Move down the shadow chain. */
    159 		addr = (u_long)vmo.shadow;
    160 		if (addr == 0)
    161 			return (0);
    162 		offset += vmo.shadow_offset;
    163 	}
    164 
    165 	if (rv == -1)
    166 		return (0);
    167 
    168 	/* Found the page. */
    169 	offset %= kd->nbpg;
    170 	*cnt = kd->nbpg - offset;
    171 	return (&kd->swapspc[offset]);
    172 }
    173 
    174 #define	vm_page_hash(kd, object, offset) \
    175 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    176 
    177 int
    178 _kvm_coreinit(kd)
    179 	kvm_t *kd;
    180 {
    181 	struct nlist nlist[3];
    182 
    183 	nlist[0].n_name = "_vm_page_buckets";
    184 	nlist[1].n_name = "_vm_page_hash_mask";
    185 	nlist[2].n_name = 0;
    186 	if (kvm_nlist(kd, nlist) != 0)
    187 		return (-1);
    188 
    189 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    190 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    191 		return (-1);
    192 
    193 	return (0);
    194 }
    195 
    196 int
    197 _kvm_readfromcore(kd, object, offset)
    198 	kvm_t *kd;
    199 	u_long object, offset;
    200 {
    201 	u_long addr;
    202 	struct pglist bucket;
    203 	struct vm_page mem;
    204 	off_t seekpoint;
    205 
    206 	if (kd->vm_page_buckets == 0 &&
    207 	    _kvm_coreinit(kd))
    208 		return (-1);
    209 
    210 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    211 	if (KREAD(kd, addr, &bucket))
    212 		return (-1);
    213 
    214 	addr = (u_long)bucket.tqh_first;
    215 	offset &= ~(kd->nbpg -1);
    216 	while (1) {
    217 		if (addr == 0)
    218 			return (0);
    219 
    220 		if (KREAD(kd, addr, &mem))
    221 			return (-1);
    222 
    223 		if ((u_long)mem.object == object &&
    224 		    (u_long)mem.offset == offset)
    225 			break;
    226 
    227 		addr = (u_long)mem.hashq.tqe_next;
    228 	}
    229 
    230 	seekpoint = mem.phys_addr;
    231 
    232 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
    233 		return (-1);
    234 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    235 		return (-1);
    236 
    237 	return (1);
    238 }
    239 
    240 int
    241 _kvm_readfrompager(kd, vmop, offset)
    242 	kvm_t *kd;
    243 	struct vm_object *vmop;
    244 	u_long offset;
    245 {
    246 	u_long addr;
    247 	struct pager_struct pager;
    248 	struct swpager swap;
    249 	int ix;
    250 	struct swblock swb;
    251 	off_t seekpoint;
    252 
    253 	/* Read in the pager info and make sure it's a swap device. */
    254 	addr = (u_long)vmop->pager;
    255 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    256 		return (-1);
    257 
    258 	/* Read in the swap_pager private data. */
    259 	addr = (u_long)pager.pg_data;
    260 	if (KREAD(kd, addr, &swap))
    261 		return (-1);
    262 
    263 	/*
    264 	 * Calculate the paging offset, and make sure it's within the
    265 	 * bounds of the pager.
    266 	 */
    267 	offset += vmop->paging_offset;
    268 	ix = offset / dbtob(swap.sw_bsize);
    269 #if 0
    270 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    271 		return (-1);
    272 #else
    273 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    274 		int i;
    275 		printf("BUG BUG BUG BUG:\n");
    276 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    277 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    278 		    vmop->pager, pager.pg_data);
    279 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    280 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    281 		    swap.sw_nblocks);
    282 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    283 			addr = (u_long)&swap.sw_blocks[ix];
    284 			if (KREAD(kd, addr, &swb))
    285 				return (0);
    286 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    287 			    swb.swb_block, swb.swb_mask);
    288 		}
    289 		return (-1);
    290 	}
    291 #endif
    292 
    293 	/* Read in the swap records. */
    294 	addr = (u_long)&swap.sw_blocks[ix];
    295 	if (KREAD(kd, addr, &swb))
    296 		return (-1);
    297 
    298 	/* Calculate offset within pager. */
    299 	offset %= dbtob(swap.sw_bsize);
    300 
    301 	/* Check that the page is actually present. */
    302 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    303 		return (0);
    304 
    305 	if (!ISALIVE(kd))
    306 		return (-1);
    307 
    308 	/* Calculate the physical address and read the page. */
    309 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    310 
    311 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    312 		return (-1);
    313 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    314 		return (-1);
    315 
    316 	return (1);
    317 }
    318 
    319 /*
    320  * Read proc's from memory file into buffer bp, which has space to hold
    321  * at most maxcnt procs.
    322  */
    323 static int
    324 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    325 	kvm_t *kd;
    326 	int what, arg;
    327 	struct proc *p;
    328 	struct kinfo_proc *bp;
    329 	int maxcnt;
    330 {
    331 	register int cnt = 0;
    332 	struct eproc eproc;
    333 	struct pgrp pgrp;
    334 	struct session sess;
    335 	struct tty tty;
    336 	struct proc proc;
    337 
    338 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    339 		if (KREAD(kd, (u_long)p, &proc)) {
    340 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    341 			return (-1);
    342 		}
    343 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    344 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    345 			      &eproc.e_ucred);
    346 
    347 		switch(what) {
    348 
    349 		case KERN_PROC_PID:
    350 			if (proc.p_pid != (pid_t)arg)
    351 				continue;
    352 			break;
    353 
    354 		case KERN_PROC_UID:
    355 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    356 				continue;
    357 			break;
    358 
    359 		case KERN_PROC_RUID:
    360 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    361 				continue;
    362 			break;
    363 		}
    364 		/*
    365 		 * We're going to add another proc to the set.  If this
    366 		 * will overflow the buffer, assume the reason is because
    367 		 * nprocs (or the proc list) is corrupt and declare an error.
    368 		 */
    369 		if (cnt >= maxcnt) {
    370 			_kvm_err(kd, kd->program, "nprocs corrupt");
    371 			return (-1);
    372 		}
    373 		/*
    374 		 * gather eproc
    375 		 */
    376 		eproc.e_paddr = p;
    377 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    378 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    379 				 proc.p_pgrp);
    380 			return (-1);
    381 		}
    382 		eproc.e_sess = pgrp.pg_session;
    383 		eproc.e_pgid = pgrp.pg_id;
    384 		eproc.e_jobc = pgrp.pg_jobc;
    385 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    386 			_kvm_err(kd, kd->program, "can't read session at %x",
    387 				pgrp.pg_session);
    388 			return (-1);
    389 		}
    390 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    391 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    392 				_kvm_err(kd, kd->program,
    393 					 "can't read tty at %x", sess.s_ttyp);
    394 				return (-1);
    395 			}
    396 			eproc.e_tdev = tty.t_dev;
    397 			eproc.e_tsess = tty.t_session;
    398 			if (tty.t_pgrp != NULL) {
    399 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    400 					_kvm_err(kd, kd->program,
    401 						 "can't read tpgrp at &x",
    402 						tty.t_pgrp);
    403 					return (-1);
    404 				}
    405 				eproc.e_tpgid = pgrp.pg_id;
    406 			} else
    407 				eproc.e_tpgid = -1;
    408 		} else
    409 			eproc.e_tdev = NODEV;
    410 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    411 		if (sess.s_leader == p)
    412 			eproc.e_flag |= EPROC_SLEADER;
    413 		if (proc.p_wmesg)
    414 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    415 			    eproc.e_wmesg, WMESGLEN);
    416 
    417 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    418 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    419 
    420 		eproc.e_xsize = eproc.e_xrssize = 0;
    421 		eproc.e_xccount = eproc.e_xswrss = 0;
    422 
    423 		switch (what) {
    424 
    425 		case KERN_PROC_PGRP:
    426 			if (eproc.e_pgid != (pid_t)arg)
    427 				continue;
    428 			break;
    429 
    430 		case KERN_PROC_TTY:
    431 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    432 			     eproc.e_tdev != (dev_t)arg)
    433 				continue;
    434 			break;
    435 		}
    436 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    437 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    438 		++bp;
    439 		++cnt;
    440 	}
    441 	return (cnt);
    442 }
    443 
    444 /*
    445  * Build proc info array by reading in proc list from a crash dump.
    446  * Return number of procs read.  maxcnt is the max we will read.
    447  */
    448 static int
    449 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    450 	kvm_t *kd;
    451 	int what, arg;
    452 	u_long a_allproc;
    453 	u_long a_zombproc;
    454 	int maxcnt;
    455 {
    456 	register struct kinfo_proc *bp = kd->procbase;
    457 	register int acnt, zcnt;
    458 	struct proc *p;
    459 
    460 	if (KREAD(kd, a_allproc, &p)) {
    461 		_kvm_err(kd, kd->program, "cannot read allproc");
    462 		return (-1);
    463 	}
    464 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    465 	if (acnt < 0)
    466 		return (acnt);
    467 
    468 	if (KREAD(kd, a_zombproc, &p)) {
    469 		_kvm_err(kd, kd->program, "cannot read zombproc");
    470 		return (-1);
    471 	}
    472 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    473 	if (zcnt < 0)
    474 		zcnt = 0;
    475 
    476 	return (acnt + zcnt);
    477 }
    478 
    479 struct kinfo_proc *
    480 kvm_getprocs(kd, op, arg, cnt)
    481 	kvm_t *kd;
    482 	int op, arg;
    483 	int *cnt;
    484 {
    485 	size_t size;
    486 	int mib[4], st, nprocs;
    487 
    488 	if (kd->procbase != 0) {
    489 		free((void *)kd->procbase);
    490 		/*
    491 		 * Clear this pointer in case this call fails.  Otherwise,
    492 		 * kvm_close() will free it again.
    493 		 */
    494 		kd->procbase = 0;
    495 	}
    496 	if (ISALIVE(kd)) {
    497 		size = 0;
    498 		mib[0] = CTL_KERN;
    499 		mib[1] = KERN_PROC;
    500 		mib[2] = op;
    501 		mib[3] = arg;
    502 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    503 		if (st == -1) {
    504 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    505 			return (0);
    506 		}
    507 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    508 		if (kd->procbase == 0)
    509 			return (0);
    510 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    511 		if (st == -1) {
    512 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    513 			return (0);
    514 		}
    515 		if (size % sizeof(struct kinfo_proc) != 0) {
    516 			_kvm_err(kd, kd->program,
    517 				"proc size mismatch (%d total, %d chunks)",
    518 				size, sizeof(struct kinfo_proc));
    519 			return (0);
    520 		}
    521 		nprocs = size / sizeof(struct kinfo_proc);
    522 	} else {
    523 		struct nlist nl[4], *p;
    524 
    525 		nl[0].n_name = "_nprocs";
    526 		nl[1].n_name = "_allproc";
    527 		nl[2].n_name = "_zombproc";
    528 		nl[3].n_name = 0;
    529 
    530 		if (kvm_nlist(kd, nl) != 0) {
    531 			for (p = nl; p->n_type != 0; ++p)
    532 				;
    533 			_kvm_err(kd, kd->program,
    534 				 "%s: no such symbol", p->n_name);
    535 			return (0);
    536 		}
    537 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    538 			_kvm_err(kd, kd->program, "can't read nprocs");
    539 			return (0);
    540 		}
    541 		size = nprocs * sizeof(struct kinfo_proc);
    542 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    543 		if (kd->procbase == 0)
    544 			return (0);
    545 
    546 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    547 				      nl[2].n_value, nprocs);
    548 #ifdef notdef
    549 		size = nprocs * sizeof(struct kinfo_proc);
    550 		(void)realloc(kd->procbase, size);
    551 #endif
    552 	}
    553 	*cnt = nprocs;
    554 	return (kd->procbase);
    555 }
    556 
    557 void
    558 _kvm_freeprocs(kd)
    559 	kvm_t *kd;
    560 {
    561 	if (kd->procbase) {
    562 		free(kd->procbase);
    563 		kd->procbase = 0;
    564 	}
    565 }
    566 
    567 void *
    568 _kvm_realloc(kd, p, n)
    569 	kvm_t *kd;
    570 	void *p;
    571 	size_t n;
    572 {
    573 	void *np = (void *)realloc(p, n);
    574 
    575 	if (np == 0)
    576 		_kvm_err(kd, kd->program, "out of memory");
    577 	return (np);
    578 }
    579 
    580 #ifndef MAX
    581 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    582 #endif
    583 
    584 /*
    585  * Read in an argument vector from the user address space of process p.
    586  * addr if the user-space base address of narg null-terminated contiguous
    587  * strings.  This is used to read in both the command arguments and
    588  * environment strings.  Read at most maxcnt characters of strings.
    589  */
    590 static char **
    591 kvm_argv(kd, p, addr, narg, maxcnt)
    592 	kvm_t *kd;
    593 	const struct proc *p;
    594 	register u_long addr;
    595 	register int narg;
    596 	register int maxcnt;
    597 {
    598 	register char *np, *cp, *ep, *ap;
    599 	register u_long oaddr = -1;
    600 	register int len, cc;
    601 	register char **argv;
    602 
    603 	/*
    604 	 * Check that there aren't an unreasonable number of agruments,
    605 	 * and that the address is in user space.
    606 	 */
    607 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    608 		return (0);
    609 
    610 	if (kd->argv == 0) {
    611 		/*
    612 		 * Try to avoid reallocs.
    613 		 */
    614 		kd->argc = MAX(narg + 1, 32);
    615 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    616 						sizeof(*kd->argv));
    617 		if (kd->argv == 0)
    618 			return (0);
    619 	} else if (narg + 1 > kd->argc) {
    620 		kd->argc = MAX(2 * kd->argc, narg + 1);
    621 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    622 						sizeof(*kd->argv));
    623 		if (kd->argv == 0)
    624 			return (0);
    625 	}
    626 	if (kd->argspc == 0) {
    627 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    628 		if (kd->argspc == 0)
    629 			return (0);
    630 		kd->arglen = kd->nbpg;
    631 	}
    632 	if (kd->argbuf == 0) {
    633 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    634 		if (kd->argbuf == 0)
    635 			return (0);
    636 	}
    637 	cc = sizeof(char *) * narg;
    638 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    639 		return (0);
    640 	ap = np = kd->argspc;
    641 	argv = kd->argv;
    642 	len = 0;
    643 	/*
    644 	 * Loop over pages, filling in the argument vector.
    645 	 */
    646 	while (argv < kd->argv + narg && *argv != 0) {
    647 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    648 		if (addr != oaddr) {
    649 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    650 			    kd->nbpg)
    651 				return (0);
    652 			oaddr = addr;
    653 		}
    654 		addr = (u_long)*argv & (kd->nbpg - 1);
    655 		cp = kd->argbuf + addr;
    656 		cc = kd->nbpg - addr;
    657 		if (maxcnt > 0 && cc > maxcnt - len)
    658 			cc = maxcnt - len;;
    659 		ep = memchr(cp, '\0', cc);
    660 		if (ep != 0)
    661 			cc = ep - cp + 1;
    662 		if (len + cc > kd->arglen) {
    663 			register int off;
    664 			register char **pp;
    665 			register char *op = kd->argspc;
    666 
    667 			kd->arglen *= 2;
    668 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    669 							  kd->arglen);
    670 			if (kd->argspc == 0)
    671 				return (0);
    672 			/*
    673 			 * Adjust argv pointers in case realloc moved
    674 			 * the string space.
    675 			 */
    676 			off = kd->argspc - op;
    677 			for (pp = kd->argv; pp < argv; pp++)
    678 				*pp += off;
    679 			ap += off;
    680 			np += off;
    681 		}
    682 		memcpy(np, cp, cc);
    683 		np += cc;
    684 		len += cc;
    685 		if (ep != 0) {
    686 			*argv++ = ap;
    687 			ap = np;
    688 		} else
    689 			*argv += cc;
    690 		if (maxcnt > 0 && len >= maxcnt) {
    691 			/*
    692 			 * We're stopping prematurely.  Terminate the
    693 			 * current string.
    694 			 */
    695 			if (ep == 0) {
    696 				*np = '\0';
    697 				*argv++ = ap;
    698 			}
    699 			break;
    700 		}
    701 	}
    702 	/* Make sure argv is terminated. */
    703 	*argv = 0;
    704 	return (kd->argv);
    705 }
    706 
    707 static void
    708 ps_str_a(p, addr, n)
    709 	struct ps_strings *p;
    710 	u_long *addr;
    711 	int *n;
    712 {
    713 	*addr = (u_long)p->ps_argvstr;
    714 	*n = p->ps_nargvstr;
    715 }
    716 
    717 static void
    718 ps_str_e(p, addr, n)
    719 	struct ps_strings *p;
    720 	u_long *addr;
    721 	int *n;
    722 {
    723 	*addr = (u_long)p->ps_envstr;
    724 	*n = p->ps_nenvstr;
    725 }
    726 
    727 /*
    728  * Determine if the proc indicated by p is still active.
    729  * This test is not 100% foolproof in theory, but chances of
    730  * being wrong are very low.
    731  */
    732 static int
    733 proc_verify(kd, kernp, p)
    734 	kvm_t *kd;
    735 	u_long kernp;
    736 	const struct proc *p;
    737 {
    738 	struct proc kernproc;
    739 
    740 	/*
    741 	 * Just read in the whole proc.  It's not that big relative
    742 	 * to the cost of the read system call.
    743 	 */
    744 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    745 	    sizeof(kernproc))
    746 		return (0);
    747 	return (p->p_pid == kernproc.p_pid &&
    748 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    749 }
    750 
    751 static char **
    752 kvm_doargv(kd, kp, nchr, info)
    753 	kvm_t *kd;
    754 	const struct kinfo_proc *kp;
    755 	int nchr;
    756 	void (*info)(struct ps_strings *, u_long *, int *);
    757 {
    758 	register const struct proc *p = &kp->kp_proc;
    759 	register char **ap;
    760 	u_long addr;
    761 	int cnt;
    762 	struct ps_strings arginfo;
    763 
    764 	/*
    765 	 * Pointers are stored at the top of the user stack.
    766 	 */
    767 	if (p->p_stat == SZOMB ||
    768 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    769 		      sizeof(arginfo)) != sizeof(arginfo))
    770 		return (0);
    771 
    772 	(*info)(&arginfo, &addr, &cnt);
    773 	if (cnt == 0)
    774 		return (0);
    775 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    776 	/*
    777 	 * For live kernels, make sure this process didn't go away.
    778 	 */
    779 	if (ap != 0 && ISALIVE(kd) &&
    780 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    781 		ap = 0;
    782 	return (ap);
    783 }
    784 
    785 /*
    786  * Get the command args.  This code is now machine independent.
    787  */
    788 char **
    789 kvm_getargv(kd, kp, nchr)
    790 	kvm_t *kd;
    791 	const struct kinfo_proc *kp;
    792 	int nchr;
    793 {
    794 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    795 }
    796 
    797 char **
    798 kvm_getenvv(kd, kp, nchr)
    799 	kvm_t *kd;
    800 	const struct kinfo_proc *kp;
    801 	int nchr;
    802 {
    803 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    804 }
    805 
    806 /*
    807  * Read from user space.  The user context is given by p.
    808  */
    809 ssize_t
    810 kvm_uread(kd, p, uva, buf, len)
    811 	kvm_t *kd;
    812 	register const struct proc *p;
    813 	register u_long uva;
    814 	register char *buf;
    815 	register size_t len;
    816 {
    817 	register char *cp;
    818 
    819 	cp = buf;
    820 	while (len > 0) {
    821 		register int cc;
    822 		register char *dp;
    823 		u_long cnt;
    824 
    825 		dp = _kvm_uread(kd, p, uva, &cnt);
    826 		if (dp == 0) {
    827 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    828 			return (0);
    829 		}
    830 		cc = MIN(cnt, len);
    831 		bcopy(dp, cp, cc);
    832 
    833 		cp += cc;
    834 		uva += cc;
    835 		len -= cc;
    836 	}
    837 	return (ssize_t)(cp - buf);
    838 }
    839